#ifndef VTR_ND_MATRIX_H #define VTR_ND_MATRIX_H #include #include #include "vtr_assert.h" namespace vtr { //Proxy class for a sub-matrix of a NdMatrix class. //This is used to allow chaining of array indexing [] operators in a natural way. // //Each instance of this class peels off one-dimension and returns a NdMatrixProxy representing //the resulting sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case. // //Since this expansion happens at compiler time all the proxy classes get optimized away, //yielding both high performance and generality. // //Recursive case: N-dimensional array template class NdMatrixProxy { public: static_assert(N > 0, "Must have at least one dimension"); //Construct a matrix proxy object // // dim_sizes: Array of dimension sizes // idim: The dimension associated with this proxy // dim_stride: The stride of this dimension (i.e. how many element in memory between indicies of this dimension) // start: Pointer to the start of the sub-matrix this proxy represents NdMatrixProxy(const size_t* dim_sizes, const size_t* dim_strides, T* start) : dim_sizes_(dim_sizes) , dim_strides_(dim_strides) , start_(start) {} const NdMatrixProxy operator[](size_t index) const { VTR_ASSERT_SAFE_MSG(index >= 0, "Index out of range (below dimension minimum)"); VTR_ASSERT_SAFE_MSG(index < dim_sizes_[0], "Index out of range (above dimension maximum)"); VTR_ASSERT_SAFE_MSG(dim_sizes_[1] > 0, "Can not index into zero-sized dimension"); //Strip off one dimension return NdMatrixProxy( dim_sizes_ + 1, //Pass the dimension information dim_strides_ + 1, //Pass the stride for the next dimension start_ + dim_strides_[0] * index); //Advance to index in this dimension } NdMatrixProxy operator[](size_t index) { //Call the const version and cast-away constness return const_cast*>(this)->operator[](index); } private: const size_t* dim_sizes_; const size_t* dim_strides_; T* start_; }; //Base case: 1-dimensional array template class NdMatrixProxy { public: NdMatrixProxy(const size_t* dim_sizes, const size_t* dim_stride, T* start) : dim_sizes_(dim_sizes) , dim_strides_(dim_stride) , start_(start) {} const T& operator[](size_t index) const { VTR_ASSERT_SAFE_MSG(dim_strides_[0] == 1, "Final dimension must have stride 1"); VTR_ASSERT_SAFE_MSG(index >= 0, "Index out of range (below dimension minimum)"); VTR_ASSERT_SAFE_MSG(index < dim_sizes_[0], "Index out of range (above dimension maximum)"); //Base case return start_[index]; } T& operator[](size_t index) { //Call the const version and cast-away constness return const_cast(const_cast*>(this)->operator[](index)); } //For legacy compatibility (i.e. code expecting a pointer) we allow this base dimension //case to retrieve a raw pointer to the last dimension elements. // //Note that it is the caller's responsibility to use this correctly; care must be taken //not to clobber elements in other dimensions const T* data() const { return start_; } T* data() { //Call the const version and cast-away constness return const_cast(const_cast*>(this)->data()); } private: const size_t* dim_sizes_; const size_t* dim_strides_; T* start_; }; //Base class for an N-dimensional matrix supporting arbitrary index ranges per dimension. //This class implements all of the matrix handling (lifetime etc.) except for indexing //(which is implemented in the NdMatrix class). Indexing is split out to allows specialization //of indexing for N = 1. // //Implementation: // //This class uses a single linear array to store the matrix in c-style (row major) //order. That is, the right-most index is laid out contiguous memory. // //This should improve memory usage (no extra pointers to store for each dimension), //and cache locality (less indirection via pointers, predictable strides). // //The indicies are calculated based on the dimensions to access the appropriate elements. //Since the indexing calculations are visible to the compiler at compile time they can be //optimized to be efficient. template class NdMatrixBase { public: static_assert(N >= 1, "Minimum dimension 1"); //An empty matrix (all dimensions size zero) NdMatrixBase() { clear(); } //Specified dimension sizes: // [0..dim_sizes[0]) // [0..dim_sizes[1]) // ... //with optional fill value NdMatrixBase(std::array dim_sizes, T value = T()) { resize(dim_sizes, value); } public: //Accessors //Returns the size of the matrix (number of elements) size_t size() const { VTR_ASSERT_DEBUG_MSG(calc_size() == size_, "Calculated and current matrix size must be consistent"); return size_; } //Returns true if there are no elements in the matrix bool empty() const { return size() == 0; } //Returns the number of dimensions (i.e. N) size_t ndims() const { return dim_sizes_.size(); } //Returns the size of the ith dimension size_t dim_size(size_t i) const { VTR_ASSERT_SAFE(i < ndims()); return dim_sizes_[i]; } //Returns the starting index of ith dimension size_t begin_index(size_t i) const { VTR_ASSERT_SAFE(i < ndims()); return 0; } //Returns the one-past-the-end