/* The XML parser processes an XML file into a tree data structure composed of * * ezxml_t nodes. Each ezxml_t node represents an XML element. For example * * will generate two ezxml_t nodes. One called "a" and its * * child "b". Each ezxml_t node can contain various XML data such as attribute * * information and text content. The XML parser provides several functions to * * help the developer build, traverse, and free this ezxml_t tree. * * * * The function ezxml_parse_file reads in an architecture file. * * * * The function FindElement returns a child ezxml_t node for a given ezxml_t * * node that matches a name provided by the developer. * * * * The function FreeNode frees a child ezxml_t node. All children nodes must * * be freed before the parent can be freed. * * * * The function FindProperty is used to extract attributes from an ezxml_t node. * * The corresponding ezxml_set_attr is used to then free an attribute after it * * is read. We have several helper functions that perform this common * * read/store/free operation in one step such as GetIntProperty and * * GetFloatProperty. * * * * Because of how the XML tree traversal works, we free everything when we're * * done reading an architecture file to make sure that there isn't some part * * of the architecture file that got missed. * */ #include #include #include "util.h" #include "arch_types.h" #include "ReadLine.h" #include "ezxml.h" #include "read_xml_arch_file.h" #include "read_xml_util.h" #include "read_xml_spice.h" /* mrFPGA: Xifan TANG*/ #include "read_xml_mrfpga.h" /* END */ enum Fc_type { FC_ABS, FC_FRAC, FC_FULL }; /* This identifies the t_type_ptr of an IO block */ static t_type_ptr IO_TYPE = NULL; /* This identifies the t_type_ptr of an Empty block */ static t_type_ptr EMPTY_TYPE = NULL; /* This identifies the t_type_ptr of the default logic block */ static t_type_ptr FILL_TYPE = NULL; /* Describes the different types of CLBs available */ static struct s_type_descriptor *cb_type_descriptors; /* Function prototypes */ /* Populate data */ static void SetupEmptyType(void); static void SetupPinLocationsAndPinClasses(ezxml_t Locations, t_type_descriptor * Type); static void SetupGridLocations(ezxml_t Locations, t_type_descriptor * Type); #if 0 static void SetupTypeTiming(ezxml_t timing, t_type_descriptor * Type); #endif /* Process XML hiearchy */ static void ProcessPb_Type(INOUTP ezxml_t Parent, t_pb_type * pb_type, t_mode * mode, boolean do_spice); static void ProcessPb_TypePort(INOUTP ezxml_t Parent, t_port * port, e_power_estimation_method power_method); static void ProcessPinToPinAnnotations(ezxml_t parent, t_pin_to_pin_annotation *annotation); static void ProcessInterconnect(INOUTP ezxml_t Parent, t_mode * mode); static void ProcessMode(INOUTP ezxml_t Parent, t_mode * mode, boolean * default_leakage_mode, boolean do_spice); static void Process_Fc(ezxml_t Node, t_type_descriptor * Type); static void ProcessComplexBlockProps(ezxml_t Node, t_type_descriptor * Type); static void ProcessChanWidthDistr(INOUTP ezxml_t Node, OUTP struct s_arch *arch); static void ProcessChanWidthDistrDir(INOUTP ezxml_t Node, OUTP t_chan * chan); static void ProcessModels(INOUTP ezxml_t Node, OUTP struct s_arch *arch); static void ProcessLayout(INOUTP ezxml_t Node, OUTP struct s_arch *arch); static void ProcessDevice(INOUTP ezxml_t Node, OUTP struct s_arch *arch, INP boolean timing_enabled); static void alloc_and_load_default_child_for_pb_type(INOUTP t_pb_type *pb_type, char *new_name, t_pb_type *copy); static void ProcessLutClass(INOUTP t_pb_type *lut_pb_type); static