/*********************************************** * This file includes functions to generate * Verilog submodules for multiplexers. * including both fundamental submodules * such as a branch in a multiplexer * and the full multiplexer **********************************************/ #include #include #include "util.h" #include "vtr_assert.h" /* Device-level header files */ #include "mux_graph.h" #include "module_manager.h" #include "physical_types.h" #include "vpr_types.h" #include "mux_utils.h" #include "circuit_library_utils.h" #include "decoder_library_utils.h" /* FPGA-X2P context header files */ #include "spice_types.h" #include "fpga_x2p_naming.h" #include "fpga_x2p_utils.h" /* FPGA-Verilog context header files */ #include "verilog_global.h" #include "verilog_writer_utils.h" #include "verilog_module_writer.h" #include "verilog_mux.h" /********************************************************************* * Generate behavior-level Verilog codes modeling an branch circuit * for a multiplexer with the given size *********************************************************************/ static void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& mem_port, const MuxGraph& mux_graph, const size_t& default_mem_val) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Behavioral-level description -----")); /* Add an internal register for the output */ BasicPort outreg_port("out_reg", mux_graph.num_outputs()); /* Print the port */ fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl; /* Generate the case-switch table */ fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; /* Output the netlist following the connections in mux_graph */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* For each case, generate the logic levels for all the inputs */ /* In each case, only one mem is enabled */ fp << "\t\t" << mem_port.get_width() << "'b"; std::string case_code(mem_port.get_width(), default_mem_val); /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); /* Flip a bit by the mem_id */ if (false == mux_graph.is_edge_use_inv_mem(edges[0])) { case_code[size_t(mux_mem)] = '1'; } else { case_code[size_t(mux_mem)] = '0'; } fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl; } } /* Default case: outputs are at high-impedance state 'z' */ std::string default_case(mux_graph.num_outputs(), 'z'); fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl; /* End the case */ fp << "\tendcase" << std::endl; /* Wire registers to output ports */ fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = "; fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl; } /********************************************************************* * Generate Verilog codes modeling an branch circuit * for a CMOS multiplexer with the given size * Support structural and behavioral Verilog codes *********************************************************************/ static void print_verilog_cmos_mux_branch_module_behavioral(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& mux_model, const std::string& module_name, const MuxGraph& mux_graph) { /* Get the tgate model */ CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(mux_model); /* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */ if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) { VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model)); return; } /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of inputs */ size_t num_inputs = mux_graph.num_inputs(); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == num_outputs); /* MUX graph must have only 1 level*/ VTR_ASSERT(1 == mux_graph.num_levels()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId mux_module = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(mux_module)); /* Find module ports */ /* Find each input port */ BasicPort input_port("in", num_inputs); /* Find each output port */ BasicPort output_port("out", num_outputs); /* Find each memory port */ BasicPort mem_port("mem", num_mems); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, mux_module); /* Print the internal logic in behavioral Verilog codes */ /* Get the default value of SRAM ports */ std::vector regular_sram_ports = find_circuit_regular_sram_ports(circuit_lib, mux_model); VTR_ASSERT(1 == regular_sram_ports.size()); std::string mem_default_val = std::to_string(circuit_lib.port_default_value(regular_sram_ports[0])); /* Mem string must be only 1-bit! */ VTR_ASSERT(1 == mem_default_val.length()); generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /********************************************************************* * Dump a structural verilog for RRAM MUX basis module * This is only called when structural verilog dumping option is enabled for this spice model * IMPORTANT: the structural verilog can NOT be used for functionality verification!!! * TODO: This part is quite restricted to the way we implemented our RRAM FPGA * Should be reworked to be more generic !!! * * By structural the schematic is splitted into two parts: left part and right part * The left part includes BLB[0..N-1] and WL[0..N-1] signals as well as RRAMs * The right part includes BLB[N] and WL[N] * Corresponding Schematic is as follows: * * LEFT PART | RIGHT PART * * BLB[0] BLB[N] * | | * \|/ \|/ * in[0] ---->RRAM[0]-----+ * | * BLB[1] | * | | * \|/ | * in[1] ---->RRAM[1]-----+ * |-----> out[0] * ... * | * in[N-1] ---->RRAM[N-1]---+ * /|\ /|\ * | | * BLB[N-1] WL[N] * * Working principle: * 1. Set a RRAM[i]: enable BLB[i] and WL[N] * 2. Reset a RRAM[i]: enable BLB[N] and WL[i] * 3. Operation: disable all BLBs and WLs * * The structure is done in the way we implement the physical layout of RRAM MUX * It is NOT the only road to the goal!!! *********************************************************************/ static