////////////////////////////////////////////////////////////////////// //// //// //// File name "delayed_sync.v" //// //// //// //// This file is part of the "PCI bridge" project //// //// http://www.opencores.org/cores/pci/ //// //// //// //// Author(s): //// //// - Miha Dolenc (mihad@opencores.org) //// //// //// //// All additional information is avaliable in the README //// //// file. //// //// //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: pci_delayed_sync.v,v $ // Revision 1.3 2003/08/14 13:06:02 simons // synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated. // // Revision 1.2 2003/03/26 13:16:18 mihad // Added the reset value parameter to the synchronizer flop module. // Added resets to all synchronizer flop instances. // Repaired initial sync value in fifos. // // Revision 1.1 2003/01/27 16:49:31 mihad // Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed. // // Revision 1.5 2002/09/25 09:54:50 mihad // Added completion expiration test for WB Slave unit. Changed expiration signalling // // Revision 1.4 2002/03/05 11:53:47 mihad // Added some testcases, removed un-needed fifo signals // // Revision 1.3 2002/02/01 15:25:12 mihad // Repaired a few bugs, updated specification, added test bench files and design document // // Revision 1.2 2001/10/05 08:14:28 mihad // Updated all files with inclusion of timescale file for simulation purposes. // // Revision 1.1.1.1 2001/10/02 15:33:46 mihad // New project directory structure // // // module provides synchronization mechanism between requesting and completing side of the bridge `include "pci_constants.v" `include "bus_commands.v" // synopsys translate_off `include "timescale.v" // synopsys translate_on module pci_delayed_sync ( reset_in, req_clk_in, comp_clk_in, req_in, comp_in, done_in, in_progress_in, comp_req_pending_out, req_req_pending_out, req_comp_pending_out, comp_comp_pending_out, addr_in, be_in, addr_out, be_out, we_in, we_out, bc_in, bc_out, status_in, status_out, comp_flush_out, burst_in, burst_out, retry_expired_in ); // system inputs input reset_in, // reset input req_clk_in, // requesting clock input comp_clk_in ; // completing clock input // request, completion, done and in progress indication inputs input req_in, // request qualifier - when 1 it indicates that valid request data is provided on inputs comp_in, // completion qualifier - when 1, completing side indicates that request has completed done_in, // done input - when 1 indicates that requesting side of the bridge has completed a transaction on requesting bus in_progress_in ; // in progress indicator - indicates that current completion is in progress on requesting side of the bridge // pending indication outputs output comp_req_pending_out, // completion side request output - resynchronized from requesting clock to completing clock req_req_pending_out, // request pending output for requesting side req_comp_pending_out, // completion pending output for requesting side of the bridge - it indicates when completion is ready for completing on requesting bus comp_comp_pending_out ; // completion pending output for completing side of the bridge // additional signals and wires for clock domain passage of signals reg comp_req_pending, req_req_pending, req_comp_pending, req_comp_pending_sample, comp_comp_pending, req_done_reg, comp_done_reg_main, comp_done_reg_clr, req_rty_exp_reg, req_rty_exp_clr, comp_rty_exp_reg, comp_rty_exp_clr ; wire sync_comp_req_pending, sync_req_comp_pending, sync_comp_done, sync_req_rty_exp, sync_comp_rty_exp_clr ; // inputs from requesting side - only this side can set address, bus command, byte enables, write enable and burst - outputs are common for both sides // all signals that identify requests are stored in this module input [31:0] addr_in ; // address bus input input [3:0] be_in ; // byte enable input input we_in ; // write enable input - read/write request indication 1 = write request / 0 = read request input [3:0] bc_in ; // bus command input input burst_in ; // burst indicator - qualifies operation as burst/single transfer 1 = burst / 0 = single transfer // common request outputs used both by completing and requesting sides // this outputs are not resynchronized, since flags determine the request status output [31:0] addr_out ; output [3:0] be_out ; output we_out ; output [3:0] bc_out ; output burst_out ; // completion side signals encoded termination status - 0 = normal completion / 1 = error terminated completion input status_in ; output status_out ; // input signals that delayed transaction has been retried for max number of times // on this signal request is ditched, otherwise it would cause a deadlock // requestor can issue another request and procedure will be repeated input retry_expired_in ; // completion flush output - if in 2^^16 clock cycles transaction is not repeated by requesting agent - flush completion data output comp_flush_out ; // output