void ProcessMemoryClass(INOUTP t_pb_type *mem_pb_type); static void ProcessComplexBlocks(INOUTP ezxml_t Node, OUTP t_type_descriptor ** Types, OUTP int *NumTypes, INP boolean timing_enabled, boolean do_spice); static void ProcessSwitches(INOUTP ezxml_t Node, OUTP struct s_switch_inf **Switches, OUTP int *NumSwitches, INP boolean timing_enabled); static void ProcessDirects(INOUTP ezxml_t Parent, OUTP t_direct_inf **Directs, OUTP int *NumDirects, INP boolean timing_enabled); static void ProcessSegments(INOUTP ezxml_t Parent, OUTP struct s_segment_inf **Segs, OUTP int *NumSegs, INP struct s_switch_inf *Switches, INP int NumSwitches, INP boolean timing_enabled); static void ProcessCB_SB(INOUTP ezxml_t Node, INOUTP boolean * list, INP int len); static void ProcessPower( INOUTP ezxml_t parent, INOUTP t_power_arch * power_arch, INP t_type_descriptor * Types, INP int NumTypes); static void ProcessClocks(ezxml_t Parent, t_clock_arch * clocks); static void CreateModelLibrary(OUTP struct s_arch *arch); static void UpdateAndCheckModels(INOUTP struct s_arch *arch); static void SyncModelsPbTypes(INOUTP struct s_arch *arch, INP t_type_descriptor * Types, INP int NumTypes); static void SyncModelsPbTypes_rec(INOUTP struct s_arch *arch, INP t_pb_type *pb_type); static void PrintPb_types_rec(INP FILE * Echo, INP const t_pb_type * pb_type, int level); static void ProcessPb_TypePowerEstMethod(ezxml_t Parent, t_pb_type * pb_type); static void ProcessPb_TypePort_Power(ezxml_t Parent, t_port * port, e_power_estimation_method power_method); e_power_estimation_method power_method_inherited( e_power_estimation_method parent_power_method); /* Xifan TANG: Switch Segment Pattern support*/ static void ProcessSwitchSegmentPatterns(INOUTP ezxml_t Parent, OUTP int* num_swseg_pattern, OUTP t_swseg_pattern_inf** swseg_patterns, INP int num_switches, INP struct s_switch_inf* switches, INP boolean timing_enabled); /* Xifan TANG: Pin Equivalence Auto-Detection */ static void SetupPinEquivalenceAutoDetect(ezxml_t Parent, t_type_descriptor* Type); /* Sets up the pinloc map and pin classes for the type. Unlinks the loc nodes * from the XML tree. * Pins and pin classses must already be setup by SetupPinClasses */ static void SetupPinLocationsAndPinClasses(ezxml_t Locations, t_type_descriptor * Type) { int i, j, k, Count, Len; int capacity, pin_count; int num_class; const char * Prop; ezxml_t Cur, Prev; char **Tokens, **CurTokens; capacity = Type->capacity; Prop = FindProperty(Locations, "pattern", TRUE); if (strcmp(Prop, "spread") == 0) { Type->pin_location_distribution = E_SPREAD_PIN_DISTR; } else if (strcmp(Prop, "custom") == 0) { Type->pin_location_distribution = E_CUSTOM_PIN_DISTR; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] %s is an invalid pin location pattern.\n", Locations->line, Prop); exit(1); } ezxml_set_attr(Locations, "pattern", NULL); /* mrFPGA */ Type->pin_index_per_side = (int *)my_malloc(Type->num_pins * sizeof(int)); Type->pin_ptc_to_side = (int *)my_malloc(Type->num_pins * sizeof(int)); for(k = 0; k < Type->num_pins; ++k) { Type->pin_index_per_side[k]=0; Type->pin_ptc_to_side[k]=0; } /* end */ /* Alloc and clear pin locations */ Type->pinloc = (int ***) my_malloc(Type->height * sizeof(int **)); Type->pin_height = (int *) my_calloc(Type->num_pins, sizeof(int)); for (i = 0; i < Type->height; ++i) { Type->pinloc[i] = (int **) my_malloc(4 * sizeof(int *)); for (j = 0; j < 4; ++j) { Type->pinloc[i][j] = (int *) my_malloc( Type->num_pins * sizeof(int)); for (k = 0; k < Type->num_pins; ++k) { Type->pinloc[i][j][k] = 