void generate_verilog_rram_mux_branch_body_structural(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& blb_port, const BasicPort& wl_port, const MuxGraph& mux_graph) { std::string progTE_module_name("PROG_TE"); std::string progBE_module_name("PROG_BE"); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Structure-level description of RRAM MUX -----")); /* Print internal structure of 4T1R programming structures * Written in structural Verilog * The whole structure-level description is divided into two parts: * 1. Left part consists of N PROG_TE modules, each of which * includes a PMOS, a NMOS and a RRAM, which is actually the left * part of a 4T1R programming structure * 2. Right part includes only a PROG_BE module, which consists * of a PMOS and a NMOS, which is actually the right part of a * 4T1R programming sturcture */ /* Create a module for the progTE and register it in the module manager * Structure of progTE * * +----------+ * in--->| | * BLB-->| progTE |--> out * WL--->| | * +----------+ */ ModuleId progTE_module_id = module_manager.add_module(progTE_module_name); /* If there is already such as module inside, we just ned to find the module id */ if (ModuleId::INVALID() == progTE_module_id) { progTE_module_id = module_manager.find_module(progTE_module_name); /* We should have a valid id! */ VTR_ASSERT(ModuleId::INVALID() != progTE_module_id); } /* Add ports to the module */ /* input port */ BasicPort progTE_in_port("A", 1); module_manager.add_port(progTE_module_id, progTE_in_port, ModuleManager::MODULE_INPUT_PORT); /* WL port */ BasicPort progTE_wl_port("WL", 1); module_manager.add_port(progTE_module_id, progTE_wl_port, ModuleManager::MODULE_INPUT_PORT); /* BLB port */ BasicPort progTE_blb_port("BLB", 1); module_manager.add_port(progTE_module_id, progTE_blb_port, ModuleManager::MODULE_INPUT_PORT); /* output port */ BasicPort progTE_out_port("Z", 1); module_manager.add_port(progTE_module_id, progTE_out_port, ModuleManager::MODULE_INPUT_PORT); /* LEFT part: Verilog code generation */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* Create a port-to-port name map */ std::map port2port_name_map; /* input port */ port2port_name_map[progTE_in_port.get_name()] = cur_input_port; /* output port */ port2port_name_map[progTE_out_port.get_name()] = cur_output_port; /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_mem), size_t(mux_mem)); BasicPort cur_wl_port(wl_port.get_name(), size_t(mux_mem), size_t(mux_mem)); /* RRAM configuration port: there should not be any inverted edge in RRAM MUX! */ VTR_ASSERT( false == mux_graph.is_edge_use_inv_mem(edges[0]) ); /* wire mem to mem of module, and wire mem_inv to mem_inv of module */ port2port_name_map[progTE_blb_port.get_name()] = cur_blb_port; port2port_name_map[progTE_wl_port.get_name()] = cur_wl_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, progTE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, progTE_module_id); } } /* Create a module for the progBE and register it in the module manager * Structure of progBE * * +----------+ * | | * BLB-->| progBE |<-> out * WL--->| | * +----------+ */ ModuleId progBE_module_id = module_manager.add_module(progBE_module_name); /* If there is already such as module inside, we just ned to find the module id */ if (ModuleId::INVALID() == progBE_module_id) { progBE_module_id = module_manager.find_module(progBE_module_name); /* We should have a valid id! */ VTR_ASSERT(ModuleId::INVALID() != progBE_module_id); } /* Add ports to the module */ /* inout port */ BasicPort progBE_inout_port("INOUT", 1); module_manager.add_port(progBE_module_id, progBE_inout_port, ModuleManager::MODULE_INOUT_PORT); /* WL port */ BasicPort progBE_wl_port("WL", 1); module_manager.add_port(progBE_module_id, progBE_wl_port, ModuleManager::MODULE_INPUT_PORT); /* BLB port */ BasicPort progBE_blb_port("BLB", 1); module_manager.add_port(progBE_module_id, progBE_blb_port, ModuleManager::MODULE_INPUT_PORT); /* RIGHT part: Verilog code generation */ /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* Create a port-to-port name map */ std::map port2port_name_map; /* Wire the output port to the INOUT port */ port2port_name_map[progBE_inout_port.get_name()] = cur_output_port; /* Find the mem_id controlling the edge */ BasicPort cur_blb_port(blb_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits()); BasicPort cur_wl_port(wl_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits()); port2port_name_map[progBE_blb_port.get_name()] = cur_blb_port; port2port_name_map[progBE_wl_port.get_name()] = cur_wl_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, progBE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, progBE_module_id); } } /********************************************************************* * Generate behavior-level Verilog codes modeling an branch circuit * for a RRAM-based multiplexer with the given size * Corresponding Schematic is as follows: * * BLB[0] BLB[N] * | | * \|/ \|/ * in[0] ---->RRAM[0]-----+ * | * BLB[1] | * | | * \|/ | * in[1] ---->RRAM[1]-----+ * |-----> out[0] * ... * | * in[N-1] ---->RRAM[N-1]---+ * /|\ /|\ * | | * BLB[N-1] WL[N] * * Working principle: * 1. Set a RRAM[i]: enable BLB[i] and WL[N] * 2. Reset a RRAM[i]: enable BLB[N] and WL[i] * 3. Operation: disable all BLBs and WLs * * TODO: Elaborate the codes to output the circuit logic * following the mux_graph! *********************************************************************/ static void generate_verilog_rram_mux_branch_body_behavioral(std::fstream& fp, const CircuitLibrary& circuit_lib, const CircuitModelId& circuit_model, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& blb_port, const BasicPort& wl_port, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Behavioral-level description of RRAM