/* * Main clustering algorithm * Author(s): Vaughn Betz (first revision - VPack), Alexander Marquardt (second revision - T-VPack), Jason Luu (third revision - AAPack) * June 8, 2011 */ #include #include #include #include #include #include #include "util.h" #include "vpr_types.h" #include "globals.h" #include "cluster.h" #include "heapsort.h" #include "output_clustering.h" #include "output_blif.h" #include "SetupGrid.h" #include "read_xml_arch_file.h" #include "cluster_legality.h" #include "path_delay2.h" #include "path_delay.h" #include "vpr_utils.h" #include "cluster_placement.h" #include "ReadOptions.h" /*#define DEBUG_FAILED_PACKING_CANDIDATES*/ #define AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC 2 /* Maximum relative number of pins that can exceed input pins before giving up */ #define AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST 5 /* Maximum constant number of pins that can exceed input pins before giving up */ #define AAPACK_MAX_FEASIBLE_BLOCK_ARRAY_SIZE 30 /* This value is used to determine the max size of the priority queue for candidates that pass the early filter legality test but not the more detailed routing test */ #define AAPACK_MAX_NET_SINKS_IGNORE 256 /* The packer looks at all sinks of a net when deciding what next candidate block to pack, for high-fanout nets, this is too runtime costly for marginal benefit, thus ignore those high fanout nets */ #define AAPACK_MAX_HIGH_FANOUT_EXPLORE 10 /* For high-fanout nets that are ignored, consider a maximum of this many nets */ #define SCALE_NUM_PATHS 1e-2 /*this value is used as a multiplier to assign a * *slightly higher criticality value to nets that * *affect a large number of critical paths versus * *nets that do not have such a broad effect. * *Note that this multiplier is intentionally very * *small compared to the total criticality because * *we want to make sure that vpack_net criticality is * *primarily determined by slacks, with this acting * *only as a tie-breaker between otherwise equal nets*/ #define SCALE_DISTANCE_VAL 1e-4 /*this value is used as a multiplier to assign a * *slightly higher criticality value to nets that * *are otherwise equal but one is farther * *from sources (the farther one being made slightly * *more critical) */ enum e_gain_update { GAIN, NO_GAIN }; enum e_feasibility { FEASIBLE, INFEASIBLE }; enum e_gain_type { HILL_CLIMBING, NOT_HILL_CLIMBING }; enum e_removal_policy { REMOVE_CLUSTERED, LEAVE_CLUSTERED }; /* TODO: REMOVE_CLUSTERED no longer used, remove */ enum e_net_relation_to_clustered_block { INPUT, OUTPUT }; enum e_detailed_routing_stages { E_DETAILED_ROUTE_AT_END_ONLY = 0, E_DETAILED_ROUTE_FOR_EACH_ATOM, E_DETAILED_ROUTE_END }; /* Linked list structure. Stores one integer (iblk). */ struct s_molecule_link { t_pack_molecule *moleculeptr; struct s_molecule_link *next; }; /* 1/MARKED_FRAC is the fraction of nets or blocks that must be * * marked in order for the brute force (go through the whole * * data structure linearly) gain update etc. code to be used. * * This is done for speed only; make MARKED_FRAC whatever * * number speeds the code up most. */ #define MARKED_FRAC 2 /* Keeps a linked list of the unclustered blocks to speed up looking for * * unclustered blocks with a certain number of *external* inputs. * * [0..lut_size]. Unclustered_list_head[i] points to the head of the * * list of blocks with i inputs to be hooked up via external interconnect. */ static struct s_molecule_link *unclustered_list_head; int unclustered_list_head_size; static struct s_molecule_link *memory_pool; /*Declared here so I can free easily.*/ /* Does the logical_block that drives the output of this vpack_net also appear as a * * receiver (input) pin of the vpack_net? [0..num_logical_nets-1]. If so, then by how much? This is used * * in the gain routines to avoid double counting the connections from * * the current cluster to other blocks (hence yielding better * * clusterings). The only time a logical_block should connect to the same vpack_net * * twice is when one connection is an output and the other is an input, * * so this should take care of all multiple connections. */ static int *net_output_feeds_driving_block_input; /* Timing information for blocks */ static float *block_criticality = NULL; static int *critindexarray = NULL; /*****************************************/ /*local functions*/ /*****************************************/ static void check_clocks(boolean *is_clock); #if 0 static void check_for_duplicate_inputs (); #endif static boolean is_logical_blk_in_pb(int iblk, t_pb *pb); static void add_molecule_to_pb_stats_candidates(t_pack_molecule *molecule, std::map &gain, t_pb *pb); static void alloc_and_init_clustering(boolean global_clocks, float alpha, float beta, int max_cluster_size, int max_molecule_inputs, int max_pb_depth, int max_models, t_cluster_placement_stats **cluster_placement_stats, t_pb_graph_node ***primitives_list, t_pack_molecule *molecules_head, int num_molecules); static void free_pb_stats_recursive(t_pb *pb); static void try_update_lookahead_pins_used(t_pb *cur_pb); static void reset_lookahead_pins_used(t_pb *cur_pb); static void compute_and_mark_lookahead_pins_used(int ilogical_block); static void compute_and_mark_lookahead_pins_used_for_pin( t_pb_graph_pin *pb_graph_pin, t_pb *primitive_pb, int inet); static void commit_lookahead_pins_used(t_pb *cur_pb); static boolean check_lookahead_pins_used(t_pb *cur_pb); static boolean primitive_feasible(int iblk, t_pb *cur_pb); static boolean primitive_type_and_memory_feasible(int iblk, const t_pb_type *cur_pb_type, t_pb *memory_class_pb, int sibling_memory_blk); static t_pack_molecule *get_molecule_by_num_ext_inputs( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP int ext_inps, INP enum e_removal_policy remove_flag, INP t_cluster_placement_stats *cluster_placement_stats_ptr); static t_pack_molecule* get_free_molecule_with_most_ext_inputs_for_cluster( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP t_cluster_placement_stats *cluster_placement_stats_ptr); static t_pack_molecule* get_seed_logical_molecule_with_most_ext_inputs( int max_molecule_inputs); static enum e_block_pack_status try_pack_molecule( INOUTP t_cluster_placement_stats *cluster_placement_stats_ptr, INP t_pack_molecule *molecule, INOUTP t_pb_graph_node **primitives_list, INOUTP t_pb * pb, INP int max_models, INP int max_cluster_size, INP int clb_index, INP int max_nets_in_pb_type, INP int detailed_routing_stage); static enum e_block_pack_status try_place_logical_block_rec( INP t_pb_graph_node *pb_graph_node, INP int ilogical_block, INP t_pb *cb, OUTP t_pb **parent, INP int max_models, INP int max_cluster_size, INP int clb_index, INP int max_nets_in_pb_type, INP t_cluster_placement_stats *cluster_placement_stats_ptr, INP boolean is_root_of_chain, INP t_pb_graph_pin *chain_root_pin); static void revert_place_logical_block(INP int ilogical_block, INP int max_models); static void update_connection_gain_values(int inet, int clustered_block, t_pb * cur_pb, enum e_net_relation_to_clustered_block net_relation_to_clustered_block); static void update_timing_gain_values(int inet, int clustered_block, t_pb* cur_pb, enum e_net_relation_to_clustered_block net_relation_to_clustered_block, t_slack * slacks); static void mark_and_update_partial_gain(int inet, enum e_gain_update gain_flag, int clustered_block, int port_on_clustered_block, int pin_on_clustered_block, boolean timing_driven, boolean connection_driven, enum e_net_relation_to_clustered_block net_relation_to_clustered_block, t_slack * slacks); static void update_total_gain(float alpha, float beta, boolean timing_driven, boolean connection_driven, boolean global_clocks, t_pb *pb); static void update_cluster_stats( INP t_pack_molecule *molecule, INP int clb_index, INP boolean *is_clock, INP boolean global_clocks, INP float alpha, INP float beta, INP boolean timing_driven, INP boolean connection_driven, INP t_slack * slacks); static void start_new_cluster( INP t_cluster_placement_stats *cluster_placement_stats, INP t_pb_graph_node **primitives_list, INP const t_arch * arch, INOUTP t_block *new_cluster, INP int clb_index, INP t_pack_molecule *molecule, INP float aspect, INOUTP int *num_used_instances_type, INOUTP int *num_instances_type, INP int num_models, INP int max_cluster_size, INP int max_nets_in_pb_type, INP int detailed_routing_stage); static t_pack_molecule* get_highest_gain_molecule( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP enum e_gain_type gain_mode, INP t_cluster_placement_stats *cluster_placement_stats_ptr); static t_pack_molecule* get_molecule_for_cluster( INP enum e_packer_algorithm packer_algorithm, INP t_pb *cur_pb, INP boolean allow_unrelated_clustering, INOUTP int *num_unrelated_clustering_attempts, INP t_cluster_placement_stats *cluster_placement_stats_ptr); static void alloc_and_load_cluster_info(INP int num_clb, INOUTP t_block *clb); static void check_clustering(int num_clb, t_block *clb, boolean *is_clock); static void check_cluster_logical_blocks(t_pb *pb, boolean *blocks_checked); static t_pack_molecule* get_most_critical_seed_molecule(int * indexofcrit); static float get_molecule_gain(t_pack_molecule *molecule, std::map &blk_gain); static int compare_molecule_gain(const void *a, const void *b); static int get_net_corresponding_to_pb_graph_pin(t_pb *cur_pb, t_pb_graph_pin *pb_graph_pin); static void print_block_criticalities(const char * fname); /*****************************************/ /*globally accessable function*/ void do_clustering(const t_arch *arch, t_pack_molecule *molecule_head, int num_models, boolean global_clocks, boolean *is_clock, boolean hill_climbing_flag, char *out_fname, boolean timing_driven, enum e_cluster_seed cluster_seed_type, float alpha, float beta, int recompute_timing_after, float block_delay, float intra_cluster_net_delay, float inter_cluster_net_delay, float aspect, boolean allow_unrelated_clustering, boolean allow_early_exit, boolean connection_driven, enum e_packer_algorithm packer_algorithm, t_timing_inf timing_inf) { /* Does the actual work of clustering multiple netlist blocks * * into clusters. */ /* Algorithm employed 1. Find type that can legally hold block and create cluster with pb info 2. Populate started cluster 3. Repeat 1 until no more blocks need to be clustered */ int i, iblk, num_molecules, blocks_since_last_analysis, num_clb, max_nets_in_pb_type, cur_nets_in_pb_type, num_blocks_hill_added, max_cluster_size, cur_cluster_size, max_molecule_inputs, max_pb_depth, cur_pb_depth, num_unrelated_clustering_attempts, indexofcrit, savedindexofcrit /* index of next most timing critical block */, detailed_routing_stage, *hill_climbing_inputs_avail; int *num_used_instances_type, *num_instances_type; /* [0..num_types] Holds array for total number of each cluster_type available */ boolean early_exit, is_cluster_legal; enum e_block_pack_status block_pack_status; float crit; t_cluster_placement_stats *cluster_placement_stats, *cur_cluster_placement_stats_ptr; t_pb_graph_node **primitives_list; t_block *clb; t_slack * slacks = NULL; t_pack_molecule *istart, *next_molecule, *prev_molecule, *cur_molecule; #ifdef PATH_COUNTING int inet, ipin; #else int inode; float num_paths_scaling, distance_scaling; #endif /* TODO: This is memory inefficient, fix if causes problems */ clb = (t_block*)my_calloc(num_logical_blocks, sizeof(t_block)); num_clb = 0; istart = NULL; /* determine bound on cluster size and primitive input size */ max_cluster_size = 0; max_molecule_inputs = 0; max_pb_depth = 0; max_nets_in_pb_type = 0; indexofcrit = 0; cur_molecule = molecule_head; num_molecules = 0; while (cur_molecule != NULL) { cur_molecule->valid = TRUE; if (cur_molecule->num_ext_inputs > max_molecule_inputs) { max_molecule_inputs = cur_molecule->num_ext_inputs; } num_molecules++; cur_molecule = cur_molecule->next; } for (i = 0; i < num_types; i++) { if (EMPTY_TYPE == &type_descriptors[i]) continue; cur_cluster_size = get_max_primitives_in_pb_type( type_descriptors[i].pb_type); cur_pb_depth = get_max_depth_of_pb_type(type_descriptors[i].pb_type); cur_nets_in_pb_type = get_max_nets_in_pb_type( type_descriptors[i].pb_type); if (cur_cluster_size > max_cluster_size) { max_cluster_size = cur_cluster_size; } if (cur_pb_depth > max_pb_depth) { max_pb_depth = cur_pb_depth; } if (cur_nets_in_pb_type > max_nets_in_pb_type) { max_nets_in_pb_type = cur_nets_in_pb_type; } } if (hill_climbing_flag) { hill_climbing_inputs_avail = (int *) my_calloc(max_cluster_size + 1, sizeof(int)); } else { hill_climbing_inputs_avail = NULL; /* if used, die hard */ } /* TODO: make better estimate for nx and ny */ nx = ny = 1; check_clocks(is_clock); #if 0 check_for_duplicate_inputs (); #endif alloc_and_init_clustering(global_clocks, alpha, beta, max_cluster_size, max_molecule_inputs, max_pb_depth, num_models, &cluster_placement_stats, &primitives_list, molecule_head, num_molecules); blocks_since_last_analysis = 0; early_exit = FALSE; num_blocks_hill_added = 0; num_used_instances_type = (int*) my_calloc(num_types, sizeof(int)); num_instances_type = (int*) my_calloc(num_types, sizeof(int)); assert(max_cluster_size < MAX_SHORT); /* Limit maximum number of elements for each cluster */ if (timing_driven) { slacks = alloc_and_load_pre_packing_timing_graph(block_delay, inter_cluster_net_delay, arch->models, timing_inf); do_timing_analysis(slacks, TRUE, FALSE, FALSE); if (getEchoEnabled()) { if(isEchoFileEnabled(E_ECHO_PRE_PACKING_TIMING_GRAPH)) print_timing_graph(getEchoFileName(E_ECHO_PRE_PACKING_TIMING_GRAPH)); #ifndef PATH_COUNTING if(isEchoFileEnabled(E_ECHO_CLUSTERING_TIMING_INFO)) print_clustering_timing_info(getEchoFileName(E_ECHO_CLUSTERING_TIMING_INFO)); #endif if(isEchoFileEnabled(E_ECHO_PRE_PACKING_SLACK)) print_slack(slacks->slack, FALSE, getEchoFileName(E_ECHO_PRE_PACKING_SLACK)); if(isEchoFileEnabled(E_ECHO_PRE_PACKING_CRITICALITY)) print_criticality(slacks, FALSE, getEchoFileName(E_ECHO_PRE_PACKING_CRITICALITY)); } block_criticality = (float*) my_calloc(num_logical_blocks, sizeof(float)); critindexarray = (int*) my_malloc(num_logical_blocks * sizeof(int)); for (i = 0; i < num_logical_blocks; i++) { assert(logical_block[i].index == i); critindexarray[i] = i; } #ifdef PATH_COUNTING /* Calculate block criticality from a weighted sum of timing and path criticalities. */ for (inet = 0; inet < num_logical_nets; inet++) { for (ipin = 1; ipin <= vpack_net[inet].num_sinks; ipin++) { /* Find the logical block iblk which this pin is a sink on. */ iblk = vpack_net[inet].node_block[ipin]; /* The criticality of this pin is a sum of its timing and path criticalities. */ crit = PACK_PATH_WEIGHT * slacks->path_criticality[inet][ipin] + (1 - PACK_PATH_WEIGHT) * slacks->timing_criticality[inet][ipin]; /* The criticality of each block is the maximum of the criticalities of all its pins. */ if (block_criticality[iblk] < crit) { block_criticality[iblk] = crit; } } } #else /* Calculate criticality based on slacks and tie breakers (# paths, distance from source) */ for (inode = 0; inode < num_tnodes; inode++) { /* Only calculate for tnodes which have valid normalized values. Either all values will be accurate or none will, so we only have to check whether one particular value (normalized_T_arr) is valid Tnodes that do not have both times valid were not part of the analysis. Because we calloc-ed the array criticality, such nodes will have criticality 0, the lowest possible value. */ if (has_valid_normalized_T_arr(inode)) { iblk = tnode[inode].block; num_paths_scaling = SCALE_NUM_PATHS * (float) tnode[inode].prepacked_data->normalized_total_critical_paths; distance_scaling = SCALE_DISTANCE_VAL * (float) tnode[inode].prepacked_data->normalized_T_arr; crit = (1 - tnode[inode].prepacked_data->normalized_slack) + num_paths_scaling + distance_scaling; if (block_criticality[iblk] < crit) { block_criticality[iblk] = crit; } } } #endif heapsort(critindexarray, block_criticality, num_logical_blocks, 1); if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_CLUSTERING_BLOCK_CRITICALITIES)) { print_block_criticalities(getEchoFileName(E_ECHO_CLUSTERING_BLOCK_CRITICALITIES)); } if (cluster_seed_type == VPACK_TIMING) { istart = get_most_critical_seed_molecule(&indexofcrit); } else {/*max input seed*/ istart = get_seed_logical_molecule_with_most_ext_inputs( max_molecule_inputs); } } else /*cluster seed is max input (since there is no timing information)*/ { istart = get_seed_logical_molecule_with_most_ext_inputs( max_molecule_inputs); } while (istart != NULL) { is_cluster_legal = FALSE; savedindexofcrit = indexofcrit; for (detailed_routing_stage = (int)E_DETAILED_ROUTE_AT_END_ONLY; !is_cluster_legal && detailed_routing_stage != (int)E_DETAILED_ROUTE_END; detailed_routing_stage++) { reset_legalizer_for_cluster(&clb[num_clb]); /* start a new cluster and reset all stats */ start_new_cluster(cluster_placement_stats, primitives_list, arch, &clb[num_clb], num_clb, istart, aspect, num_used_instances_type, num_instances_type, num_models, max_cluster_size, max_nets_in_pb_type, detailed_routing_stage); vpr_printf(TIO_MESSAGE_INFO, "Complex block %d: %s, type: %s\n", num_clb, clb[num_clb].name, clb[num_clb].type->name); vpr_printf(TIO_MESSAGE_INFO, "\t"); fflush(stdout); update_cluster_stats(istart, num_clb, is_clock, global_clocks, alpha, beta, timing_driven, connection_driven, slacks); num_clb++; if (timing_driven && !early_exit) { blocks_since_last_analysis++; /*it doesn't make sense to do a timing analysis here since there* *is only one logical_block clustered it would not change anything */ } cur_cluster_placement_stats_ptr = &cluster_placement_stats[clb[num_clb - 1].type->index]; num_unrelated_clustering_attempts = 0; next_molecule = get_molecule_for_cluster(PACK_BRUTE_FORCE, clb[num_clb - 1].pb, allow_unrelated_clustering, &num_unrelated_clustering_attempts, cur_cluster_placement_stats_ptr); prev_molecule = istart; while (next_molecule != NULL && prev_molecule != next_molecule) { block_pack_status = try_pack_molecule(cur_cluster_placement_stats_ptr, next_molecule, primitives_list, clb[num_clb - 1].pb, num_models, max_cluster_size, num_clb - 1, max_nets_in_pb_type, detailed_routing_stage); prev_molecule = next_molecule; if (block_pack_status != BLK_PASSED) { if (next_molecule != NULL) { if (block_pack_status == BLK_FAILED_ROUTE) { #ifdef DEBUG_FAILED_PACKING_CANDIDATES vpr_printf(TIO_MESSAGE_DIRECT, "\tNO_ROUTE:%s type %s/n", next_molecule->logical_block_ptrs[next_molecule->root]->name, next_molecule->logical_block_ptrs[next_molecule->root]->model->name); fflush(stdout); #else vpr_printf(TIO_MESSAGE_DIRECT, "."); #endif } else { #ifdef DEBUG_FAILED_PACKING_CANDIDATES vpr_printf(TIO_MESSAGE_DIRECT, "\tFAILED_CHECK:%s type %s check %d\n", next_molecule->logical_block_ptrs[next_molecule->root]->name, next_molecule->logical_block_ptrs[next_molecule->root]->model->name, block_pack_status); fflush(stdout); #else vpr_printf(TIO_MESSAGE_DIRECT, "."); #endif } } next_molecule = get_molecule_for_cluster(PACK_BRUTE_FORCE, clb[num_clb - 1].pb, allow_unrelated_clustering, &num_unrelated_clustering_attempts, cur_cluster_placement_stats_ptr); continue; } else { /* Continue packing by filling smallest cluster */ #ifdef DEBUG_FAILED_PACKING_CANDIDATES vpr_printf(TIO_MESSAGE_DIRECT, "\tPASSED:%s type %s\n", next_molecule->logical_block_ptrs[next_molecule->root]->name, next_molecule->logical_block_ptrs[next_molecule->root]->model->name); fflush(stdout); #else vpr_printf(TIO_MESSAGE_DIRECT, "."); #endif } update_cluster_stats(next_molecule, num_clb - 1, is_clock, global_clocks, alpha, beta, timing_driven, connection_driven, slacks); num_unrelated_clustering_attempts = 0; if (timing_driven && !early_exit) { blocks_since_last_analysis++; /* historically, timing slacks were recomputed after X number of blocks were packed, but this doesn't significantly alter results so I (jluu) did not port the code */ } next_molecule = get_molecule_for_cluster(PACK_BRUTE_FORCE, clb[num_clb - 1].pb, allow_unrelated_clustering, &num_unrelated_clustering_attempts, cur_cluster_placement_stats_ptr); } vpr_printf(TIO_MESSAGE_DIRECT, "\n"); if (detailed_routing_stage == (int)E_DETAILED_ROUTE_AT_END_ONLY) { is_cluster_legal = try_breadth_first_route_cluster(); if (is_cluster_legal == TRUE) { vpr_printf(TIO_MESSAGE_INFO, "Passed route at end.\n"); } else { vpr_printf(TIO_MESSAGE_INFO, "Failed route at end, repack cluster trying detailed routing at each stage.\n"); } } else { is_cluster_legal = TRUE; } if (is_cluster_legal == TRUE) { save_cluster_solution(); if (timing_driven) { if (num_blocks_hill_added > 0 && !early_exit) { blocks_since_last_analysis += num_blocks_hill_added; } if (cluster_seed_type == VPACK_TIMING) { istart = get_most_critical_seed_molecule(&indexofcrit); } else { /*max input seed*/ istart = get_seed_logical_molecule_with_most_ext_inputs( max_molecule_inputs); } } else /*cluster seed is max input (since there is no timing information)*/ istart = get_seed_logical_molecule_with_most_ext_inputs( max_molecule_inputs); free_pb_stats_recursive(clb[num_clb - 1].pb); } else { /* Free up data structures and requeue used molecules */ num_used_instances_type[clb[num_clb - 1].type->index]--; free_cb(clb[num_clb - 1].pb); free(clb[num_clb - 1].pb); free(clb[num_clb - 1].name); clb[num_clb - 1].name = NULL; clb[num_clb - 1].pb = NULL; num_clb--; indexofcrit = savedindexofcrit; } } } free_cluster_legality_checker(); alloc_and_load_cluster_info(num_clb, clb); check_clustering(num_clb, clb, is_clock); output_clustering(clb, num_clb, global_clocks, is_clock, out_fname, FALSE); copy_nb_clusters = num_clb; if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_POST_PACK_NETLIST)) { output_blif (clb, num_clb, global_clocks, is_clock, getEchoFileName(E_ECHO_POST_PACK_NETLIST), FALSE); } if (hill_climbing_flag) { free(hill_climbing_inputs_avail); } free_cluster_placement_stats(cluster_placement_stats); for (i = 0; i < num_clb; i++) { free_cb(clb[i].pb); free(clb[i].name); free(clb[i].nets); free(clb[i].pb); } free(clb); free(num_used_instances_type); free(num_instances_type); free(unclustered_list_head); free(memory_pool); free(net_output_feeds_driving_block_input); if (timing_driven) { free(block_criticality); free(critindexarray); block_criticality = NULL; critindexarray = NULL; } if (timing_driven) { free_timing_graph(slacks); } free (primitives_list); } /*****************************************/ static void check_clocks(boolean *is_clock) { /* Checks that nets used as clock inputs to latches are never also used * * as VPACK_LUT inputs. It's electrically questionable, and more importantly * * would break the clustering code. */ int inet, iblk, ipin; t_model_ports *port; for (iblk = 0; iblk < num_logical_blocks; iblk++) { if (logical_block[iblk].type != VPACK_OUTPAD) { port = logical_block[iblk].model->inputs; while (port) { for (ipin = 0; ipin < port->size; ipin++) { inet = logical_block[iblk].input_nets[port->index][ipin]; if (inet != OPEN) { if (is_clock[inet]) { vpr_printf(TIO_MESSAGE_ERROR, "Error in check_clocks.\n"); vpr_printf(TIO_MESSAGE_ERROR, "Net %d (%s) is a clock, but also connects to a logic block input on logical_block %d (%s).\n", inet, vpack_net[inet].name, iblk, logical_block[iblk].name); vpr_printf(TIO_MESSAGE_ERROR, "This would break the current clustering implementation and is electrically questionable, so clustering has been aborted.