registers for common signals reg [31:0] addr_out ; reg [3:0] be_out ; reg we_out ; reg [3:0] bc_out ; reg burst_out ; // delayed transaction information is stored only when request is issued and request nor completion are pending wire new_request = req_in && ~req_comp_pending_out && ~req_req_pending_out ; always@(posedge req_clk_in or posedge reset_in) begin if (reset_in) begin addr_out <= #`FF_DELAY 32'h0000_0000 ; be_out <= #`FF_DELAY 4'h0 ; we_out <= #`FF_DELAY 1'b0 ; bc_out <= #`FF_DELAY `BC_RESERVED0 ; burst_out <= #`FF_DELAY 1'b0 ; end else if (new_request) begin addr_out <= #`FF_DELAY addr_in ; be_out <= #`FF_DELAY be_in ; we_out <= #`FF_DELAY we_in ; bc_out <= #`FF_DELAY bc_in ; burst_out <= #`FF_DELAY burst_in ; end end // completion pending cycle counter reg [16:0] comp_cycle_count ; /*================================================================================================================================= Passing of requests between clock domains: request originates on requesting side. It's then synchronized with two flip-flops to cross to completing clock domain =================================================================================================================================*/ // main request flip-flop triggered on requesting side's clock // request is cleared whenever completion or retry expired is signalled from opposite side of the bridge wire req_req_clear = req_comp_pending || (req_rty_exp_reg && ~req_rty_exp_clr) ; always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_req_pending <= #`FF_DELAY 1'b0 ; else if ( req_req_clear ) req_req_pending <= #`FF_DELAY 1'b0 ; else if ( req_in ) req_req_pending <= #`FF_DELAY 1'b1 ; end // interemediate stage request synchronization flip - flop - this one is prone to metastability // and should have setup and hold times disabled during simulation pci_synchronizer_flop #(1, 0) req_sync ( .data_in (req_req_pending), .clk_out (comp_clk_in), .sync_data_out (sync_comp_req_pending), .async_reset (reset_in) ) ; // wire for clearing completion side request flag - whenever completion or retry expired are signalled wire comp_req_pending_clear = comp_req_pending && ( comp_in || retry_expired_in) ; // wire for enabling request flip - flop - it is enabled when completion is not active and done is not active wire comp_req_pending_ena = ~comp_comp_pending && ~comp_done_reg_main && ~comp_rty_exp_reg ; // completion side request flip flop - gets a value from intermediate stage sync flip flop always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_req_pending <= #`FF_DELAY 1'b0 ; else if ( comp_req_pending_clear ) comp_req_pending <= #`FF_DELAY 1'b0 ; else if ( comp_req_pending_ena ) comp_req_pending <= #`FF_DELAY sync_comp_req_pending ; end // completion side request output assignment - when request ff is set and completion ff is not set assign comp_req_pending_out = comp_req_pending ; // requesting side request pending output assign req_req_pending_out = req_req_pending ; /*================================================================================================================================= Passing of completions between clock domains: completion originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain =================================================================================================================================*/ // main completion Flip - Flop - triggered by completing side's clock // completion side completion pending flag is cleared when done flag propagates through clock domains wire comp_comp_clear = comp_done_reg_main && ~comp_done_reg_clr ; always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_comp_pending <= #`FF_DELAY 1'b0 ; else if ( comp_comp_clear ) comp_comp_pending <= #`FF_DELAY 1'b0 ; else if ( comp_in && comp_req_pending ) comp_comp_pending <= #`FF_DELAY 1'b1 ; end assign comp_comp_pending_out = comp_comp_pending ; // interemediate stage completion synchronization flip - flop - this one is prone to metastability pci_synchronizer_flop #(1, 0) comp_sync ( .data_in (comp_comp_pending), .clk_out (req_clk_in), .sync_data_out (sync_req_comp_pending), .async_reset (reset_in) ) ; // request side completion pending flip flop is cleared whenever done is signalled or completion counter expires - 2^^16 clock cycles wire req_comp_pending_clear = done_in || comp_cycle_count[16]; // request side completion pending flip flop is disabled while done flag is set wire req_comp_pending_ena = ~req_done_reg ; // request side completion flip flop - gets a value from intermediate stage sync flip flop always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_comp_pending <= #`FF_DELAY 1'b0 ; else if ( req_comp_pending_clear ) req_comp_pending <= #`FF_DELAY 1'b0 ; else if ( req_comp_pending_ena ) req_comp_pending <= #`FF_DELAY sync_req_comp_pending ; end // sampling FF - used for sampling incoming completion flag from completing