MUX -----")); /* Add an internal register for the output */ BasicPort outreg_port("out_reg", mux_graph.num_inputs()); /* Print the port */ fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl; /* Print the internal logics */ fp << "\t" << "always @("; fp << generate_verilog_port(VERILOG_PORT_CONKT, blb_port); fp << ", "; fp << generate_verilog_port(VERILOG_PORT_CONKT, wl_port); fp << ")"; fp << " begin" << std::endl; /* Only when the last bit of wl is enabled, * the propagating path can be changed * (RRAM value can be changed) */ fp << "\t\t" << "if ("; BasicPort set_enable_port(wl_port.get_name(), wl_port.get_width() - 1, wl_port.get_width() - 1); fp << generate_verilog_port(VERILOG_PORT_CONKT, set_enable_port); /* We need two config-enable ports: prog_EN and prog_ENb */ bool find_prog_EN = false; bool find_prog_ENb = false; for (const auto& port : circuit_lib.model_global_ports(circuit_model, true)) { /* Bypass non-config-enable ports */ if (false == circuit_lib.port_is_config_enable(port)) { continue; } /* Reach here, the port should be is_config_enable */ /* Create a port object */ fp << " && "; BasicPort prog_en_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port)); if ( 0 == circuit_lib.port_default_value(port)) { /* Default value = 0 means that this is a prog_EN port */ fp << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port); find_prog_EN = true; } else { VTR_ASSERT ( 1 == circuit_lib.port_default_value(port)); /* Default value = 1 means that this is a prog_ENb port, add inversion in the if condition */ fp << "(~" << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port) << ")"; find_prog_ENb = true; } } /* Check if we find any config_enable signals */ if (false == find_prog_EN) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])Unable to find a config_enable signal with default value 0 for a RRAM MUX (%s)!\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } if (false == find_prog_ENb) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])Unable to find a config_enable signal with default value 1 for a RRAM MUX (%s)!\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } /* Finish the if clause */ fp << ") begin" << std::endl; for (const auto& mux_input : mux_graph.inputs()) { /* First if clause need tabs */ if ( 0 == size_t(mux_graph.input_id(mux_input)) ) { fp << "\t\t\t"; } fp << "if (1 == "; /* Create a temp port of a BLB bit */ BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_blb_port); fp << ") begin" << std::endl; fp << "\t\t\t\t" << "assign "; fp << outreg_port.get_name(); fp << " = " << size_t(mux_graph.input_id(mux_input)) << ";" << std::endl; fp << "\t\t\t" << "end else "; } fp << "begin" << std::endl; fp << "\t\t\t\t" << "assign "; fp << outreg_port.get_name(); fp << " = 0;" << std::endl; fp << "\t\t\t" << "end" << std::endl; fp << "\t\t" << "end" << std::endl; fp << "\t" << "end" << std::endl; fp << "\t" << "assign "; fp << generate_verilog_port(VERILOG_PORT_CONKT, output_port); fp << " = "; fp << input_port.get_name() << "["; fp << outreg_port.get_name(); fp << "];" << std::endl; } /********************************************************************* * Generate Verilog codes modeling an branch circuit * for a RRAM-based multiplexer with the given size * Support structural and behavioral Verilog codes *********************************************************************/ static void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph, const bool& use_structural_verilog) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Get the input ports from the mux */ std::vector mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); /* Get the output ports from the mux */ std::vector mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* Get the BL and WL ports from the mux */ std::vector mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true); std::vector mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of inputs */ size_t num_inputs = mux_graph.num_inputs(); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == num_outputs); /* MUX graph must have only 1 level*/ VTR_ASSERT(1 == mux_graph.num_levels()); /* MUX graph must have only 1 input and 1 BLB and 1 WL port */ VTR_ASSERT(1 == mux_input_ports.size()); VTR_ASSERT(1 == mux_output_ports.size()); VTR_ASSERT(1 == mux_blb_ports.size()); VTR_ASSERT(1 == mux_wl_ports.size()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(module_id)); /* Find each input port */ BasicPort input_port(circuit_lib.port_prefix(mux_input_ports[0]), num_inputs); /* Find each output port */ BasicPort output_port(circuit_lib.port_prefix(mux_output_ports[0]), num_outputs); /* Find RRAM programming ports, * RRAM MUXes require one more pair of BLB and WL * to configure the memories. See schematic for details */ BasicPort blb_port(circuit_lib.port_prefix(mux_blb_ports[0]), num_mems + 1); BasicPort wl_port(circuit_lib.port_prefix(mux_wl_ports[0]), num_mems + 1); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Print the internal logic in either structural or behavioral Verilog codes */ if (true == use_structural_verilog) { generate_verilog_rram_mux_branch_body_structural(module_manager, circuit_lib, fp, module_id, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph); } else { generate_verilog_rram_mux_branch_body_behavioral(fp, circuit_lib, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph); } /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*********************************************** * Generate Verilog codes modeling an branch circuit * for a multiplexer with the given size **********************************************/ static void generate_verilog_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& mux_model, const size_t& mux_size, const MuxGraph& mux_graph, const