\n"); exit(1); } } } port = port->next; } } } } /* Determine if logical block is in pb */ static boolean is_logical_blk_in_pb(int iblk, t_pb *pb) { t_pb * cur_pb; cur_pb = logical_block[iblk].pb; while (cur_pb) { if (cur_pb == pb) { return TRUE; } cur_pb = cur_pb->parent_pb; } return FALSE; } /* Add blk to list of feasible blocks sorted according to gain */ static void add_molecule_to_pb_stats_candidates(t_pack_molecule *molecule, std::map &gain, t_pb *pb) { int i, j; for (i = 0; i < pb->pb_stats->num_feasible_blocks; i++) { if (pb->pb_stats->feasible_blocks[i] == molecule) { return; /* already in queue, do nothing */ } } if (pb->pb_stats->num_feasible_blocks >= AAPACK_MAX_FEASIBLE_BLOCK_ARRAY_SIZE - 1) { /* maximum size for array, remove smallest gain element and sort */ if (get_molecule_gain(molecule, gain) > get_molecule_gain(pb->pb_stats->feasible_blocks[0], gain)) { /* single loop insertion sort */ for (j = 0; j < pb->pb_stats->num_feasible_blocks - 1; j++) { if (get_molecule_gain(molecule, gain) <= get_molecule_gain(pb->pb_stats->feasible_blocks[j + 1], gain)) { pb->pb_stats->feasible_blocks[j] = molecule; break; } else { pb->pb_stats->feasible_blocks[j] = pb->pb_stats->feasible_blocks[j + 1]; } } if (j == pb->pb_stats->num_feasible_blocks - 1) { pb->pb_stats->feasible_blocks[j] = molecule; } } } else { /* Expand array and single loop insertion sort */ for (j = pb->pb_stats->num_feasible_blocks - 1; j >= 0; j--) { if (get_molecule_gain(pb->pb_stats->feasible_blocks[j], gain) > get_molecule_gain(molecule, gain)) { pb->pb_stats->feasible_blocks[j + 1] = pb->pb_stats->feasible_blocks[j]; } else { pb->pb_stats->feasible_blocks[j + 1] = molecule; break; } } if (j < 0) { pb->pb_stats->feasible_blocks[0] = molecule; } pb->pb_stats->num_feasible_blocks++; } } /*****************************************/ static void alloc_and_init_clustering(boolean global_clocks, float alpha, float beta, int max_cluster_size, int max_molecule_inputs, int max_pb_depth, int max_models, t_cluster_placement_stats **cluster_placement_stats, t_pb_graph_node ***primitives_list, t_pack_molecule *molecules_head, int num_molecules) { /* Allocates the main data structures used for clustering and properly * * initializes them. */ int i, ext_inps, ipin, driving_blk, inet; struct s_molecule_link *next_ptr; t_pack_molecule *cur_molecule; t_pack_molecule **molecule_array; int max_molecule_size; alloc_and_load_cluster_legality_checker(); /**cluster_placement_stats = alloc_and_load_cluster_placement_stats();*/ for (i = 0; i < num_logical_blocks; i++) { logical_block[i].clb_index = NO_CLUSTER; } /* alloc and load list of molecules to pack */ unclustered_list_head = (struct s_molecule_link *) my_calloc( max_molecule_inputs + 1, sizeof(struct s_molecule_link)); unclustered_list_head_size = max_molecule_inputs + 1; for (i = 0; i <= max_molecule_inputs; i++) { unclustered_list_head[i].next = NULL; } molecule_array = (t_pack_molecule **) my_malloc( num_molecules * sizeof(t_pack_molecule*)); cur_molecule = molecules_head; for (i = 0; i < num_molecules; i++) { assert(cur_molecule != NULL); molecule_array[i] = cur_molecule; cur_molecule = cur_molecule->next; } assert(cur_molecule == NULL); qsort((void*) molecule_array, num_molecules, sizeof(t_pack_molecule*), compare_molecule_gain); memory_pool = (struct s_molecule_link *) my_malloc( num_molecules * sizeof(struct s_molecule_link)); next_ptr = memory_pool; for (i = 0; i < num_molecules; i++) { ext_inps = molecule_array[i]->num_ext_inputs; next_ptr->moleculeptr = molecule_array[i]; next_ptr->next = unclustered_list_head[ext_inps].next; unclustered_list_head[ext_inps].next = next_ptr; next_ptr++; } free(molecule_array); /* alloc and load net info */ net_output_feeds_driving_block_input = (int *) my_malloc( num_logical_nets * sizeof(int)); for (inet = 0; inet < num_logical_nets; inet++) { net_output_feeds_driving_block_input[inet] = 0; driving_blk = vpack_net[inet].node_block[0]; for (ipin = 1; ipin <= vpack_net[inet].num_sinks; ipin++) { if (vpack_net[inet].node_block[ipin] == driving_blk) { net_output_feeds_driving_block_input[inet]++; } } } /* alloc and load cluster placement info */ *cluster_placement_stats = alloc_and_load_cluster_placement_stats(); /* alloc array that will store primitives that a molecule gets placed to, primitive_list is referenced by index, for example a logical block in index 2 of a molecule matches to a primitive in index 2 in primitive_list this array must be the size of the biggest molecule */ max_molecule_size = 1; cur_molecule = molecules_head; while (cur_molecule != NULL) { if (cur_molecule->num_blocks > max_molecule_size) { max_molecule_size = cur_molecule->num_blocks; } cur_molecule = cur_molecule->next; } *primitives_list = (t_pb_graph_node **)my_calloc(max_molecule_size, sizeof(t_pb_graph_node *)); } /*****************************************/ static void free_pb_stats_recursive(t_pb *pb) { int i, j; /* Releases all the memory used by clustering data structures. */ if (pb) { if (pb->pb_graph_node != NULL) { if (pb->pb_graph_node->pb_type->num_modes != 0) { for (i = 0; i < pb->pb_graph_node->pb_type->modes[pb->mode].num_pb_type_children; i++) { for (j = 0; j < pb->pb_graph_node->pb_type->modes[pb->mode].pb_type_children[i].num_pb; j++) { if (pb->child_pbs && pb->child_pbs[i]) { free_pb_stats_recursive(&pb->child_pbs[i][j]); } } } } } free_pb_stats(pb); } } static boolean primitive_feasible(int iblk, t_pb *cur_pb) { const t_pb_type *cur_pb_type; int i; t_pb *memory_class_pb; /* Used for memory class only, for memories, open pins must be the same among siblings */ int sibling_memory_blk; cur_pb_type = cur_pb->pb_graph_node->pb_type; memory_class_pb = NULL; sibling_memory_blk = OPEN; assert(cur_pb_type->num_modes == 0); /* primitive */ if (cur_pb->logical_block != OPEN && cur_pb->logical_block != iblk) { /* This pb already has a different logical block */ return FALSE; } if (cur_pb_type->class_type == MEMORY_CLASS) { /* memory class is special, all siblings must share all nets, including open nets, with the exception of data nets */ /* find sibling if one exists */ memory_class_pb = cur_pb->parent_pb; for (i = 0; i < cur_pb_type->parent_mode->num_pb_type_children; i++) { if (memory_class_pb->child_pbs[cur_pb->mode][i].name != NULL && memory_class_pb->child_pbs[cur_pb->mode][i].logical_block != OPEN) { sibling_memory_blk = memory_class_pb->child_pbs[cur_pb->mode][i].logical_block; } } if (sibling_memory_blk == OPEN) { memory_class_pb = NULL; } } return primitive_type_and_memory_feasible(iblk, cur_pb_type, memory_class_pb, sibling_memory_blk); } static boolean primitive_type_and_memory_feasible(int iblk, const t_pb_type *cur_pb_type, t_pb *memory_class_pb, int sibling_memory_blk) { t_model_ports *port; int i, j; boolean second_pass; /* check if ports are big enough */ /* for memories, also check that pins are the same with existing siblings */ port = logical_block[iblk].model->inputs; second_pass = FALSE; while (port || !second_pass) { /* TODO: This is slow if the number of ports are large, fix if becomes a problem */ if (!port) { second_pass = TRUE; port = logical_block[iblk].model->outputs; } for (i = 0; i < cur_pb_type->num_ports; i++) { if (cur_pb_type->ports[i].model_port == port) { /* TODO: This is slow, I only need to check from 0 if it is a memory block, other blocks I can check from port->size onwards */ for (j = 0; j < port->size; j++) { if (port->dir == IN_PORT && !port->is_clock) { if (memory_class_pb) { if (cur_pb_type->ports[i].port_class == NULL || strstr(cur_pb_type->ports[i].port_class,"data") != cur_pb_type->ports[i].port_class) { if (logical_block[iblk].input_nets[port->index][j] != logical_block[sibling_memory_blk].input_nets[port->index][j]) { return FALSE; } } } if (logical_block[iblk].input_nets[port->index][j] != OPEN && j >= cur_pb_type->ports[i].num_pins) { return FALSE; } } else if (port->dir == OUT_PORT) { if (memory_class_pb) { if (cur_pb_type->ports[i].port_class == NULL || strstr(cur_pb_type->ports[i].port_class, "data") != cur_pb_type->ports[i].port_class) { if (logical_block[iblk].output_nets[port->index][j] != logical_block[sibling_memory_blk].output_nets[port->index][j]) { return FALSE; } } } if (logical_block[iblk].output_nets[port->index][j] != OPEN && j >= cur_pb_type->ports[i].num_pins) { return FALSE; } } else { assert(port->dir == IN_PORT && port->is_clock); assert(j == 0); if (memory_class_pb) { if (logical_block[iblk].clock_net != logical_block[sibling_memory_blk].clock_net) { return FALSE; } } if (logical_block[iblk].clock_net != OPEN && j >= cur_pb_type->ports[i].num_pins) { return FALSE; } } } break; } } if (i == cur_pb_type->num_ports) { if (((logical_block[iblk].model->inputs != NULL) && !second_pass) || (logical_block[iblk].model->outputs != NULL && second_pass)) { /* physical port not found */ return FALSE; } } if (port) { port = port->next; } } return TRUE; } /*****************************************/ static t_pack_molecule *get_molecule_by_num_ext_inputs( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP int ext_inps, INP enum e_removal_policy remove_flag, INP t_cluster_placement_stats *cluster_placement_stats_ptr) { /* This routine returns a logical_block which has not been clustered, has * * no connection to the current cluster, satisfies the cluster * * clock constraints, is a valid subblock inside the cluster, does not exceed the cluster subblock units available, and has ext_inps external inputs. If * * there is no such logical_block it returns NO_CLUSTER. Remove_flag * * controls whether or not blocks that have already been clustered * * are removed from the unclustered_list data structures. NB: * * to get a logical_block regardless of clock constraints just set clocks_ * * avail > 0. */ struct s_molecule_link *ptr, *prev_ptr; int ilogical_blk, i; boolean success; prev_ptr = &unclustered_list_head[ext_inps]; ptr = unclustered_list_head[ext_inps].next; while (ptr != NULL) { /* TODO: Get better candidate logical block in future, eg. return most timing critical or some other smarter metric */ /* TODO: (Xifan Tang) An alternation is to select the candidate that share the max. number of input/output nets to the other logic block with other primitives in the logic block */ if (ptr->moleculeptr->valid) { success = TRUE; for (i = 0; i < get_array_size_of_molecule(ptr->moleculeptr); i++) { if (ptr->moleculeptr->logical_block_ptrs[i] != NULL) { ilogical_blk = ptr->moleculeptr->logical_block_ptrs[i]->index; if (!exists_free_primitive_for_logical_block(cluster_placement_stats_ptr, ilogical_blk)) { /* TODO: I should be using a better filtering check especially when I'm dealing with multiple clock/multiple global reset signals where the clock/reset packed in matters, need to do later when I have the circuits to check my work */ success = FALSE; break; } } } if (success == TRUE) { return ptr->moleculeptr; } prev_ptr = ptr; } else if (remove_flag == REMOVE_CLUSTERED) { assert(0); /* this doesn't work right now with 2 the pass packing for each complex block */ prev_ptr->next = ptr->next; } ptr = ptr->next; } return NULL; } /*****************************************/ static t_pack_molecule *get_free_molecule_with_most_ext_inputs_for_cluster( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP t_cluster_placement_stats *cluster_placement_stats_ptr) { /* This routine is used to find new blocks for clustering when there are no feasible * * blocks with any attraction to the current cluster (i.e. it finds * * blocks which are unconnected from the current cluster). It returns * * the logical_block with the largest number of used inputs that satisfies the * * clocking and number of inputs constraints. If no suitable logical_block is * * found, the routine returns NO_CLUSTER. * TODO: Analyze if this function is useful in more detail, also, should probably not include clock in input count */ int ext_inps; int