#include "util.h" #include "vpr_types.h" #include "globals.h" #include "OptionTokens.h" #include "ReadOptions.h" #include "read_xml_arch_file.h" #include "SetupVPR.h" void CheckSetup(INP enum e_operation Operation, INP struct s_placer_opts PlacerOpts, INP struct s_annealing_sched AnnealSched, INP struct s_router_opts RouterOpts, INP struct s_det_routing_arch RoutingArch, INP t_segment_inf * Segments, INP t_timing_inf Timing, INP t_chan_width_dist Chans) { int i; int Tmp; if ((GLOBAL == RouterOpts.route_type) && (TIMING_DRIVEN == RouterOpts.router_algorithm)) { vpr_printf(TIO_MESSAGE_ERROR, "The global router does not support timing-drvien routing.\n"); exit(1); } if ((GLOBAL == RouterOpts.route_type) && (BOUNDING_BOX_PLACE != PlacerOpts.place_algorithm)) { /* Works, but very weird. Can't optimize timing well, since you're * not doing proper architecture delay modelling. */ vpr_printf(TIO_MESSAGE_WARNING, "Using global routing with timing-driven placement. " "This is allowed, but strange, and circuit speed will suffer.\n"); } if ((FALSE == Timing.timing_analysis_enabled) && ((PlacerOpts.place_algorithm == NET_TIMING_DRIVEN_PLACE) || (PlacerOpts.place_algorithm == PATH_TIMING_DRIVEN_PLACE))) { /* May work, not tested */ vpr_printf(TIO_MESSAGE_ERROR, "Timing analysis must be enabled for timing-driven placement.\n"); exit(1); } if (!PlacerOpts.doPlacement && (USER == PlacerOpts.pad_loc_type)) { vpr_printf(TIO_MESSAGE_ERROR, "A pad location file requires that placement is enabled.\n"); exit(1); } if (RouterOpts.doRouting) { if ((TIMING_DRIVEN == RouterOpts.router_algorithm) && (FALSE == Timing.timing_analysis_enabled)) { vpr_printf(TIO_MESSAGE_ERROR, "Cannot perform timing-driven routing when timing analysis is disabled.\n"); exit(1); } if ((FALSE == Timing.timing_analysis_enabled) && (DEMAND_ONLY != RouterOpts.base_cost_type)) { vpr_printf(TIO_MESSAGE_ERROR, "base_cost_type must be demand_only when timing analysis is disabled.\n"); exit(1); } } if ((TIMING_ANALYSIS_ONLY == Operation) && (FALSE == Timing.timing_analysis_enabled)) { vpr_printf(TIO_MESSAGE_ERROR, "-timing_analyze_only_with_net_delay option requires that timing analysis not be disabled.\n"); exit(1); } if (DETAILED == RouterOpts.route_type) { if ((Chans.chan_x_dist.type != UNIFORM) || (Chans.chan_y_dist.type != UNIFORM) || (Chans.chan_x_dist.peak != Chans.chan_y_dist.peak) || (Chans.chan_x_dist.peak != Chans.chan_width_io)) { vpr_printf(TIO_MESSAGE_ERROR, "Detailed routing currently only supported on FPGAs with all channels of equal width.\n"); exit(1); } } for (i = 0; i < RoutingArch.num_segment; ++i) { Tmp = Segments[i].opin_switch; if (FALSE == switch_inf[Tmp].buffered) { vpr_printf(TIO_MESSAGE_ERROR, "opin_switch (#%d) of segment type #%d is not buffered.\n", Tmp, i); exit(1); } } if (UNI_DIRECTIONAL == RoutingArch.directionality) { if ((RouterOpts.fixed_channel_width != NO_FIXED_CHANNEL_WIDTH) && (RouterOpts.fixed_channel_width % 2 > 0)) { vpr_printf(TIO_MESSAGE_ERROR, "Routing channel width must be even for unidirectional.\n"); exit(1); } if ((PlacerOpts.place_chan_width != NO_FIXED_CHANNEL_WIDTH) && (PlacerOpts.place_chan_width % 2 > 0)) { vpr_printf(TIO_MESSAGE_ERROR, "Place channel width must be even for unidirectional.\n"); exit(1); } } }