bool& use_explicit_port_map) { std::string module_name = generate_mux_branch_subckt_name(circuit_lib, mux_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix); /* Multiplexers built with different technology is in different organization */ switch (circuit_lib.design_tech_type(mux_model)) { case SPICE_MODEL_DESIGN_CMOS: /* Skip module writing if the branch subckt is a standard cell! */ if (true == circuit_lib.valid_model_id(circuit_lib.model(module_name))) { /* This model must be a MUX2 gate */ VTR_ASSERT(SPICE_MODEL_GATE == circuit_lib.model_type(circuit_lib.model(module_name))); VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(circuit_lib.model(module_name))); break; } if (true == circuit_lib.dump_structural_verilog(mux_model)) { /* Structural verilog can be easily generated by module writer */ ModuleId mux_module = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(mux_module)); write_verilog_module_to_file(fp, module_manager, mux_module, use_explicit_port_map || circuit_lib.dump_explicit_port_map(mux_model)); /* Add an empty line as a splitter */ fp << std::endl; } else { /* Behavioral verilog requires customized generation */ print_verilog_cmos_mux_branch_module_behavioral(module_manager, circuit_lib, fp, mux_model, module_name, mux_graph); } break; case SPICE_MODEL_DESIGN_RRAM: generate_verilog_rram_mux_branch_module(module_manager, circuit_lib, fp, mux_model, module_name, mux_graph, circuit_lib.dump_structural_verilog(mux_model)); break; default: vpr_printf(TIO_MESSAGE_ERROR, "(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n", __FILE__, __LINE__, circuit_lib.model_name(mux_model).c_str()); exit(1); } } /******************************************************************** * Generate the input bufferes for a multiplexer or LUT in Verilog codes * 1. If input are required to be buffered (specified by users), * buffers will be added to all the datapath inputs. * 2. If input are required to NOT be buffered (specified by users), * all the datapath inputs will be short wired to MUX inputs. * * For those Multiplexers or LUTs require a constant input: * the last input of multiplexer will be wired to a constant voltage level *******************************************************************/ static void generate_verilog_cmos_mux_module_input_buffers(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Get the input ports from the mux */ std::vector mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); /* We should have only 1 input port! */ VTR_ASSERT(1 == mux_input_ports.size()); /* Get the input port from MUX module */ ModulePortId module_input_port_id = module_manager.find_module_port(module_id, circuit_lib.port_prefix(mux_input_ports[0])); VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id); /* Get the port from module */ BasicPort module_input_port = module_manager.module_port(module_id, module_input_port_id); /* Iterate over all the inputs in the MUX graph */ for (const auto& input_node : mux_graph.inputs()) { /* Fetch fundamental information from MUX graph w.r.t. the input node */ MuxInputId input_index = mux_graph.input_id(input_node); VTR_ASSERT(MuxInputId::INVALID() != input_index); size_t input_node_level = mux_graph.node_level(input_node); size_t input_node_index_at_level = mux_graph.node_index_at_level(input_node); /* Create the port information of the MUX input, which is the input of buffer instance */ BasicPort instance_input_port(module_input_port.get_name(), size_t(input_index), size_t(input_index)); /* Create the port information of the MUX graph input, which is the output of buffer instance */ BasicPort instance_output_port(generate_mux_node_name(input_node_level, false), input_node_index_at_level, input_node_index_at_level); /* For last input: * Add a constant value to the last input, if this MUX needs a constant input */ if ( (MuxInputId(mux_graph.num_inputs() - 1) == mux_graph.input_id(input_node)) && (true == circuit_lib.mux_add_const_input(circuit_model)) ) { /* Get the constant input value */ size_t const_value = circuit_lib.mux_const_input_value(circuit_model); VTR_ASSERT( (0 == const_value) || (1 == const_value) ); /* For the output of the buffer instance: * Get the last inputs from the MUX graph and generate the node name in MUX module. */ print_verilog_comment(fp, std::string("---- BEGIN short-wire a multiplexing structure input to a constant value -----")); print_verilog_wire_constant_values(fp, instance_output_port, std::vector(1, const_value)); print_verilog_comment(fp, std::string("---- END short-wire a multiplexing structure input to a constant value -----")); fp << std::endl; continue; /* Finish here */ } /* If the inputs are not supposed to be buffered */ if (false == circuit_lib.is_input_buffered(circuit_model)) { print_verilog_comment(fp, std::string("---- BEGIN short-wire a multiplexing structure input to MUX module input -----")); /* Short wire all the datapath inputs to the MUX inputs */ print_verilog_wire_connection(fp, instance_output_port, instance_input_port, false); print_verilog_comment(fp, std::string("---- END short-wire a multiplexing structure input to MUX module input -----")); fp << std::endl; continue; /* Finish here */ } /* Reach here, we need a buffer, create a port-to-port map and output the buffer instance */ print_verilog_comment(fp, std::string("---- BEGIN Instanciation of an input buffer module -----")); /* Now we need to add intermediate buffers by instanciating the modules */ CircuitModelId buffer_model = circuit_lib.input_buffer_model(circuit_model); /* We must have a valid model id */ VTR_ASSERT(CircuitModelId::INVALID() != buffer_model); print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id, buffer_model, instance_input_port, instance_output_port); print_verilog_comment(fp, std::string("---- END