/******************************************************************** * This file includes functions to read an OpenFPGA architecture file * which are built on the libarchopenfpga library *******************************************************************/ /* Headers from vtrutil library */ #include "vtr_time.h" #include "vtr_assert.h" #include "vtr_log.h" /* Headers from vpr library */ #include "timing_info.h" #include "AnalysisDelayCalculator.h" #include "net_delay.h" #include "vpr_device_annotation.h" #include "pb_type_utils.h" #include "annotate_pb_types.h" #include "annotate_pb_graph.h" #include "annotate_routing.h" #include "annotate_rr_graph.h" #include "mux_library_builder.h" #include "build_tile_direct.h" #include "annotate_placement.h" #include "openfpga_link_arch.h" /* Include global variables of VPR */ #include "globals.h" /* begin namespace openfpga */ namespace openfpga { /******************************************************************** * A function to identify if the routing resource graph generated by * VPR is support by OpenFPGA * - Currently we only support uni-directional * It means every routing tracks must have a direction *******************************************************************/ static bool is_vpr_rr_graph_supported(const RRGraph& rr_graph) { /* Check if the rr_graph is uni-directional*/ for (const RRNodeId& node : rr_graph.nodes()) { if (CHANX != rr_graph.node_type(node) && CHANY != rr_graph.node_type(node)) { continue; } if (BI_DIRECTION == rr_graph.node_direction(node)) { VTR_LOG_ERROR("Routing resource graph is bi-directional. OpenFPGA currently supports uni-directional routing architecture only.\n"); return false; } } return true; } /******************************************************************** * Annotate simulation setting based on VPR results * - If the operating clock frequency is set to follow the vpr timing results, * we will set a new operating clock frequency here * - If the number of clock cycles in simulation is set to be automatically determined, * we will infer the number based on the average signal density *******************************************************************/ static void annotate_simulation_setting(const AtomContext& atom_ctx, SimulationSetting& sim_setting) { /* Find if the operating frequency is binded to vpr results */ if (0. == sim_setting.operating_clock_frequency()) { VTR_LOG("User specified the operating clock frequency to use VPR results\n"); /* Run timing analysis and collect critical path delay * This code is copied from function vpr_analysis() in vpr_api.h * Should keep updated to latest VPR code base * Note: * - MUST mention in documentation that VPR should be run in timing enabled mode */ vtr::vector net_delay; vtr::t_chunk net_delay_ch; /* Load the net delays */ net_delay = alloc_net_delay(&net_delay_ch); load_net_delay_from_routing(net_delay); /* Do final timing analysis */ auto analysis_delay_calc = std::make_shared(atom_ctx.nlist, atom_ctx.lookup, net_delay); auto timing_info = make_setup_hold_timing_info(analysis_delay_calc); timing_info->update(); /* Get critical path delay. Update simulation settings */ float T_crit = timing_info->least_slack_critical_path().delay() * (1. + sim_setting.operating_clock_frequency_slack()); sim_setting.set_operating_clock_frequency(1 / T_crit); VTR_LOG("Use VPR critical path delay %g [ns] with a %g [%] slack in OpenFPGA.\n", T_crit / 1e9, sim_setting.operating_clock_frequency_slack() * 100); } VTR_LOG("Will apply operating clock frequency %g [MHz] to simulations\n", sim_setting.operating_clock_frequency() / 1e6); } /******************************************************************** * Top-level function to link openfpga architecture to VPR, including: * - physical pb_type * - mode selection bits for pb_type and pb interconnect * - circuit models for pb_type and pb interconnect * - physical pb_graph nodes and pb_graph pins * - circuit models for global routing architecture *******************************************************************/ void link_arch(OpenfpgaContext& openfpga_ctx, const Command& cmd, const CommandContext& cmd_context) { vtr::ScopedStartFinishTimer timer("Link OpenFPGA architecture to VPR architecture"); CommandOptionId opt_verbose = cmd.option("verbose"); /* Annotate pb_type graphs * - physical pb_type * - mode selection bits for pb_type and pb interconnect * - circuit models for pb_type and pb interconnect */ annotate_pb_types(g_vpr_ctx.device(), openfpga_ctx.arch(), openfpga_ctx.mutable_vpr_device_annotation(), cmd_context.option_enable(cmd, opt_verbose)); /* Annotate pb_graph_nodes * - Give unique index to each node in the same type * - Bind operating pb_graph_node to their physical pb_graph_node * - Bind pins from operating pb_graph_node to their physical pb_graph_node pins */ annotate_pb_graph(g_vpr_ctx.device(), openfpga_ctx.mutable_vpr_device_annotation(), cmd_context.option_enable(cmd, opt_verbose)); /* Annotate routing architecture to circuit library */ annotate_rr_graph_circuit_models(g_vpr_ctx.device(), openfpga_ctx.arch(), openfpga_ctx.mutable_vpr_device_annotation(), cmd_context.option_enable(cmd, opt_verbose)); /* Annotate net mapping to each rr_node */ openfpga_ctx.mutable_vpr_routing_annotation().init(g_vpr_ctx.device().rr_graph); annotate_rr_node_nets(g_vpr_ctx.device(), g_vpr_ctx.clustering(), g_vpr_ctx.routing(), openfpga_ctx.mutable_vpr_routing_annotation(), cmd_context.option_enable(cmd, opt_verbose)); /* Build the routing graph annotation * - RRGSB * - DeviceRRGSB */ if (false == is_vpr_rr_graph_supported(g_vpr_ctx.device().rr_graph)) { return; } annotate_device_rr_gsb(g_vpr_ctx.device(), openfpga_ctx.mutable_device_rr_gsb(), cmd_context.option_enable(cmd, opt_verbose)); /* Build multiplexer library */ openfpga_ctx.mutable_mux_lib() = build_device_mux_library(g_vpr_ctx.device(), const_cast(openfpga_ctx)); /* Build tile direct annotation */ openfpga_ctx.mutable_tile_direct() = build_device_tile_direct(g_vpr_ctx.device(), openfpga_ctx.arch().arch_direct); /* Annotate placement results */ annotate_mapped_blocks(g_vpr_ctx.device(), g_vpr_ctx.clustering(), g_vpr_ctx.placement(), openfpga_ctx.mutable_vpr_placement_annotation()); /* TODO: Annotate the number of clock cycles and clock frequency by following VPR results */ annotate_simulation_setting(g_vpr_ctx.atom(), openfpga_ctx.mutable_arch().sim_setting); } } /* end namespace openfpga */