side always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_comp_pending_sample <= #`FF_DELAY 1'b0 ; else req_comp_pending_sample <= #`FF_DELAY sync_req_comp_pending ; end // requesting side completion pending output assignment assign req_comp_pending_out = req_comp_pending && ~req_req_pending ; /*================================================================================================================================== Passing of delayed transaction done signal between clock domains. Done is signalled by requesting side of the bridge and is passed to completing side of the bridge ==================================================================================================================================*/ // main done flip-flop triggered on requesting side's clock // when completing side removes completion flag, done flag is also removed, so requests can proceede wire req_done_clear = ~req_comp_pending_sample ; always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_done_reg <= #`FF_DELAY 1'b0 ; else if ( req_done_clear ) req_done_reg <= #`FF_DELAY 1'b0 ; else if ( done_in || comp_cycle_count[16] ) req_done_reg <= #`FF_DELAY 1'b1 ; end pci_synchronizer_flop #(1, 0) done_sync ( .data_in (req_done_reg), .clk_out (comp_clk_in), .sync_data_out (sync_comp_done), .async_reset (reset_in) ) ; always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_done_reg_main <= #`FF_DELAY 1'b0 ; else comp_done_reg_main <= #`FF_DELAY sync_comp_done ; end always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_done_reg_clr <= #`FF_DELAY 1'b0 ; else comp_done_reg_clr <= #`FF_DELAY comp_done_reg_main ; end /*================================================================================================================================= Passing of retry expired signal between clock domains Retry expiration originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain =================================================================================================================================*/ // main retry expired Flip - Flop - triggered by completing side's clock wire comp_rty_exp_clear = comp_rty_exp_clr && comp_rty_exp_reg ; // retry expired is a special case of transaction removal - retry expired propagates from completing // clock domain to requesting clock domain to remove all pending requests and than propagates back // to completing side to qualify valid new requests always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_rty_exp_reg <= #`FF_DELAY 1'b0 ; else if ( comp_rty_exp_clear ) comp_rty_exp_reg <= #`FF_DELAY 1'b0 ; else if ( retry_expired_in && comp_req_pending) comp_rty_exp_reg <= #`FF_DELAY 1'b1 ; end // interemediate stage retry expired synchronization flip - flop - this one is prone to metastability pci_synchronizer_flop #(1, 0) rty_exp_sync ( .data_in (comp_rty_exp_reg), .clk_out (req_clk_in), .sync_data_out (sync_req_rty_exp), .async_reset (reset_in) ) ; // request retry expired flip flop - gets a value from intermediate stage sync flip flop always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_rty_exp_reg <= #`FF_DELAY 1'b0 ; else req_rty_exp_reg <= #`FF_DELAY sync_req_rty_exp ; end always@(posedge req_clk_in or posedge reset_in) begin if ( reset_in ) req_rty_exp_clr <= #`FF_DELAY 1'b0 ; else req_rty_exp_clr <= #`FF_DELAY req_rty_exp_reg ; end pci_synchronizer_flop #(1, 0) rty_exp_back_prop_sync ( .data_in (req_rty_exp_reg && req_rty_exp_clr), .clk_out (comp_clk_in), .sync_data_out (sync_comp_rty_exp_clr), .async_reset (reset_in) ) ; always@(posedge comp_clk_in or posedge reset_in) begin if ( reset_in ) comp_rty_exp_clr <= #`FF_DELAY 1'b0 ; else comp_rty_exp_clr <= #`FF_DELAY sync_comp_rty_exp_clr ; end // completion status flip flop - if 0 when completion is signalled it's finished OK otherwise it means error reg status_out ; always@(posedge comp_clk_in or posedge reset_in) begin if (reset_in) status_out <= #`FF_DELAY 1'b0 ; else if (comp_in && comp_req_pending) status_out <= #`FF_DELAY status_in ; end // clocks counter - it counts how many clock cycles completion is present without beeing repeated // if it counts to 2^^16 cycles the completion must be ditched // wire for clearing this counter wire clear_count = in_progress_in || ~req_comp_pending_out || comp_cycle_count[16] ; always@(posedge req_clk_in or posedge reset_in) begin if (reset_in) comp_cycle_count <= #`FF_DELAY 17'h0_0000 ; else if (clear_count) comp_cycle_count <= #`FF_DELAY 17'h0_0000 ; else comp_cycle_count <= #`FF_DELAY comp_cycle_count + 1'b1 ; end // completion flush output - used for flushing fifos when counter expires // if counter doesn't expire, fifo flush is up to WISHBONE slave or PCI target state machines reg comp_flush_out ; always@(posedge req_clk_in or posedge reset_in) begin if (reset_in) comp_flush_out <= #`FF_DELAY 1'b0 ; else comp_flush_out <= #`FF_DELAY comp_cycle_count[16] ; end endmodule //delayed_sync