Instanciation of an input buffer module -----")); fp << std::endl; } } /******************************************************************** * Generate the output bufferes for a multiplexer or LUT in Verilog codes * 1. If output are required to be buffered (specified by users), * buffers will be added to all the outputs. * 2. If output are required to NOT be buffered (specified by users), * all the outputs will be short wired to MUX outputs. *******************************************************************/ static void generate_verilog_cmos_mux_module_output_buffers(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Get the output ports from the mux */ std::vector mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* Iterate over all the outputs in the MUX module */ for (const auto& output_port : mux_output_ports) { /* Get the output port from MUX module */ ModulePortId module_output_port_id = module_manager.find_module_port(module_id, circuit_lib.port_prefix(output_port)); VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id); /* Get the port from module */ BasicPort module_output_port = module_manager.module_port(module_id, module_output_port_id); /* Iterate over each pin of the output port */ for (const auto& pin : circuit_lib.pins(output_port)) { /* Fetch fundamental information from MUX graph w.r.t. the input node */ /* Deposite the last level of the graph, which is a default value */ size_t output_node_level = mux_graph.num_node_levels() - 1; /* If there is a fracturable level specified for the output, we find the exact level */ if (size_t(-1) != circuit_lib.port_lut_frac_level(output_port)) { output_node_level = circuit_lib.port_lut_frac_level(output_port); } /* Deposite a zero, which is a default value */ size_t output_node_index_at_level = 0; /* If there are output masks, we find the node_index */ if (!circuit_lib.port_lut_output_masks(output_port).empty()) { output_node_index_at_level = circuit_lib.port_lut_output_masks(output_port).at(pin); } /* Double check the node exists in the Mux Graph */ VTR_ASSERT(MuxNodeId::INVALID() != mux_graph.node_id(output_node_level, output_node_index_at_level)); /* Create the port information of the MUX input, which is the input of buffer instance */ BasicPort instance_input_port(generate_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); /* Create the port information of the module output at the given pin range, which is the output of buffer instance */ BasicPort instance_output_port(module_output_port.get_name(), pin, pin); /* If the output is not supposed to be buffered */ if (false == circuit_lib.is_output_buffered(circuit_model)) { print_verilog_comment(fp, std::string("---- BEGIN short-wire a multiplexing structure output to MUX module output -----")); /* Short wire all the datapath inputs to the MUX inputs */ print_verilog_wire_connection(fp, instance_output_port, instance_input_port, false); print_verilog_comment(fp, std::string("---- END short-wire a multiplexing structure output to MUX module output -----")); fp << std::endl; continue; /* Finish here */ } /* Reach here, we need a buffer, create a port-to-port map and output the buffer instance */ print_verilog_comment(fp, std::string("---- BEGIN Instanciation of an output buffer module -----")); /* Now we need to add intermediate buffers by instanciating the modules */ CircuitModelId buffer_model = circuit_lib.output_buffer_model(circuit_model); /* We must have a valid model id */ VTR_ASSERT(CircuitModelId::INVALID() != buffer_model); print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id, buffer_model, instance_input_port, instance_output_port); print_verilog_comment(fp, std::string("---- END Instanciation of an output buffer module -----")); fp << std::endl; } } } /******************************************************************** * Generate the 4T1R-based internal logic * (multiplexing structure) for a multiplexer in Verilog codes * This function will : * 1. build a multiplexing structure by instanciating the branch circuits * generated before * 2. add intermediate buffers between multiplexing stages if specified. *******************************************************************/ static void generate_verilog_rram_mux_module_multiplexing_structure(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Find the actual mux size */ size_t mux_size = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()); /* Get the BL and WL ports from the mux */ std::vector mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true); std::vector mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true); /* MUX graph must have only 1 BLB and 1 WL port */ VTR_ASSERT(1 == mux_blb_ports.size()); VTR_ASSERT(1 == mux_wl_ports.size()); /* Build the location map of intermediate buffers */ std::vector inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model, mux_graph.num_node_levels()); print_verilog_comment(fp, std::string("---- BEGIN Internal Logic of a RRAM-based MUX module -----")); print_verilog_comment(fp, std::string("---- BEGIN Internal wires of a RRAM-based MUX module -----")); /* Print local wires which are the nodes in the mux graph */ for (size_t level = 0; level < mux_graph.num_levels(); ++level) { /* Print the internal wires located at this level */ BasicPort internal_wire_port(generate_mux_node_name(level, false), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_port) << ";" << std::endl; /* Identify if an intermediate buffer is needed */ if (false == inter_buffer_location_map[level]) { continue; } BasicPort internal_wire_buffered_port(generate_mux_node_name(level, true), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_buffered_port) << std::endl; } print_verilog_comment(fp, std::string("---- END Internal