index of the ith dimension size_t end_index(size_t i) const { VTR_ASSERT_SAFE(i < ndims()); return dim_sizes_[i]; } // Flat accessors of NdMatrix const T& get(size_t i) const { VTR_ASSERT_SAFE(i < size_); return data_[i]; } T& get(size_t i) { VTR_ASSERT_SAFE(i < size_); return data_[i]; } public: //Mutators //Set all elements to 'value' void fill(T value) { std::fill(data_.get(), data_.get() + size(), value); } //Resize the matrix to the specified dimension ranges // //If 'value' is specified all elements will be initialized to it, //otherwise they will be default constructed. void resize(std::array dim_sizes, T value = T()) { dim_sizes_ = dim_sizes; size_ = calc_size(); alloc(); fill(value); if (size_ > 0) { dim_strides_[0] = size_ / dim_sizes_[0]; for (size_t dim = 1; dim < N; ++dim) { dim_strides_[dim] = dim_strides_[dim - 1] / dim_sizes_[dim]; } } else { dim_strides_.fill(0); } } //Reset the matrix to size zero void clear() { data_.reset(nullptr); dim_sizes_.fill(0); dim_strides_.fill(0); size_ = 0; } public: //Lifetime management //Copy constructor NdMatrixBase(const NdMatrixBase& other) : NdMatrixBase(other.dim_sizes_) { std::copy(other.data_.get(), other.data_.get() + other.size(), data_.get()); } //Move constructor NdMatrixBase(NdMatrixBase&& other) : NdMatrixBase() { swap(*this, other); } //Copy/move assignment // //Note that rhs is taken by value (copy-swap idiom) NdMatrixBase& operator=(NdMatrixBase rhs) { swap(*this, rhs); return *this; } //Swap two NdMatrixBase objects friend void swap(NdMatrixBase& m1, NdMatrixBase& m2) { using std::swap; swap(m1.size_, m2.size_); swap(m1.dim_sizes_, m2.dim_sizes_); swap(m1.dim_strides_, m2.dim_strides_); swap(m1.data_, m2.data_); } private: //Allocate space for all the elements void alloc() { data_ = std::make_unique(size()); } //Returns the size of the matrix (number of elements) calucated //from the current dimensions size_t calc_size() const { //Size is the product of all dimension sizes size_t cnt = dim_size(0); for (size_t idim = 1; idim < ndims(); ++idim) { cnt *= dim_size(idim); } return cnt; } protected: size_t size_ = 0; std::array dim_sizes_; std::array dim_strides_; std::unique_ptr data_ = nullptr; }; //An N-dimensional matrix supporting arbitrary (continuous) index ranges //per dimension. // //Examples: // // //A 2-dimensional matrix with indicies [0..4][0..9] // NdMatrix m1({5,10}); // // //Accessing an element // int i = m1[3][5]; // // //Setting an element // m1[2][8] = 0; // // //A 3-dimensional matrix with indicies [0..4][0..9][0..19] // NdMatrix m2({5,10,20}); // // //A 2-dimensional matrix with indicies [0..4][0..9], with all entries // //initialized to 42 // NdMatrix m3({5,10}, 42); // // //Filling all entries with value 101 // m3.fill(101); // // //Resizing an existing matrix (all values reset to default constucted value) // m3.resize({5,5}) // // //Resizing an existing matrix (all elements set to value 88) // m3.resize({15,55}, 88) template class NdMatrix : public NdMatrixBase { //General case static_assert(N >= 2, "Minimum dimension 2"); public: //Use the base constructors using NdMatrixBase::NdMatrixBase; public: //Access an element // //Returns a proxy-object to allow chained array-style indexing (N >= 2 case) const NdMatrixProxy operator[](size_t index) const { VTR_ASSERT_SAFE_MSG(this->dim_size(0) > 0, "Can not index into size zero dimension"); VTR_ASSERT_SAFE_MSG(this->dim_size(1) > 0, "Can not index into size zero dimension"); VTR_ASSERT_SAFE_MSG(index >= 0, "Index out of range (below dimension minimum)"); VTR_ASSERT_SAFE_MSG(index < this->dim_sizes_[0], "Index out of range (above dimension maximum)"); //Peel off the first dimension return NdMatrixProxy( this->dim_sizes_.data() + 1, //Pass the dimension information this->dim_strides_.data() + 1, //Pass the stride for the next dimension this->data_.get() + this->dim_strides_[0] * index); //Advance to index in this dimension } //Access an element // //Returns a proxy-object to allow chained array-style indexing NdMatrixProxy operator[](size_t index) { //Call the const version, since returned by value don't need to worry about const return const_cast*>(this)->operator[](index); } }; template class NdMatrix : public NdMatrixBase { //Specialization for N = 1 public: //Use the base constructors using NdMatrixBase::NdMatrixBase; public: //Access an element (immutable) const T& operator[](size_t index) const { VTR_ASSERT_SAFE_MSG(this->dim_size(0) > 0, "Can not index into size zero dimension"); VTR_ASSERT_SAFE_MSG(index >= 0, "Index out of range (below dimension minimum)"); VTR_ASSERT_SAFE_MSG(index < this->dim_sizes_[0], "Index out of range (above dimension maximum)"); return this->data_[index]; } //Access an element (mutable) T& operator[](size_t index) { //Call the const version, and cast away const-ness return const_cast(const_cast*>(this)->operator[](index)); } }; //Convenient short forms for common NdMatricies template using Matrix = NdMatrix; } // namespace vtr #endif