i, j; t_pack_molecule *molecule; int inputs_avail = 0; for (i = 0; i < cur_pb->pb_graph_node->num_input_pin_class; i++) { for (j = 0; j < cur_pb->pb_graph_node->input_pin_class_size[i]; j++) { if (cur_pb->pb_stats->input_pins_used[i][j] != OPEN) inputs_avail++; } } molecule = NULL; if (inputs_avail >= unclustered_list_head_size) { inputs_avail = unclustered_list_head_size - 1; } for (ext_inps = inputs_avail; ext_inps >= 0; ext_inps--) { molecule = get_molecule_by_num_ext_inputs(packer_algorithm, cur_pb, ext_inps, LEAVE_CLUSTERED, cluster_placement_stats_ptr); if (molecule != NULL) { break; } } return molecule; } /*****************************************/ static t_pack_molecule* get_seed_logical_molecule_with_most_ext_inputs( int max_molecule_inputs) { /* This routine is used to find the first seed logical_block for the clustering. It returns * * the logical_block with the largest number of used inputs that satisfies the * * clocking and number of inputs constraints. If no suitable logical_block is * * found, the routine returns NO_CLUSTER. */ int ext_inps; struct s_molecule_link *ptr; for (ext_inps = max_molecule_inputs; ext_inps >= 0; ext_inps--) { ptr = unclustered_list_head[ext_inps].next; while (ptr != NULL) { if (ptr->moleculeptr->valid) { return ptr->moleculeptr; } ptr = ptr->next; } } return NULL; } /*****************************************/ /*****************************************/ static void alloc_and_load_pb_stats(t_pb *pb, int max_models, int max_nets_in_pb_type) { /* Call this routine when starting to fill up a new cluster. It resets * * the gain vector, etc. */ int i, j; pb->pb_stats = new t_pb_stats; /* If statement below is for speed. If nets are reasonably low-fanout, * * only a relatively small number of blocks will be marked, and updating * * only those logical_block structures will be fastest. If almost all blocks * * have been touched it should be faster to just run through them all * * in order (less addressing and better cache locality). */ pb->pb_stats->input_pins_used = (int **) my_malloc( pb->pb_graph_node->num_input_pin_class * sizeof(int*)); pb->pb_stats->output_pins_used = (int **) my_malloc( pb->pb_graph_node->num_output_pin_class * sizeof(int*)); pb->pb_stats->lookahead_input_pins_used = (int **) my_malloc( pb->pb_graph_node->num_input_pin_class * sizeof(int*)); pb->pb_stats->lookahead_output_pins_used = (int **) my_malloc( pb->pb_graph_node->num_output_pin_class * sizeof(int*)); pb->pb_stats->num_feasible_blocks = NOT_VALID; pb->pb_stats->feasible_blocks = (t_pack_molecule**) my_calloc( AAPACK_MAX_FEASIBLE_BLOCK_ARRAY_SIZE, sizeof(t_pack_molecule *)); pb->pb_stats->tie_break_high_fanout_net = OPEN; for (i = 0; i < pb->pb_graph_node->num_input_pin_class; i++) { pb->pb_stats->input_pins_used[i] = (int*) my_malloc( pb->pb_graph_node->input_pin_class_size[i] * sizeof(int)); for (j = 0; j < pb->pb_graph_node->input_pin_class_size[i]; j++) { pb->pb_stats->input_pins_used[i][j] = OPEN; } } for (i = 0; i < pb->pb_graph_node->num_output_pin_class; i++) { pb->pb_stats->output_pins_used[i] = (int*) my_malloc( pb->pb_graph_node->output_pin_class_size[i] * sizeof(int)); for (j = 0; j < pb->pb_graph_node->output_pin_class_size[i]; j++) { pb->pb_stats->output_pins_used[i][j] = OPEN; } } for (i = 0; i < pb->pb_graph_node->num_input_pin_class; i++) { pb->pb_stats->lookahead_input_pins_used[i] = (int*) my_malloc( (AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST + pb->pb_graph_node->input_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC) * sizeof(int)); for (j = 0; j < pb->pb_graph_node->input_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { pb->pb_stats->lookahead_input_pins_used[i][j] = OPEN; } } for (i = 0; i < pb->pb_graph_node->num_output_pin_class; i++) { pb->pb_stats->lookahead_output_pins_used[i] = (int*) my_malloc( (AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST + pb->pb_graph_node->output_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC) * sizeof(int)); for (j = 0; j < pb->pb_graph_node->output_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { pb->pb_stats->lookahead_output_pins_used[i][j] = OPEN; } } pb->pb_stats->gain.clear(); pb->pb_stats->timinggain.clear(); pb->pb_stats->connectiongain.clear(); pb->pb_stats->sharinggain.clear(); pb->pb_stats->hillgain.clear(); pb->pb_stats->num_pins_of_net_in_pb.clear(); pb->pb_stats->marked_nets = (int *) my_malloc( max_nets_in_pb_type * sizeof(int)); pb->pb_stats->marked_blocks = (int *) my_malloc( num_logical_blocks * sizeof(int)); pb->pb_stats->num_marked_nets = 0; pb->pb_stats->num_marked_blocks = 0; pb->pb_stats->num_child_blocks_in_pb = 0; } /*****************************************/ /** * Try pack molecule into current cluster */ static enum e_block_pack_status try_pack_molecule( INOUTP t_cluster_placement_stats *cluster_placement_stats_ptr, INP t_pack_molecule *molecule, INOUTP t_pb_graph_node **primitives_list, INOUTP t_pb * pb, INP int max_models, INP int max_cluster_size, INP int clb_index, INP int max_nets_in_pb_type, INP int detailed_routing_stage) { int molecule_size, failed_location; int i; enum e_block_pack_status block_pack_status; struct s_linked_vptr *cur_molecule; t_pb *parent; t_pb *cur_pb; t_logical_block *chain_root_block; boolean is_root_of_chain; t_pb_graph_pin *chain_root_pin; /* Xifan TANG: count the runtime for packing placement*/ clock_t begin, end; parent = NULL; block_pack_status = BLK_STATUS_UNDEFINED; molecule_size = get_array_size_of_molecule(molecule); failed_location = 0; while (block_pack_status != BLK_PASSED) { save_and_reset_routing_cluster(); /* save current routing information because speculative packing will change routing*/ if (get_next_primitive_list(cluster_placement_stats_ptr, molecule, primitives_list, clb_index)) { block_pack_status = BLK_PASSED; for (i = 0; i < molecule_size && block_pack_status == BLK_PASSED; i++) { assert( (primitives_list[i] == NULL) == (molecule->logical_block_ptrs[i] == NULL)); failed_location = i + 1; if (molecule->logical_block_ptrs[i] != NULL) { if(molecule->type == MOLECULE_FORCED_PACK && molecule->pack_pattern->is_chain && i == molecule->pack_pattern->root_block->block_id) { chain_root_pin = molecule->pack_pattern->chain_root_pin; is_root_of_chain = TRUE; } else { chain_root_pin = NULL; is_root_of_chain = FALSE; } block_pack_status = try_place_logical_block_rec( primitives_list[i], molecule->logical_block_ptrs[i]->index, pb, &parent, max_models, max_cluster_size, clb_index, max_nets_in_pb_type, cluster_placement_stats_ptr, is_root_of_chain, chain_root_pin); } } if (block_pack_status == BLK_PASSED) { /* Check if pin usage is feasible for the current packing assigment */ reset_lookahead_pins_used(pb); try_update_lookahead_pins_used(pb); if (!check_lookahead_pins_used(pb)) { block_pack_status = BLK_FAILED_FEASIBLE; } } if (block_pack_status == BLK_PASSED) { /* start of pack placement */ begin = clock(); /* Try to route if heuristic is to route for every atom Skip routing if heuristic is to route at the end of packing complex block */ setup_intracluster_routing_for_molecule(molecule, primitives_list); if (detailed_routing_stage == (int)E_DETAILED_ROUTE_FOR_EACH_ATOM && try_breadth_first_route_cluster() == FALSE) { /* Cannot pack */ block_pack_status = BLK_FAILED_ROUTE; } else { /* Pack successful, commit TODO: SW Engineering note - may want to update cluster stats here too instead of doing it outside */ assert(block_pack_status == BLK_PASSED); if(molecule->type == MOLECULE_FORCED_PACK && molecule->pack_pattern->is_chain) { /* Chained molecules often take up lots of area and are important, if a chain is packed in, want to rename logic block to match chain name */ chain_root_block = molecule->logical_block_ptrs[molecule->pack_pattern->root_block->block_id]; cur_pb = chain_root_block->pb->parent_pb; while(cur_pb != NULL) { free(cur_pb->name); cur_pb->name = my_strdup(chain_root_block->name); cur_pb = cur_pb->parent_pb; } } for (i = 0; i < molecule_size; i++) { if (molecule->logical_block_ptrs[i] != NULL) { /* invalidate all molecules that share logical block with current molecule */ cur_molecule = molecule->logical_block_ptrs[i]->packed_molecules; while (cur_molecule != NULL) { ((t_pack_molecule*) cur_molecule->data_vptr)->valid = FALSE; cur_molecule = cur_molecule->next; } commit_primitive(cluster_placement_stats_ptr, primitives_list[i]); } } } /* end of pack route */ end = clock(); /* accumulate the runtime for pack route */ #ifdef CLOCKS_PER_SEC pack_route_time += (float)(end - begin)/ CLOCKS_PER_SEC; #else pack_route_time += (float)(end - begin)/ CLK_PER_SEC; #endif } if (block_pack_status != BLK_PASSED) { for (i = 0; i < failed_location; i++) { if (molecule->logical_block_ptrs[i] != NULL) { revert_place_logical_block(molecule->logical_block_ptrs[i]->index, max_models); } } restore_routing_cluster(); } } else { block_pack_status = BLK_FAILED_FEASIBLE; restore_routing_cluster(); break; /* no more candidate primitives available, this molecule will not pack, return fail */ } } return block_pack_status; } /** * Try place logical block into current primitive location */ static enum e_block_pack_status try_place_logical_block_rec( INP t_pb_graph_node *pb_graph_node, INP int ilogical_block, INP t_pb *cb, OUTP t_pb **parent, INP int max_models, INP int max_cluster_size, INP int clb_index, INP int max_nets_in_pb_type, INP t_cluster_placement_stats *cluster_placement_stats_ptr, INP boolean is_root_of_chain, INP t_pb_graph_pin *chain_root_pin) { int i, j; boolean is_primitive; enum e_block_pack_status block_pack_status; t_pb *my_parent; t_pb *pb, *parent_pb; const t_pb_type *pb_type; t_model_ports *root_port; my_parent = NULL; block_pack_status = BLK_PASSED; /* Discover parent */ if (pb_graph_node->parent_pb_graph_node != cb->pb_graph_node) { block_pack_status = try_place_logical_block_rec( pb_graph_node->parent_pb_graph_node, ilogical_block, cb, &my_parent, max_models, max_cluster_size, clb_index, max_nets_in_pb_type, cluster_placement_stats_ptr, is_root_of_chain, chain_root_pin); parent_pb = my_parent; } else { parent_pb = cb; } /* Create siblings if siblings are not allocated */ if (parent_pb->child_pbs == NULL) { assert(parent_pb->name == NULL); parent_pb->logical_block = OPEN; parent_pb->name = my_strdup(logical_block[ilogical_block].name); parent_pb->mode = pb_graph_node->pb_type->parent_mode->index; /* set_pb_graph_mode(parent_pb->pb_graph_node, 0, 0); */ /* TODO: default mode is to use mode 0, document this! */ set_pb_graph_mode(parent_pb->pb_graph_node, parent_pb->mode, 1); parent_pb->child_pbs = (t_pb **) my_calloc(parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].num_pb_type_children, sizeof(t_pb *)); for (i = 0; i < parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].num_pb_type_children; i++) { parent_pb->child_pbs[i] = (t_pb *) my_calloc(parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].pb_type_children[i].num_pb, sizeof(t_pb)); for (j = 0; j < parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].pb_type_children[i].num_pb; j++) { parent_pb->child_pbs[i][j].parent_pb = parent_pb; parent_pb->child_pbs[i][j].logical_block = OPEN; parent_pb->child_pbs[i][j].pb_graph_node = &(parent_pb->pb_graph_node->child_pb_graph_nodes[parent_pb->mode][i][j]); } } } else { assert(parent_pb->mode == pb_graph_node->pb_type->parent_mode->index); } for (i = 0; i < parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].num_pb_type_children; i++) { if (pb_graph_node->pb_type == &parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].pb_type_children[i]) { break; } } assert(i < parent_pb->pb_graph_node->pb_type->modes[parent_pb->mode].num_pb_type_children); pb = &parent_pb->child_pbs[i][pb_graph_node->placement_index]; *parent = pb; /* this pb is parent of it's child that