wires of a RRAM-based MUX module -----")); fp << std::endl; /* Iterate over all the internal nodes and output nodes in the mux graph */ for (const auto& node : mux_graph.non_input_nodes()) { print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch RRAM-based MUX module -----")); /* Get the size of branch circuit * Instanciate an branch circuit by the size (fan-in) of the node */ size_t branch_size = mux_graph.node_in_edges(node).size(); /* Get the node level and index in the current level */ size_t output_node_level = mux_graph.node_level(node); size_t output_node_index_at_level = mux_graph.node_index_at_level(node); /* Get the nodes which drive the root_node */ std::vector input_nodes; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the nodes drive the edge */ for (const auto& src_node : mux_graph.edge_src_nodes(edge)) { input_nodes.push_back(src_node); } } /* Number of inputs should match the branch_input_size!!! */ VTR_ASSERT(input_nodes.size() == branch_size); /* Get the mems in the branch circuits */ std::vector mems; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the mem control the edge */ MuxMemId mem = mux_graph.find_edge_mem(edge); /* Add the mem if it is not in the list */ if (mems.end() == std::find(mems.begin(), mems.end(), mem)) { mems.push_back(mem); } } /* Instanciate the branch module which is a tgate-based module */ std::string branch_module_name= generate_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, branch_size, verilog_mux_basis_posfix); /* Get the moduleId for the submodule */ ModuleId branch_module_id = module_manager.find_module(branch_module_name); /* We must have one */ VTR_ASSERT(ModuleId::INVALID() != branch_module_id); /* Create a port-to-port map */ std::map port2port_name_map; /* TODO: the branch module name should NOT be hard-coded. Use the port lib_name given by users! */ /* All the input node names organized in bus */ std::vector branch_node_input_ports; for (const auto& input_node : input_nodes) { /* Generate the port info of each input node */ size_t input_node_level = mux_graph.node_level(input_node); size_t input_node_index_at_level = mux_graph.node_index_at_level(input_node); BasicPort branch_node_input_port(generate_mux_node_name(input_node_level, inter_buffer_location_map[input_node_level]), input_node_index_at_level, input_node_index_at_level); branch_node_input_ports.push_back(branch_node_input_port); } /* Create the port info for the input */ /* TODO: the naming could be more flexible? */ BasicPort instance_input_port = generate_verilog_bus_port(branch_node_input_ports, std::string(generate_mux_node_name(output_node_level, false) + "_in")); /* If we have more than 1 port in the combined instance ports , * output a local wire */ if (1 < combine_verilog_ports(branch_node_input_ports).size()) { /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_local_wire(instance_input_port, branch_node_input_ports) << std::endl; } else { /* Safety check */ VTR_ASSERT(1 == combine_verilog_ports(branch_node_input_ports).size()); } /* Link nodes to input ports for the branch module */ ModulePortId module_input_port_id = module_manager.find_module_port(branch_module_id, "in"); VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id); /* Get the port from module */ BasicPort module_input_port = module_manager.module_port(branch_module_id, module_input_port_id); port2port_name_map[module_input_port.get_name()] = instance_input_port; /* Link nodes to output ports for the branch module */ BasicPort instance_output_port(generate_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); ModulePortId module_output_port_id = module_manager.find_module_port(branch_module_id, "out"); VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id); /* Get the port from module */ BasicPort module_output_port = module_manager.module_port(branch_module_id, module_output_port_id); port2port_name_map[module_output_port.get_name()] = instance_output_port; /* All the mem node names organized in bus * RRAM-based MUX uses BLB and WL to control memories */ std::vector branch_node_blb_ports; for (const auto& mem : mems) { /* Generate the port info of each mem node: */ BasicPort branch_node_blb_port(circuit_lib.port_prefix(mux_blb_ports[0]), size_t(mem), size_t(mem)); branch_node_blb_ports.push_back(branch_node_blb_port); } /* Every stage, we have an additonal BLB and WL in controlling purpose * The additional BLB is arranged at the tail of BLB port * For example: * The total port width is BLB[0 ... + - 1] * The regular BLB used by branches are BLB[0 .. - 1] * The additional BLB used by branches are BLB[ .. + - 1] * * output_node_level is always larger than the mem_level by 1 */ branch_node_blb_ports.push_back(BasicPort(circuit_lib.port_prefix(mux_blb_ports[0]), mux_graph.num_memory_bits() + output_node_level - 1, mux_graph.num_memory_bits() + output_node_level - 1) ); /* Create the port info for the input */ /* TODO: the naming could be more flexible? */ BasicPort instance_blb_port = generate_verilog_bus_port(branch_node_blb_ports, std::string(generate_mux_node_name(output_node_level, false) + "_blb")); /* If we have more than 1 port in the combined instance ports , * output a local wire */ if (1 < combine_verilog_ports(branch_node_blb_ports).size()) { /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_local_wire(instance_blb_port, branch_node_blb_ports) << std::endl; } else { /* Safety check */ VTR_ASSERT(1 == combine_verilog_ports(branch_node_blb_ports).size()); } /* Link nodes to BLB ports for the branch module */ ModulePortId module_blb_port_id = module_manager.find_module_port(branch_module_id, circuit_lib.port_prefix(mux_blb_ports[0])); VTR_ASSERT(ModulePortId::INVALID() != module_blb_port_id); /* Get the port from module */ BasicPort module_blb_port = module_manager.module_port(branch_module_id, module_blb_port_id); port2port_name_map[module_blb_port.get_name()] = instance_blb_port; std::vector branch_node_wl_ports; for (const auto& mem : mems) { /* Generate the port info of each mem node: */ BasicPort branch_node_blb_port(circuit_lib.port_prefix(mux_wl_ports[0]), size_t(mem), size_t(mem)); branch_node_wl_ports.push_back(branch_node_blb_port); } /* Every stage, we have an additonal BLB and WL in controlling purpose * The additional BLB is arranged at the tail of BLB port * For example: * The total port width is WL[0 ... + - 1] * The regular BLB used by branches are WL[0 .. - 1] * The additional BLB used by branches are WL[ .. + - 1] * * output_node_level is always larger than the mem_level by 1 */ branch_node_wl_ports.push_back(BasicPort(circuit_lib.port_prefix(mux_wl_ports[0]), mux_graph.num_memory_bits() + output_node_level - 1, mux_graph.num_memory_bits() + output_node_level - 1) ); /* Create the port info for the WL */ /* TODO: the naming could be more flexible? */ BasicPort instance_wl_port = generate_verilog_bus_port(branch_node_wl_ports, std::string(generate_mux_node_name(output_node_level, false) + "_wl")); /* If we have more than 1 port in the combined instance ports , * output a local wire */ if (1 < combine_verilog_ports(branch_node_wl_ports).size()) { /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_local_wire(instance_wl_port, branch_node_wl_ports) << std::endl; } else { /* Safety check */ VTR_ASSERT(1 == combine_verilog_ports(branch_node_wl_ports).size()); } /* Link nodes to BLB ports for the branch module */ ModulePortId module_wl_port_id = module_manager.find_module_port(branch_module_id, circuit_lib.port_prefix(mux_wl_ports[0])); VTR_ASSERT(ModulePortId::INVALID() != module_wl_port_id); /* Get the port from module */ BasicPort module_wl_port = module_manager.module_port(branch_module_id, module_wl_port_id); port2port_name_map[module_wl_port.get_name()] = instance_wl_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, branch_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, branch_module_id); print_verilog_comment(fp, std::string("---- END Instanciation of a branch RRAM-based MUX module -----")); fp << std::endl; if (false == inter_buffer_location_map[output_node_level]) { continue; /* No need for intermediate buffers */ } print_verilog_comment(fp, std::string("---- BEGIN Instanciation of an intermediate buffer modules -----")); /* Now we need to add intermediate buffers by instanciating the modules */ CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(circuit_model); /* We must have a valid model id */ VTR_ASSERT(CircuitModelId::INVALID() != buffer_model); BasicPort buffer_instance_input_port(generate_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); BasicPort buffer_instance_output_port(generate_mux_node_name(output_node_level, true), output_node_index_at_level, output_node_index_at_level); print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id, buffer_model, buffer_instance_input_port, buffer_instance_output_port); print_verilog_comment(fp, std::string("---- END Instanciation of an intermediate buffer module -----")); fp << std::endl; } print_verilog_comment(fp, std::string("---- END Internal Logic of a RRAM-based MUX module -----")); fp << std::endl; } /********************************************************************* * Generate Verilog codes modeling a RRAM-based multiplexer with the given size * The Verilog module will consist of three parts: * 1. instances of the branch circuits of multiplexers which are generated before * This builds up the 4T1R-based multiplexing structure * * BLB WL * | | ... * v v * +--------+ * in[0]-->| | BLB WL * ...| Branch |-----+ | | * in -->| 0 | | v v * [N-1] +--------+ | +--------+ * ... -->| | * BLBs WLs ...| Branch | * | | ... -->| X | * v v +--------+ * +--------+ | * -->| | | * ...| Branch |----+ * -->| i | * +--------+ * * 2. Input buffers/inverters * 3. Output buffers/inverters *********************************************************************/ static void generate_verilog_rram_mux_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph) { /* Error out for the conditions where we are not yet supported! */ if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) { /* RRAM LUT is not supported now... */ vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])RRAM-based LUT is not supported (Circuit model: %s)!\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } /* Get the global ports required by MUX (and any submodules) */ std::vector mux_global_ports = circuit_lib.model_global_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true, true); /* Get the input ports from the mux */ std::vector mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); /* Get the output ports from the mux */ std::vector mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* Get the BL and WL ports from the mux */ std::vector mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true); std::vector mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of data-path inputs */ size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 input and 1 BLB and 1 WL port */ VTR_ASSERT(1 == mux_input_ports.size()); VTR_ASSERT(1 == mux_blb_ports.size()); VTR_ASSERT(1 == mux_wl_ports.size()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* Add module ports */ /* Add each global port */ for (const auto& port : mux_global_ports) { /* Configure each global port */ BasicPort global_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port)); module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Add each input port */ size_t input_port_cnt = 0; for (const auto& port : mux_input_ports) { BasicPort