called this function */ assert(pb->pb_graph_node == pb_graph_node); if (pb->pb_stats == NULL) { alloc_and_load_pb_stats(pb, max_models, max_nets_in_pb_type); } pb_type = pb_graph_node->pb_type; /* Xifan Tang: bypass those modes that are specified as unavaible during packing */ if (TRUE == pb_type->parent_mode->disabled_in_packing) { return BLK_FAILED_FEASIBLE; } /* END */ is_primitive = (boolean) (pb_type->num_modes == 0); if (is_primitive) { assert(pb->logical_block == OPEN && logical_block[ilogical_block].pb == NULL && logical_block[ilogical_block].clb_index == NO_CLUSTER); /* try pack to location */ pb->name = my_strdup(logical_block[ilogical_block].name); pb->logical_block = ilogical_block; logical_block[ilogical_block].clb_index = clb_index; logical_block[ilogical_block].pb = pb; if (!primitive_feasible(ilogical_block, pb)) { /* failed location feasibility check, revert pack */ block_pack_status = BLK_FAILED_FEASIBLE; } if (block_pack_status == BLK_PASSED && is_root_of_chain == TRUE) { /* is carry chain, must check if this carry chain spans multiple logic blocks or not */ root_port = chain_root_pin->port->model_port; if(logical_block[ilogical_block].input_nets[root_port->index][chain_root_pin->pin_number] != OPEN) { /* this carry chain spans multiple logic blocks, must match up correctly with previous chain for this to route */ if(pb_graph_node != chain_root_pin->parent_node) { /* this location does not match with the dedicated chain input from outside logic block, therefore not feasible */ block_pack_status = BLK_FAILED_FEASIBLE; } } } } return block_pack_status; } /* Revert trial logical block iblock and free up memory space accordingly */ static void revert_place_logical_block(INP int iblock, INP int max_models) { t_pb *pb, *next; pb = logical_block[iblock].pb; logical_block[iblock].clb_index = NO_CLUSTER; logical_block[iblock].pb = NULL; if (pb != NULL) { /* When freeing molecules, the current block might already have been freed by a prior revert When this happens, no need to do anything beyond basic book keeping at the logical block */ next = pb->parent_pb; free_pb(pb); pb = next; while (pb != NULL) { /* If this is pb is created only for the purposes of holding new molecule, remove it Must check if cluster is already freed (which can be the case) */ next = pb->parent_pb; if (pb->child_pbs != NULL && pb->pb_stats != NULL && pb->pb_stats->num_child_blocks_in_pb == 0) { set_pb_graph_mode(pb->pb_graph_node, pb->mode, 0); /* default mode is to use mode 1 */ set_pb_graph_mode(pb->pb_graph_node, 0, 1); if (next != NULL) { /* If the code gets here, then that means that placing the initial seed molecule failed, don't free the actual complex block itself as the seed needs to find another placement */ free_pb(pb); } } pb = next; } } } static void update_connection_gain_values(int inet, int clustered_block, t_pb *cur_pb, enum e_net_relation_to_clustered_block net_relation_to_clustered_block) { /*This function is called when the connectiongain values on the vpack_net* *inet require updating. */ int iblk, ipin; int clb_index; int num_internal_connections, num_open_connections, num_stuck_connections; num_internal_connections = num_open_connections = num_stuck_connections = 0; clb_index = logical_block[clustered_block].clb_index; /* may wish to speed things up by ignoring clock nets since they are high fanout */ for (ipin = 0; ipin <= vpack_net[inet].num_sinks; ipin++) { iblk = vpack_net[inet].node_block[ipin]; if (logical_block[iblk].clb_index == clb_index && is_logical_blk_in_pb(iblk, logical_block[clustered_block].pb)) { num_internal_connections++; } else if (logical_block[iblk].clb_index == OPEN) { num_open_connections++; } else { num_stuck_connections++; } } if (net_relation_to_clustered_block == OUTPUT) { for (ipin = 1; ipin <= vpack_net[inet].num_sinks; ipin++) { iblk = vpack_net[inet].node_block[ipin]; if (logical_block[iblk].clb_index == NO_CLUSTER) { /* TODO: Gain function accurate only if net has one connection to block, TODO: Should we handle case where net has multi-connection to block? Gain computation is only off by a bit in this case */ if(cur_pb->pb_stats->connectiongain.count(iblk) == 0) { cur_pb->pb_stats->connectiongain[iblk] = 0; } if (num_internal_connections > 1) { cur_pb->pb_stats->connectiongain[iblk] -= 1 / (float) (vpack_net[inet].num_sinks - (num_internal_connections - 1) + 1 * num_stuck_connections); } cur_pb->pb_stats->connectiongain[iblk] += 1 / (float) (vpack_net[inet].num_sinks - num_internal_connections + 1 * num_stuck_connections); } } } if (net_relation_to_clustered_block == INPUT) { /*Calculate the connectiongain for the logical_block which is driving * *the vpack_net that is an input to a logical_block in the cluster */ iblk = vpack_net[inet].node_block[0]; if (logical_block[iblk].clb_index == NO_CLUSTER) { if(cur_pb->pb_stats->connectiongain.count(iblk) == 0) { cur_pb->pb_stats->connectiongain[iblk] = 0; } if (num_internal_connections > 1) { cur_pb->pb_stats->connectiongain[iblk] -= 1 / (float) (vpack_net[inet].num_sinks - (num_internal_connections - 1) + 1 + 1 * num_stuck_connections); } cur_pb->pb_stats->connectiongain[iblk] += 1 / (float) (vpack_net[inet].num_sinks - num_internal_connections + 1 + 1 * num_stuck_connections); } } } /*****************************************/ static void update_timing_gain_values(int inet, int clustered_block, t_pb *cur_pb, enum e_net_relation_to_clustered_block net_relation_to_clustered_block, t_slack * slacks) { /*This function is called when the timing_gain values on the vpack_net* *inet requires updating. */ float timinggain; int newblk, ifirst; int iblk, ipin; /* Check if this vpack_net lists its driving logical_block twice. If so, avoid * * double counting this logical_block by skipping the first (driving) pin. */ if (net_output_feeds_driving_block_input[inet] == FALSE) ifirst = 0; else ifirst = 1; if (net_relation_to_clustered_block == OUTPUT && !vpack_net[inet].is_global) { for (ipin = ifirst; ipin <= vpack_net[inet].num_sinks; ipin++) { iblk = vpack_net[inet].node_block[ipin]; if (logical_block[iblk].clb_index == NO_CLUSTER) { #ifdef PATH_COUNTING /* Timing gain is a weighted sum of timing and path criticalities. */ timinggain = TIMING_GAIN_PATH_WEIGHT * slacks->path_criticality[inet][ipin] + (1 - TIMING_GAIN_PATH_WEIGHT) * slacks->timing_criticality[inet][ipin]; #else /* Timing gain is the timing criticality. */ timinggain = slacks->timing_criticality[inet][ipin]; #endif if(cur_pb->pb_stats->timinggain.count(iblk) == 0) { cur_pb->pb_stats->timinggain[iblk] = 0; } if (timinggain > cur_pb->pb_stats->timinggain[iblk]) cur_pb->pb_stats->timinggain[iblk] = timinggain; } } } if (net_relation_to_clustered_block == INPUT && !vpack_net[inet].is_global) { /*Calculate the timing gain for the logical_block which is driving * *the vpack_net that is an input to a logical_block in the cluster */ newblk = vpack_net[inet].node_block[0]; if (logical_block[newblk].clb_index == NO_CLUSTER) { for (ipin = 1; ipin <= vpack_net[inet].num_sinks; ipin++) { #ifdef PATH_COUNTING /* Timing gain is a weighted sum of timing and path criticalities. */ timinggain = TIMING_GAIN_PATH_WEIGHT * slacks->path_criticality[inet][ipin] + (1 - TIMING_GAIN_PATH_WEIGHT) * slacks->timing_criticality[inet][ipin]; #else /* Timing gain is the timing criticality. */ timinggain = slacks->timing_criticality[inet][ipin]; #endif if(cur_pb->pb_stats->timinggain.count(newblk) == 0) { cur_pb->pb_stats->timinggain[newblk] = 0; } if (timinggain > cur_pb->pb_stats->timinggain[newblk]) cur_pb->pb_stats->timinggain[newblk] = timinggain; } } } } /*****************************************/ static void mark_and_update_partial_gain(int inet, enum e_gain_update gain_flag, int clustered_block, int port_on_clustered_block, int pin_on_clustered_block, boolean timing_driven, boolean connection_driven, enum e_net_relation_to_clustered_block net_relation_to_clustered_block, t_slack * slacks) { /* Updates the marked data structures, and if gain_flag is GAIN, * * the gain when a logic logical_block is added to a cluster. The * * sharinggain is the number of inputs that a logical_block shares with * * blocks that are already in the cluster. Hillgain is the * * reduction in number of pins-required by adding a logical_block to the * * cluster. The timinggain is the criticality of the most critical* * vpack_net between this logical_block and a logical_block in the cluster. */ int iblk, ipin, ifirst, stored_net; t_pb *cur_pb; cur_pb = logical_block[clustered_block].pb->parent_pb; if (vpack_net[inet].num_sinks > AAPACK_MAX_NET_SINKS_IGNORE) { /* Optimization: It can be too runtime costly for marking all sinks for a high fanout-net that probably has no hope of ever getting packed, thus ignore those high fanout nets */ if(vpack_net[inet].is_global != TRUE) { /* If no low/medium fanout nets, we may need to consider high fan-out nets for packing, so select one and store it */ while(cur_pb->parent_pb != NULL) { cur_pb = cur_pb->parent_pb; } stored_net = cur_pb->pb_stats->tie_break_high_fanout_net; if(stored_net == OPEN || vpack_net[inet].num_sinks < vpack_net[stored_net].num_sinks) { cur_pb->pb_stats->tie_break_high_fanout_net = inet; } } return; } while (cur_pb) { /* Mark vpack_net as being visited, if necessary. */ if (cur_pb->pb_stats->num_pins_of_net_in_pb.count(inet) == 0) { cur_pb->pb_stats->marked_nets[cur_pb->pb_stats->num_marked_nets] = inet; cur_pb->pb_stats->num_marked_nets++; } /* Update gains of affected blocks. */ if (gain_flag == GAIN) { /* Check if this vpack_net lists its driving logical_block twice. If so, avoid * * double counting this logical_block by skipping the first (driving) pin. */ if (net_output_feeds_driving_block_input[inet] == 0) ifirst = 0; else ifirst = 1; if (cur_pb->pb_stats->num_pins_of_net_in_pb.count(inet) == 0) { for (ipin = ifirst; ipin <= vpack_net[inet].num_sinks; ipin++) { iblk = vpack_net[inet].node_block[ipin]; if (logical_block[iblk].clb_index == NO_CLUSTER) { if (cur_pb->pb_stats->sharinggain.count(iblk) == 0) { cur_pb->pb_stats->marked_blocks[cur_pb->pb_stats->num_marked_blocks] = iblk; cur_pb->pb_stats->num_marked_blocks++; cur_pb->pb_stats->sharinggain[iblk] = 1; cur_pb->pb_stats->hillgain[iblk] = 1 - num_ext_inputs_logical_block(iblk); } else { cur_pb->pb_stats->sharinggain[iblk]++; cur_pb->pb_stats->hillgain[iblk]++; } } } } if (connection_driven) { update_connection_gain_values(inet, clustered_block, cur_pb, net_relation_to_clustered_block); } if (timing_driven) { update_timing_gain_values(inet, clustered_block, cur_pb, net_relation_to_clustered_block, slacks); } } if(cur_pb->pb_stats->num_pins_of_net_in_pb.count(inet) == 0) { cur_pb->pb_stats->num_pins_of_net_in_pb[inet] = 0; } cur_pb->pb_stats->num_pins_of_net_in_pb[inet]++; cur_pb = cur_pb->parent_pb; } } /*****************************************/ static void update_total_gain(float alpha, float beta, boolean timing_driven, boolean connection_driven, boolean global_clocks, t_pb *pb) { /*Updates the total gain array to reflect the desired tradeoff between* *input sharing (sharinggain) and path_length minimization (timinggain)*/ int i, iblk, j, k; t_pb * cur_pb; int num_input_pins, num_output_pins; int num_used_input_pins, num_used_output_pins; t_model_ports *port; cur_pb = pb; while (cur_pb) { for (i = 0; i < cur_pb->pb_stats->num_marked_blocks; i++) { iblk = cur_pb->pb_stats->marked_blocks[i]; if(cur_pb->pb_stats->connectiongain.count(iblk) == 0) { cur_pb->pb_stats->connectiongain[iblk] = 0; } if(cur_pb->pb_stats->sharinggain.count(iblk) == 0) { cur_pb->pb_stats->connectiongain[iblk] = 0; } /* Todo: This was used to explore different normalization options, can be made more efficient once we decide on which one to use*/ num_input_pins = 0; port = logical_block[iblk].model->inputs; j = 0; num_used_input_pins = 0; while (port) { num_input_pins += port->size; if (!port->is_clock) { for (k = 0; k < port->size; k++) { if (logical_block[iblk].input_nets[j][k] != OPEN) { num_used_input_pins++; } } j++; } port = port->next; } if (num_input_pins == 0) { num_input_pins = 1; } num_used_output_pins = 0; j = 0; num_output_pins = 0; port = logical_block[iblk].model->outputs; while (port) { num_output_pins += port->size; for (k = 0; k < port->size; k++) { if (logical_block[iblk].output_nets[j][k] != OPEN) { num_used_output_pins++; } } port = port->next; j++; } /* end todo */ /* Calculate area-only cost function */ if (connection_driven) { /*try to absorb as many connections as possible*/ /*cur_pb->pb_stats->gain[iblk] = ((1-beta)*(float)cur_pb->pb_stats->sharinggain[iblk] + beta*(float)cur_pb->pb_stats->connectiongain[iblk])/(num_input_pins + num_output_pins);*/ cur_pb->pb_stats->gain[iblk] = ((1 - beta) * (float) cur_pb->pb_stats->sharinggain[iblk] + beta * (float) cur_pb->pb_stats->connectiongain[iblk]) / (num_used_input_pins + num_used_output_pins); } else { /*cur_pb->pb_stats->gain[iblk] = ((float)cur_pb->pb_stats->sharinggain[iblk])/(num_input_pins + num_output_pins); */ cur_pb->pb_stats->gain[iblk] = ((float) cur_pb->pb_stats->sharinggain[iblk]) / (num_used_input_pins + num_used_output_pins); } /* Add in timing driven cost into cost function */ if (timing_driven) { cur_pb->pb_stats->gain[iblk] = alpha * cur_pb->pb_stats->timinggain[iblk] + (1.0 - alpha) * (float) cur_pb->pb_stats->gain[iblk]; } } cur_pb = cur_pb->parent_pb; } } /*****************************************/ static void update_cluster_stats( INP t_pack_molecule *molecule, INP int clb_index, INP boolean *is_clock, INP boolean global_clocks, INP float alpha, INP float beta, INP boolean timing_driven, INP boolean connection_driven, INP t_slack * slacks) { /* Updates cluster stats such as gain, used pins, and clock structures. */ int ipin, inet; int new_blk, molecule_size; int iblock; t_model_ports *port; t_pb *cur_pb, *cb; /* TODO: what a scary comment from Vaughn, we'll have to watch out for this causing problems */ /* Output can be open so the check is necessary. I don't change * * the gain for clock outputs when clocks are globally distributed * * because I assume there is no real need to pack similarly clocked * * FFs together then. Note that by updating the gain when the * * clock driver is placed in a cluster implies that the output of * * LUTs can be connected to clock inputs internally. Probably not * * true, but it doesn't make much difference, since it will still * * make local routing of this clock very short, and none of my * * benchmarks actually generate local clocks (all come from pads). */ molecule_size = get_array_size_of_molecule(molecule); cb = NULL; for (iblock = 0; iblock < molecule_size; iblock++) { if (molecule->logical_block_ptrs[iblock] == NULL) { continue; } new_blk = molecule->logical_block_ptrs[iblock]->index; logical_block[new_blk].clb_index = clb_index; cur_pb = logical_block[new_blk].pb->parent_pb; while (cur_pb) { /* reset list of feasible blocks */ cur_pb->pb_stats->num_feasible_blocks = NOT_VALID; cur_pb->pb_stats->num_child_blocks_in_pb++; if (cur_pb->parent_pb == NULL) { cb = cur_pb; } cur_pb = cur_pb->parent_pb; } port = logical_block[new_blk].model->outputs; while (port) { for (ipin = 0; ipin < port->size; ipin++) { inet = logical_block[new_blk].output_nets[port->index][ipin]; /* Output pin first. */ if (inet != OPEN) { if (!is_clock[inet] || !global_clocks) mark_and_update_partial_gain(inet, GAIN, new_blk, port->index, ipin, timing_driven, connection_driven, OUTPUT, slacks); else mark_and_update_partial_gain(inet, NO_GAIN, new_blk, port->index, ipin, timing_driven, connection_driven, OUTPUT, slacks); } } port = port->next; } port = logical_block[new_blk].model->inputs; while (port) { if (port->is_clock) { port = port->next; continue; } for (ipin = 0; ipin < port->size; ipin++) { /* VPACK_BLOCK input pins. */ inet = logical_block[new_blk].input_nets[port->index][ipin]; if (inet != OPEN) { mark_and_update_partial_gain(inet, GAIN, new_blk, port->index, ipin, timing_driven, connection_driven, INPUT, slacks); } } port = port->next; } /* Note: The code below ONLY WORKS when nets that go to clock inputs * * NEVER go to the input of a VPACK_COMB. It doesn't really make electrical * * sense for that to happen, and I check this in the check_clocks * * function. Don't disable that sanity check. */ inet = logical_block[new_blk].clock_net; /* Clock input pin. */ if (inet != OPEN) { if (global_clocks) mark_and_update_partial_gain(inet, NO_GAIN, new_blk, 0, 0, timing_driven, connection_driven, INPUT, slacks); else mark_and_update_partial_gain(inet, GAIN, new_blk, 0, 0, timing_driven, connection_driven, INPUT, slacks); } update_total_gain(alpha, beta, timing_driven, connection_driven, global_clocks, logical_block[new_blk].pb->parent_pb); commit_lookahead_pins_used(cb); } } static void start_new_cluster( INP t_cluster_placement_stats *cluster_placement_stats, INOUTP t_pb_graph_node **primitives_list, INP const t_arch * arch, INOUTP t_block *new_cluster, INP int clb_index, INP t_pack_molecule *molecule, INP float aspect, INOUTP int *num_used_instances_type, INOUTP int *num_instances_type, INP int num_models, INP int max_cluster_size, INP int max_nets_in_pb_type, INP int detailed_routing_stage) { /* Given a starting seed block, start_new_cluster determines the next cluster type to use It expands the FPGA if it cannot find a legal cluster for the logical block */ int i, j; boolean success; int count; assert(new_cluster->name == NULL); /* Check if this cluster is really empty */ /* Allocate a dummy initial cluster and load a logical block as a seed and check if it is legal */ new_cluster->name = (char*) my_malloc( (strlen(molecule->logical_block_ptrs[molecule->root]->name) + 4) * sizeof(char)); sprintf(new_cluster->name, "cb.%s", molecule->logical_block_ptrs[molecule->root]->name); new_cluster->nets = NULL; new_cluster->type = NULL; new_cluster->pb = NULL; new_cluster->x = UNDEFINED; new_cluster->y = UNDEFINED; new_cluster->z = UNDEFINED; success = FALSE; while (!success) { count = 0; for (i = 0; i < num_types; i++) { if (num_used_instances_type[i] < num_instances_type[i]) { new_cluster->type = &type_descriptors[i]; if (new_cluster->type == EMPTY_TYPE) { continue; } new_cluster->pb = (t_pb*)my_calloc(1, sizeof(t_pb)); new_cluster->pb->pb_graph_node = new_cluster->type->pb_graph_head; alloc_and_load_pb_stats(new_cluster->pb, num_models, max_nets_in_pb_type); new_cluster->pb->parent_pb = NULL; alloc_and_load_legalizer_for_cluster(new_cluster, clb_index, arch); for (j = 0; j < new_cluster->type->pb_graph_head->pb_type->num_modes && !success; j++) { new_cluster->pb->mode = j; reset_cluster_placement_stats(&cluster_placement_stats[i]); set_mode_cluster_placement_stats( new_cluster->pb->pb_graph_node, j); success = (boolean) (BLK_PASSED == try_pack_molecule(&cluster_placement_stats[i], molecule, primitives_list, new_cluster->pb, num_models, max_cluster_size, clb_index, max_nets_in_pb_type, detailed_routing_stage)); } if (success) { /* TODO: For now, just grab any working cluster, in the future, heuristic needed to grab best complex block based on supply and demand */ break; } else { free_legalizer_for_cluster(new_cluster, TRUE); free_pb_stats(new_cluster->pb); free(new_cluster->pb); } count++; } } if (count == num_types - 1) { vpr_printf(TIO_MESSAGE_ERROR, "Can not find any logic block that can implement molecule.\n"); if (molecule->type == MOLECULE_FORCED_PACK) { vpr_printf(TIO_MESSAGE_ERROR, "\tPattern %s %s\n", molecule->pack_pattern->name, molecule->logical_block_ptrs[molecule->root]->name); } else { vpr_printf(TIO_MESSAGE_ERROR, "\tAtom %s\n", molecule->logical_block_ptrs[molecule->root]->name); } exit(1); } /* Expand FPGA size and recalculate number of available cluster types*/ if (!success) { if (aspect >= 1.0) { ny++; nx = nint(ny * aspect); } else { nx++; ny = nint(nx / aspect); } vpr_printf(TIO_MESSAGE_INFO, "Not enough resources expand FPGA size to x = %d y = %d.\n", nx, ny); if ((nx > MAX_SHORT) || (ny > MAX_SHORT)) { vpr_printf(TIO_MESSAGE_ERROR, "Circuit cannot pack into architecture, architecture size (nx = %d, ny = %d) exceeds packer range.\n", nx, ny); exit(1); } alloc_and_load_grid(num_instances_type); freeGrid(); } } num_used_instances_type[new_cluster->type->index]++; } /*****************************************/ static t_pack_molecule *get_highest_gain_molecule( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP enum e_gain_type gain_mode, INP t_cluster_placement_stats *cluster_placement_stats_ptr) { /* This routine populates a list of feasible blocks outside the cluster then returns the best one for the list * * not currently in a cluster and satisfies the feasibility * * function passed in as is_feasible. If there are no feasible * * blocks it returns NO_CLUSTER. */ int i, j, iblk, index, inet, count; boolean success; struct s_linked_vptr *cur; t_pack_molecule *molecule; molecule = NULL; if (gain_mode == HILL_CLIMBING) { vpr_printf(TIO_MESSAGE_ERROR, "Hill climbing not supported yet, error out.\n"); exit(1); } if (cur_pb->pb_stats->num_feasible_blocks == NOT_VALID) { /* Divide into two cases for speed only. */ /* Typical case: not too many blocks have been marked. */ cur_pb->pb_stats->num_feasible_blocks = 0; if (cur_pb->pb_stats->num_marked_blocks < num_logical_blocks / MARKED_FRAC) { for (i = 0; i < cur_pb->pb_stats->num_marked_blocks; i++) { iblk = cur_pb->pb_stats->marked_blocks[i]; if (logical_block[iblk].clb_index == NO_CLUSTER) { cur = logical_block[iblk].packed_molecules; while (cur != NULL) { molecule = (t_pack_molecule *) cur->data_vptr; if (molecule->valid) { success = TRUE; for (j = 0; j < get_array_size_of_molecule(molecule); j++) { if (molecule->logical_block_ptrs[j] != NULL) { assert(molecule->logical_block_ptrs[j]->clb_index == NO_CLUSTER); if (!exists_free_primitive_for_logical_block(cluster_placement_stats_ptr,iblk)) { /* TODO: debating whether to check if placement exists for molecule (more robust) or individual logical blocks (faster) */ success = FALSE; break; } } } if (success) { add_molecule_to_pb_stats_candidates(molecule, cur_pb->pb_stats->gain, cur_pb); } } cur = cur->next; } } } } else { /* Some high fanout nets marked lots of blocks. */ for (iblk = 0; iblk < num_logical_blocks; iblk++) { if (logical_block[iblk].clb_index == NO_CLUSTER) { cur = logical_block[iblk].packed_molecules; while (cur != NULL) { molecule = (t_pack_molecule *) cur->data_vptr; if (molecule->valid) { success = TRUE; for (j = 0; j < get_array_size_of_molecule(molecule);j++) { if (molecule->logical_block_ptrs[j] != NULL) { assert(molecule->logical_block_ptrs[j]->clb_index == NO_CLUSTER); if (!exists_free_primitive_for_logical_block( cluster_placement_stats_ptr, iblk)) { success = FALSE; break; } } } if (success) { add_molecule_to_pb_stats_candidates(molecule, cur_pb->pb_stats->gain, cur_pb); } } cur = cur->next; } } } } } if(cur_pb->pb_stats->num_feasible_blocks == 0 && cur_pb->pb_stats->tie_break_high_fanout_net != OPEN) { /* Because the packer ignores high fanout nets when marking what blocks to consider, use one of the ignored high fanout net to fill up lightly related blocks */ reset_tried_but_unused_cluster_placements(cluster_placement_stats_ptr); inet = cur_pb->pb_stats->tie_break_high_fanout_net; count = 0; for (i = 0; i <= vpack_net[inet].num_sinks && count < AAPACK_MAX_HIGH_FANOUT_EXPLORE; i++) { iblk = vpack_net[inet].node_block[i]; if (logical_block[iblk].clb_index == NO_CLUSTER) { cur = logical_block[iblk].packed_molecules; while (cur != NULL) { molecule = (t_pack_molecule *) cur->data_vptr; if (molecule->valid) { success = TRUE; for (j = 0; j < get_array_size_of_molecule(molecule); j++) { if (molecule->logical_block_ptrs[j] != NULL) { assert(molecule->logical_block_ptrs[j]->clb_index == NO_CLUSTER); if (!exists_free_primitive_for_logical_block(cluster_placement_stats_ptr,iblk)) { /* TODO: debating whether to check if placement exists for molecule (more robust) or individual logical blocks (faster) */ success = FALSE; break; } } } if (success) { add_molecule_to_pb_stats_candidates(molecule, cur_pb->pb_stats->gain, cur_pb); count++; } } cur = cur->next; } } } cur_pb->pb_stats->tie_break_high_fanout_net = OPEN; /* Mark off that this high fanout net has been considered */ } molecule = NULL; for (j = 0; j < cur_pb->pb_stats->num_feasible_blocks; j++) { if (cur_pb->pb_stats->num_feasible_blocks != 0) { cur_pb->pb_stats->num_feasible_blocks--; index = cur_pb->pb_stats->num_feasible_blocks; molecule = cur_pb->pb_stats->feasible_blocks[index]; assert(molecule->valid == TRUE); return molecule; } } return molecule; } /*****************************************/ static t_pack_molecule *get_molecule_for_cluster( INP enum e_packer_algorithm packer_algorithm, INOUTP t_pb *cur_pb, INP boolean allow_unrelated_clustering, INOUTP int *num_unrelated_clustering_attempts, INP t_cluster_placement_stats *cluster_placement_stats_ptr) { /* Finds the vpack block with the the greatest gain that satisifies the * * input, clock and capacity constraints of a cluster that are * * passed in. If no suitable vpack block is found it returns NO_CLUSTER. */ t_pack_molecule *best_molecule; /* If cannot pack into primitive, try packing into cluster */ best_molecule = get_highest_gain_molecule(packer_algorithm, cur_pb, NOT_HILL_CLIMBING, cluster_placement_stats_ptr); /* If no blocks have any gain to the current cluster, the code above * * will not find anything. However, another logical_block with no inputs in * * common with the cluster may still be inserted into the cluster. */ if (allow_unrelated_clustering) { if (best_molecule == NULL) { if (*num_unrelated_clustering_attempts == 0) { best_molecule = get_free_molecule_with_most_ext_inputs_for_cluster( packer_algorithm, cur_pb, cluster_placement_stats_ptr); (*num_unrelated_clustering_attempts)++; } } else { *num_unrelated_clustering_attempts = 0; } } return best_molecule; } /*****************************************/ static void alloc_and_load_cluster_info(INP int num_clb, INOUTP t_block *clb) { /* Loads all missing clustering info necessary to complete clustering. */ int i, j, i_clb, node_index, ipin, iclass; int inport, outport, clockport; const t_pb_type * pb_type; t_pb *pb; for (i_clb = 0; i_clb < num_clb; i_clb++) { rr_node = clb[i_clb].pb->rr_graph; pb_type = clb[i_clb].pb->pb_graph_node->pb_type; pb = clb[i_clb].pb; clb[i_clb].nets = (int*)my_malloc(clb[i_clb].type->num_pins * sizeof(int)); for (i = 0; i < clb[i_clb].type->num_pins; i++) { clb[i_clb].nets[i] = OPEN; } inport = outport = clockport = 0; ipin = 0; /* Assume top-level pb and clb share a one-to-one connection */ for (i = 0; i < pb_type->num_ports; i++) { if (!pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT) { for (j = 0; j < pb_type->ports[i].num_pins; j++) { iclass = clb[i_clb].type->pin_class[ipin]; assert(clb[i_clb].type->class_inf[iclass].type == RECEIVER); assert(clb[i_clb].type->is_global_pin[ipin] == pb->pb_graph_node->input_pins[inport][j].port->is_non_clock_global); node_index = pb->pb_graph_node->input_pins[inport][j].pin_count_in_cluster; clb[i_clb].nets[ipin] = rr_node[node_index].net_num; ipin++; } inport++; } else if (pb_type->ports[i].type == OUT_PORT) { for (j = 0; j < pb_type->ports[i].num_pins; j++) { iclass = clb[i_clb].type->pin_class[ipin]; assert(clb[i_clb].type->class_inf[iclass].type == DRIVER); node_index = pb->pb_graph_node->output_pins[outport][j].pin_count_in_cluster; clb[i_clb].nets[ipin] = rr_node[node_index].net_num; ipin++; } outport++; } else { assert( pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT); for (j = 0; j < pb_type->ports[i].num_pins; j++) { iclass = clb[i_clb].type->pin_class[ipin]; assert(clb[i_clb].type->class_inf[iclass].type == RECEIVER); assert(clb[i_clb].type->is_global_pin[ipin]); node_index = pb->pb_graph_node->clock_pins[clockport][j].pin_count_in_cluster; clb[i_clb].nets[ipin] = rr_node[node_index].net_num; ipin++; } clockport++; } } } } /* TODO: Add more error checking, too light */ /*****************************************/ static void check_clustering(int num_clb, t_block *clb, boolean *is_clock) { int i; t_pb * cur_pb; boolean * blocks_checked; blocks_checked = (boolean*)my_calloc(num_logical_blocks, sizeof(boolean)); /* * Check that each logical block connects to one primitive and that the primitive links up to the parent clb */ for (i = 0; i < num_blocks; i++) { if (logical_block[i].pb->logical_block != i) { vpr_printf(TIO_MESSAGE_ERROR, "pb %s does not contain logical block %s but logical block %s #%d links to pb.\n", logical_block[i].pb->name, logical_block[i].name, logical_block[i].name, i); exit(1); } cur_pb = logical_block[i].pb; assert(strcmp(cur_pb->name, logical_block[i].name) == 0); while (cur_pb->parent_pb) { cur_pb = cur_pb->parent_pb; assert(cur_pb->name); } if (cur_pb != clb[num_clb].pb) { vpr_printf(TIO_MESSAGE_ERROR, "CLB %s does not match CLB contained by pb %s.\n", cur_pb->name, logical_block[i].pb->name); exit(1); } } /* Check that I do not have spurious links in children pbs */ for (i = 0; i < num_clb; i++) { check_cluster_logical_blocks(clb[i].pb, blocks_checked); } for (i = 0; i < num_logical_blocks; i++) { if (blocks_checked[i] == FALSE) { vpr_printf(TIO_MESSAGE_ERROR, "Logical block %s #%d not found in any cluster.\n", logical_block[i].name, i); exit(1); } } free(blocks_checked); } /* TODO: May want to check that all logical blocks are actually reached (low priority, nice to have) */ static void check_cluster_logical_blocks(t_pb *pb, boolean *blocks_checked) { int i, j; const t_pb_type *pb_type; boolean has_child; has_child = FALSE; pb_type = pb->pb_graph_node->pb_type; if (pb_type->num_modes == 0) { /* primitive */ if (pb->logical_block != OPEN) { if (blocks_checked[pb->logical_block] != FALSE) { vpr_printf(TIO_MESSAGE_ERROR, "pb %s contains logical block %s #%d but logical block is already contained in another pb.\n", pb->name, logical_block[pb->logical_block].name, pb->logical_block); exit(1); } blocks_checked[pb->logical_block] = TRUE; if (pb != logical_block[pb->logical_block].pb) { vpr_printf(TIO_MESSAGE_ERROR, "pb %s contains logical block %s #%d but logical block does not link to pb.\n", pb->name, logical_block[pb->logical_block].name, pb->logical_block); exit(1); } } } else { /* this is a container pb, all container pbs must contain children */ for (i = 0; i < pb_type->modes[pb->mode].num_pb_type_children; i++) { for (j = 0; j < pb_type->modes[pb->mode].pb_type_children[i].num_pb; j++) { if (pb->child_pbs[i] != NULL) { if (pb->child_pbs[i][j].name != NULL) { has_child = TRUE; check_cluster_logical_blocks(&pb->child_pbs[i][j], blocks_checked); } } } } assert(has_child); } } static t_pack_molecule* get_most_critical_seed_molecule(int * indexofcrit) { /* Do_timing_analysis must be called before this, or this function * will return garbage. Returns molecule with most critical block; * if block belongs to multiple molecules, return the biggest molecule. */ int blkidx; t_pack_molecule *molecule, *best; struct s_linked_vptr *cur; while (*indexofcrit < num_logical_blocks) { blkidx = critindexarray[(*indexofcrit)++]; if (logical_block[blkidx].clb_index == NO_CLUSTER) { cur = logical_block[blkidx].packed_molecules; best = NULL; while (cur != NULL) { molecule = (t_pack_molecule *) cur->data_vptr; if (molecule->valid) { if (best == NULL || (best->base_gain) < (molecule->base_gain)) { best = molecule; } } cur = cur->next; } assert(best != NULL); return best; } } /*if it makes it to here , there are no more blocks available*/ return NULL; } /* get gain of packing molecule into current cluster gain is equal to total_block_gain + molecule_base_gain*some_factor - introduced_input_nets_of_unrelated_blocks_pulled_in_by_molecule*some_other_factor */ static float get_molecule_gain(t_pack_molecule *molecule, std::map &blk_gain) { float gain; int i, ipin, iport, inet, iblk; int num_introduced_inputs_of_indirectly_related_block; t_model_ports *cur; gain = 0; num_introduced_inputs_of_indirectly_related_block = 0; for (i = 0; i < get_array_size_of_molecule(molecule); i++) { if (molecule->logical_block_ptrs[i] != NULL) { if(blk_gain.count(molecule->logical_block_ptrs[i]->index) > 0) { gain += blk_gain[molecule->logical_block_ptrs[i]->index]; } else { /* This block has no connection with current cluster, penalize molecule for having this block */ cur = molecule->logical_block_ptrs[i]->model->inputs; iport = 0; while (cur != NULL) { if (cur->is_clock != TRUE) { for (ipin = 0; ipin < cur->size; ipin++) { inet = molecule->logical_block_ptrs[i]->input_nets[iport][ipin]; if (inet != OPEN) { num_introduced_inputs_of_indirectly_related_block++; for (iblk = 0; iblk < get_array_size_of_molecule(molecule); iblk++) { if (molecule->logical_block_ptrs[iblk] != NULL && vpack_net[inet].node_block[0] == molecule->logical_block_ptrs[iblk]->index) { num_introduced_inputs_of_indirectly_related_block--; break; } } } } iport++; } cur = cur->next; } } } } gain += molecule->base_gain * 0.0001; /* Use base gain as tie breaker TODO: need to sweep this value and perhaps normalize */ gain -= num_introduced_inputs_of_indirectly_related_block * (0.001); return gain; } static int compare_molecule_gain(const void *a, const void *b) { float base_gain_a, base_gain_b, diff; const t_pack_molecule *molecule_a, *molecule_b; molecule_a = (*(const t_pack_molecule * const *) a); molecule_b = (*(const t_pack_molecule * const *) b); base_gain_a = molecule_a->base_gain; base_gain_b = molecule_b->base_gain; diff = base_gain_a - base_gain_b; if (diff > 0) { return 1; } if (diff < 0) { return -1; } return 0; } /* Determine if speculatively packed cur_pb is pin feasible * Runtime is actually not that bad for this. It's worst case O(k^2) where k is the number of pb_graph pins. Can use hash tables or make incremental if becomes an issue. */ static void try_update_lookahead_pins_used(t_pb *cur_pb) { int i, j; const t_pb_type *pb_type = cur_pb->pb_graph_node->pb_type; if (pb_type->num_modes > 0 && cur_pb->name != NULL) { if (cur_pb->child_pbs != NULL) { for (i = 0; i < pb_type->modes[cur_pb->mode].num_pb_type_children; i++) { if (cur_pb->child_pbs[i] != NULL) { for (j = 0; j < pb_type->modes[cur_pb->mode].pb_type_children[i].num_pb; j++) { try_update_lookahead_pins_used( &cur_pb->child_pbs[i][j]); } } } } } else { if (pb_type->blif_model != NULL && cur_pb->logical_block != OPEN) { compute_and_mark_lookahead_pins_used(cur_pb->logical_block); } } } /* Resets nets used at different pin classes for determining pin feasibility */ static void reset_lookahead_pins_used(t_pb *cur_pb) { int i, j; const t_pb_type *pb_type = cur_pb->pb_graph_node->pb_type; if (cur_pb->pb_stats == NULL) { return; /* No pins used, no need to continue */ } if (pb_type->num_modes > 0 && cur_pb->name != NULL) { for (i = 0; i < cur_pb->pb_graph_node->num_input_pin_class; i++) { for (j = 0; j < cur_pb->pb_graph_node->input_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { cur_pb->pb_stats->lookahead_input_pins_used[i][j] = OPEN; } } for (i = 0; i < cur_pb->pb_graph_node->num_output_pin_class; i++) { for (j = 0; j < cur_pb->pb_graph_node->output_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { cur_pb->pb_stats->lookahead_output_pins_used[i][j] = OPEN; } } if (cur_pb->child_pbs != NULL) { for (i = 0; i < pb_type->modes[cur_pb->mode].num_pb_type_children; i++) { if (cur_pb->child_pbs[i] != NULL) { for (j = 0; j < pb_type->modes[cur_pb->mode].pb_type_children[i].num_pb; j++) { reset_lookahead_pins_used(&cur_pb->child_pbs[i][j]); } } } } } } /* Determine if pins of speculatively packed pb are legal */ static void compute_and_mark_lookahead_pins_used(int ilogical_block) { int i, j; t_pb *cur_pb; t_pb_graph_node *pb_graph_node; const t_pb_type *pb_type; t_port *prim_port; int input_port; int output_port; int clock_port; assert(logical_block[ilogical_block].pb != NULL); cur_pb = logical_block[ilogical_block].pb; pb_graph_node = cur_pb->pb_graph_node; pb_type = pb_graph_node->pb_type; /* Walk through inputs, outputs, and clocks marking pins off of the same class */ /* TODO: This is inelegant design, I should change the primitive ports in pb_type to be input, output, or clock instead of this lookup */ input_port = output_port = clock_port = 0; for (i = 0; i < pb_type->num_ports; i++) { prim_port = &pb_type->ports[i]; if (prim_port->is_clock) { assert(prim_port->type == IN_PORT); assert(prim_port->num_pins == 1 && clock_port == 0); /* currently support only one clock for primitives */ if (logical_block[ilogical_block].clock_net != OPEN) { compute_and_mark_lookahead_pins_used_for_pin( &pb_graph_node->clock_pins[0][0], cur_pb, logical_block[ilogical_block].clock_net); } clock_port++; } else if (prim_port->type == IN_PORT) { for (j = 0; j < prim_port->num_pins; j++) { if (logical_block[ilogical_block].input_nets[prim_port->model_port->index][j] != OPEN) { compute_and_mark_lookahead_pins_used_for_pin( &pb_graph_node->input_pins[input_port][j], cur_pb, logical_block[ilogical_block].input_nets[prim_port->model_port->index][j]); } } input_port++; } else if (prim_port->type == OUT_PORT) { for (j = 0; j < prim_port->num_pins; j++) { if (logical_block[ilogical_block].output_nets[prim_port->model_port->index][j] != OPEN) { compute_and_mark_lookahead_pins_used_for_pin( &pb_graph_node->output_pins[output_port][j], cur_pb, logical_block[ilogical_block].output_nets[prim_port->model_port->index][j]); } } output_port++; } else { assert(0); } } } /* Given a pin and its assigned net, mark all pin classes that are affected */ static void compute_and_mark_lookahead_pins_used_for_pin( t_pb_graph_pin *pb_graph_pin, t_pb *primitive_pb, int inet) { int depth, i; int pin_class, output_port; t_pb * cur_pb; t_pb * check_pb; const t_pb_type *pb_type; t_port *prim_port; t_pb_graph_pin *output_pb_graph_pin; int count; boolean skip, found; cur_pb = primitive_pb->parent_pb; while (cur_pb) { depth = cur_pb->pb_graph_node->pb_type->depth; pin_class = pb_graph_pin->parent_pin_class[depth]; assert(pin_class != OPEN); if (pb_graph_pin->port->type == IN_PORT) { /* find location of net driver if exist in clb, NULL otherwise */ output_pb_graph_pin = NULL; if (logical_block[vpack_net[inet].node_block[0]].clb_index == logical_block[primitive_pb->logical_block].clb_index) { pb_type = logical_block[vpack_net[inet].node_block[0]].pb->pb_graph_node->pb_type; output_port = 0; found = FALSE; for (i = 0; i < pb_type->num_ports && !found; i++) { prim_port = &pb_type->ports[i]; if (prim_port->type == OUT_PORT) { if (pb_type->ports[i].model_port->index == vpack_net[inet].node_block_port[0]) { found = TRUE; break; } output_port++; } } assert(found); output_pb_graph_pin = &(logical_block[vpack_net[inet].node_block[0]].pb->pb_graph_node->output_pins[output_port][vpack_net[inet].node_block_pin[0]]); } skip = FALSE; /* check if driving pin for input is contained within the currently investigated cluster, if yes, do nothing since no input needs to be used */ if (output_pb_graph_pin != NULL) { check_pb = logical_block[vpack_net[inet].node_block[0]].pb; while (check_pb != NULL && check_pb != cur_pb) { check_pb = check_pb->parent_pb; } if (check_pb != NULL) { for (i = 0; skip == FALSE && i < output_pb_graph_pin->num_connectable_primtive_input_pins[depth]; i++) { if (pb_graph_pin == output_pb_graph_pin->list_of_connectable_input_pin_ptrs[depth][i]) { skip = TRUE; } } } } /* Must use input pin */ if (!skip) { /* Check if already in pin class, if yes, skip */ skip = FALSE; for (i = 0; i < cur_pb->pb_graph_node->input_pin_class_size[pin_class] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; i++) { if (cur_pb->pb_stats->lookahead_input_pins_used[pin_class][i] == inet) { skip = TRUE; } } if (!skip) { /* Net must take up a slot */ for (i = 0; i < cur_pb->pb_graph_node->input_pin_class_size[pin_class] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; i++) { if (cur_pb->pb_stats->lookahead_input_pins_used[pin_class][i] == OPEN) { cur_pb->pb_stats->lookahead_input_pins_used[pin_class][i] = inet; break; } } } } } else { assert(pb_graph_pin->port->type == OUT_PORT); skip = FALSE; if (pb_graph_pin->num_connectable_primtive_input_pins[depth] >= vpack_net[inet].num_sinks) { /* Important: This runtime penalty looks a lot scarier than it really is. For high fan-out nets, I at most look at the number of pins within the cluster which limits runtime. DO NOT REMOVE THIS INITIAL FILTER WITHOUT CAREFUL ANALYSIS ON RUNTIME!!! Key Observation: For LUT-based designs it is impossible for the average fanout to exceed the number of LUT inputs so it's usually around 4-5 (pigeon-hole argument, if the average fanout is greater than the number of LUT inputs, where do the extra connections go? Therefore, average fanout must be capped to a small constant where the constant is equal to the number of LUT inputs). The real danger to runtime is when the number of sinks of a net gets doubled */ for (i = 1; i <= vpack_net[inet].num_sinks; i++) { if (logical_block[vpack_net[inet].node_block[i]].clb_index != logical_block[vpack_net[inet].node_block[0]].clb_index) { break; } } if (i == vpack_net[inet].num_sinks + 1) { count = 0; /* TODO: I should cache the absorbed outputs, once net is absorbed, net is forever absorbed, no point in rechecking every time */ for (i = 0; i < pb_graph_pin->num_connectable_primtive_input_pins[depth]; i++) { if (get_net_corresponding_to_pb_graph_pin(cur_pb, pb_graph_pin->list_of_connectable_input_pin_ptrs[depth][i]) == inet) { count++; } } if (count == vpack_net[inet].num_sinks) { skip = TRUE; } } } if (!skip) { /* This output must exit this cluster */ for (i = 0; i < cur_pb->pb_graph_node->output_pin_class_size[pin_class] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; i++) { assert( cur_pb->pb_stats->lookahead_output_pins_used[pin_class][i] != inet); if (cur_pb->pb_stats->lookahead_output_pins_used[pin_class][i] == OPEN) { cur_pb->pb_stats->lookahead_output_pins_used[pin_class][i] = inet; break; } } } } cur_pb = cur_pb->parent_pb; } } /* Check if the number of available inputs/outputs for a pin class is sufficient for speculatively packed blocks */ static boolean check_lookahead_pins_used(t_pb *cur_pb) { int i, j; int ipin; const t_pb_type *pb_type = cur_pb->pb_graph_node->pb_type; boolean success; success = TRUE; if (pb_type->num_modes > 0 && cur_pb->name != NULL) { for (i = 0; i < cur_pb->pb_graph_node->num_input_pin_class && success; i++) { ipin = 0; for (j = 0; j < cur_pb->pb_graph_node->input_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { if (cur_pb->pb_stats->lookahead_input_pins_used[i][j] != OPEN) { ipin++; } } if (ipin > cur_pb->pb_graph_node->input_pin_class_size[i]) { success = FALSE; } } for (i = 0; i < cur_pb->pb_graph_node->num_output_pin_class && success; i++) { ipin = 0; for (j = 0; j < cur_pb->pb_graph_node->output_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { if (cur_pb->pb_stats->lookahead_output_pins_used[i][j] != OPEN) { ipin++; } } if (ipin > cur_pb->pb_graph_node->output_pin_class_size[i]) { success = FALSE; } } if (success && cur_pb->child_pbs != NULL) { for (i = 0; success && i < pb_type->modes[cur_pb->mode].num_pb_type_children; i++) { if (cur_pb->child_pbs[i] != NULL) { for (j = 0; success && j < pb_type->modes[cur_pb->mode].pb_type_children[i].num_pb; j++) { success = check_lookahead_pins_used( &cur_pb->child_pbs[i][j]); } } } } } return success; } /* Speculation successful, commit input/output pins used */ static void commit_lookahead_pins_used(t_pb *cur_pb) { int i, j; int ipin; const t_pb_type *pb_type = cur_pb->pb_graph_node->pb_type; if (pb_type->num_modes > 0 && cur_pb->name != NULL) { for (i = 0; i < cur_pb->pb_graph_node->num_input_pin_class; i++) { ipin = 0; for (j = 0; j < cur_pb->pb_graph_node->input_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { if (cur_pb->pb_stats->lookahead_input_pins_used[i][j] != OPEN) { cur_pb->pb_stats->input_pins_used[i][ipin] = cur_pb->pb_stats->lookahead_input_pins_used[i][j]; ipin++; } assert(ipin <= cur_pb->pb_graph_node->input_pin_class_size[i]); } } for (i = 0; i < cur_pb->pb_graph_node->num_output_pin_class; i++) { ipin = 0; for (j = 0; j < cur_pb->pb_graph_node->output_pin_class_size[i] * AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_FAC + AAPACK_MAX_OVERUSE_LOOKAHEAD_PINS_CONST; j++) { if (cur_pb->pb_stats->lookahead_output_pins_used[i][j] != OPEN) { cur_pb->pb_stats->output_pins_used[i][ipin] = cur_pb->pb_stats->lookahead_output_pins_used[i][j]; ipin++; } assert(ipin <= cur_pb->pb_graph_node->output_pin_class_size[i]); } } if (cur_pb->child_pbs != NULL) { for (i = 0; i < pb_type->modes[cur_pb->mode].num_pb_type_children; i++) { if (cur_pb->child_pbs[i] != NULL) { for (j = 0; j < pb_type->modes[cur_pb->mode].pb_type_children[i].num_pb; j++) { commit_lookahead_pins_used(&cur_pb->child_pbs[i][j]); } } } } } } /* determine net at given pin location for cluster, return OPEN if none exists */ static int get_net_corresponding_to_pb_graph_pin(t_pb *cur_pb, t_pb_graph_pin *pb_graph_pin) { t_pb_graph_node *pb_graph_node; int i; t_model_ports *model_port; int ilogical_block; if (cur_pb->name == NULL) { return OPEN; } if (cur_pb->pb_graph_node->pb_type->num_modes != 0) { pb_graph_node = pb_graph_pin->parent_node; while (pb_graph_node->parent_pb_graph_node->pb_type->depth > cur_pb->pb_graph_node->pb_type->depth) { pb_graph_node = pb_graph_node->parent_pb_graph_node; } if (pb_graph_node->parent_pb_graph_node == cur_pb->pb_graph_node) { if (cur_pb->mode != pb_graph_node->pb_type->parent_mode->index) { return OPEN; } for (i = 0; i < cur_pb->pb_graph_node->pb_type->modes[cur_pb->mode].num_pb_type_children; i++) { if (pb_graph_node == &cur_pb->pb_graph_node->child_pb_graph_nodes[cur_pb->mode][i][pb_graph_node->placement_index]) { break; } } assert( i < cur_pb->pb_graph_node->pb_type->modes[cur_pb->mode].num_pb_type_children); return get_net_corresponding_to_pb_graph_pin( &cur_pb->child_pbs[i][pb_graph_node->placement_index], pb_graph_pin); } else { return OPEN; } } else { ilogical_block = cur_pb->logical_block; if (ilogical_block == OPEN) { return OPEN; } else { model_port = pb_graph_pin->port->model_port; if (model_port->is_clock) { assert(model_port->dir == IN_PORT); return logical_block[ilogical_block].clock_net; } else if (model_port->dir == IN_PORT) { return logical_block[ilogical_block].input_nets[model_port->index][pb_graph_pin->pin_number]; } else { assert(model_port->dir == OUT_PORT); return logical_block[ilogical_block].output_nets[model_port->index][pb_graph_pin->pin_number]; } } } } static void print_block_criticalities(const char * fname) { /* Prints criticality and critindexarray for each logical block to a file. */ int iblock, len; FILE * fp; char * name; fp = my_fopen(fname, "w", 0); fprintf(fp, "Index \tLogical block name \tCriticality \tCritindexarray\n\n"); for (iblock = 0; iblock < num_logical_blocks; iblock++) { name = logical_block[iblock].name; len = strlen(name); fprintf(fp, "%d\t%s\t", logical_block[iblock].index, name); if (len < 8) { fprintf(fp, "\t\t"); } else if (len < 16) { fprintf(fp, "\t"); } fprintf(fp, "%f\t%d\n", block_criticality[iblock], critindexarray[iblock]); } fclose(fp); }