input_port(circuit_lib.port_prefix(port), num_inputs); module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT); /* Update counter */ input_port_cnt++; } /* Double check: We should have only 1 input port generated here! */ VTR_ASSERT(1 == input_port_cnt); for (const auto& port : mux_output_ports) { BasicPort output_port(circuit_lib.port_prefix(port), num_outputs); if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) { output_port.set_width(circuit_lib.port_size(port)); } module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT); } /* BLB port */ for (const auto& port : mux_blb_ports) { /* IMPORTANT: RRAM-based MUX has an additional BLB pin per level * So, the actual port width of BLB should be added by the number of levels of the MUX graph */ BasicPort blb_port(circuit_lib.port_prefix(port), num_mems + mux_graph.num_levels()); module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT); } /* WL port */ for (const auto& port : mux_wl_ports) { /* IMPORTANT: RRAM-based MUX has an additional WL pin per level * So, the actual port width of WL should be added by the number of levels of the MUX graph */ BasicPort wl_port(circuit_lib.port_prefix(port), num_mems + mux_graph.num_levels()); module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT); } /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* TODO: Print the internal logic in Verilog codes */ generate_verilog_rram_mux_module_multiplexing_structure(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph); /* Print the input and output buffers in Verilog codes */ /* TODO, we should rename the follow functions to a generic name? Since they are applicable to both MUXes */ generate_verilog_cmos_mux_module_input_buffers(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph); generate_verilog_cmos_mux_module_output_buffers(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*********************************************** * Generate Verilog codes modeling a multiplexer * with the given graph-level description **********************************************/ static void generate_verilog_mux_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& mux_model, const MuxGraph& mux_graph, const bool& use_explicit_port_map) { std::string module_name = generate_mux_subckt_name(circuit_lib, mux_model, find_mux_num_datapath_inputs(circuit_lib, mux_model, mux_graph.num_inputs()), std::string("")); /* Multiplexers built with different technology is in different organization */ switch (circuit_lib.design_tech_type(mux_model)) { case SPICE_MODEL_DESIGN_CMOS: { /* Use Verilog writer to print the module to file */ ModuleId mux_module = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(mux_module)); write_verilog_module_to_file(fp, module_manager, mux_module, ( use_explicit_port_map || circuit_lib.dump_explicit_port_map(mux_model) || circuit_lib.dump_explicit_port_map(circuit_lib.pass_gate_logic_model(mux_model)) ) ); /* Add an empty line as a splitter */ fp << std::endl; break; } case SPICE_MODEL_DESIGN_RRAM: /* TODO: RRAM-based Multiplexer Verilog module generation */ generate_verilog_rram_mux_module(module_manager, circuit_lib, fp, mux_model, module_name, mux_graph); break; default: vpr_printf(TIO_MESSAGE_ERROR, "(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n", __FILE__, __LINE__, circuit_lib.model_name(mux_model).c_str()); exit(1); } } /*********************************************** * Generate Verilog modules for all the unique * multiplexers in the FPGA device **********************************************/ void print_verilog_submodule_muxes(ModuleManager& module_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, const std::string& verilog_dir, const std::string& submodule_dir, const bool& use_explicit_port_map) { /* TODO: Generate modules into a .bak file now. Rename after it is verified */ std::string verilog_fname(submodule_dir + muxes_verilog_file_name); //verilog_fname += ".bak"; /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_handler(fp); /* Print out debugging information for if the file is not opened/created properly */ vpr_printf(TIO_MESSAGE_INFO, "Creating Verilog netlist for Multiplexers (%s) ...\n", verilog_fname.c_str()); print_verilog_file_header(fp, "Multiplexers"); print_verilog_include_defines_preproc_file(fp, verilog_dir); /* Generate basis sub-circuit for unique branches shared by the multiplexers */ for (auto mux : mux_lib.muxes()) { const MuxGraph& mux_graph = mux_lib.mux_graph(mux); CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* Create a mux graph for the branch circuit */ std::vector branch_mux_graphs = mux_graph.build_mux_branch_graphs(); /* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */ for (auto branch_mux_graph : branch_mux_graphs) { generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model, find_mux_num_datapath_inputs(circuit_lib, mux_circuit_model, mux_graph.num_inputs()), branch_mux_graph, use_explicit_port_map); } } /* Generate unique Verilog modules for the multiplexers */ for (auto mux : mux_lib.muxes()) { const MuxGraph& mux_graph = mux_lib.mux_graph(mux); CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* Create MUX circuits */ generate_verilog_mux_module(module_manager, circuit_lib, fp, mux_circuit_model, mux_graph, use_explicit_port_map); } /* Close the file stream */ fp.close(); /* TODO: * Scan-chain configuration circuit does not need any BLs/WLs! * SRAM MUX does not need any reserved BL/WLs! */ /* Determine reserved Bit/Word Lines if a memory bank is specified, * At least 1 BL/WL should be reserved! */ try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info, mux_lib.max_mux_size(), mux_lib.max_mux_size()); /* TODO: Add fname to the linked list when debugging is finished */ /* submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_fname.c_str()); */ }