0; } } /* mrFPGA */ Type->pin_index_per_side[i]=0; Type->pin_ptc_to_side[i]=0; /* end */ } Type->pin_loc_assignments = (char****) my_malloc( Type->height * sizeof(char***)); Type->num_pin_loc_assignments = (int**) my_malloc( Type->height * sizeof(int*)); for (i = 0; i < Type->height; i++) { Type->pin_loc_assignments[i] = (char***) my_calloc(4, sizeof(char**)); Type->num_pin_loc_assignments[i] = (int*) my_calloc(4, sizeof(int)); } /* Load the pin locations */ if (Type->pin_location_distribution == E_CUSTOM_PIN_DISTR) { Cur = Locations->child; while (Cur) { CheckElement(Cur, "loc"); /* Get offset */ i = GetIntProperty(Cur, "offset", FALSE, 0); if ((i < 0) || (i >= Type->height)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] %d is an invalid offset for type '%s'.\n", Cur->line, i, Type->name); exit(1); } /* Get side */ Prop = FindProperty(Cur, "side", TRUE); if (0 == strcmp(Prop, "left")) { j = LEFT; } else if (0 == strcmp(Prop, "top")) { j = TOP; } else if (0 == strcmp(Prop, "right")) { j = RIGHT; } else if (0 == strcmp(Prop, "bottom")) { j = BOTTOM; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid side.\n", Cur->line, Prop); exit(1); } ezxml_set_attr(Cur, "side", NULL); /* Check location is on perimeter */ if ((TOP == j) && (i != (Type->height - 1))) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Locations are only allowed on large block " "perimeter. 'top' side should be at offset %d only.\n", Cur->line, (Type->height - 1)); exit(1); } if ((BOTTOM == j) && (i != 0)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Locations are only allowed on large block " "perimeter. 'bottom' side should be at offset 0 only.\n", Cur->line); exit(1); } /* Go through lists of pins */ CountTokensInString(Cur->txt, &Count, &Len); Type->num_pin_loc_assignments[i][j] = Count; if (Count > 0) { Tokens = GetNodeTokens(Cur); CurTokens = Tokens; Type->pin_loc_assignments[i][j] = (char**) my_calloc(Count, sizeof(char*)); for (k = 0; k < Count; k++) { /* Store location assignment */ Type->pin_loc_assignments[i][j][k] = my_strdup(*CurTokens); /* Advance through list of pins in this location */ ++CurTokens; } FreeTokens(&Tokens); } Prev = Cur; Cur = Cur->next; FreeNode(Prev); } } /* Setup pin classes */ num_class = 0; for (i = 0; i < Type->pb_type->num_ports; i++) { if (Type->pb_type->ports[i].equivalent) { num_class += capacity; } else { num_class += capacity * Type->pb_type->ports[i].num_pins; } } Type->class_inf = (struct s_class*) my_calloc(num_class, sizeof(struct s_class)); Type->num_class = num_class; Type->pin_class = (int*) my_malloc(Type->num_pins * sizeof(int) * capacity); Type->is_global_pin = (boolean*) my_malloc( Type->num_pins * sizeof(boolean) * capacity); for (i = 0; i < Type->num_pins * capacity; i++) { Type->pin_class[i] = OPEN; Type->is_global_pin[i] = (boolean) OPEN; } pin_count = 0; /* Equivalent pins share the same class, non-equivalent pins belong to different pin classes */ num_class = 0; for (i = 0; i < capacity; ++i) { for (j = 0; j < Type->pb_type->num_ports; ++j) { if (Type->pb_type->ports[j].equivalent) { Type->class_inf[num_class].num_pins = Type->pb_type->ports[j].num_pins; Type->class_inf[num_class].pinlist = (int *) my_malloc( sizeof(int) * Type->pb_type->ports[j].num_pins); } for (k = 0; k < Type->pb_type->ports[j].num_pins; ++k) { if (!Type->pb_type->ports[j].equivalent) { Type->class_inf[num_class].num_pins = 1; Type->class_inf[num_class].pinlist = (int *) my_malloc( sizeof(int) * 1); Type->class_inf[num_class].pinlist[0] = pin_count; } else { Type->class_inf[num_class].pinlist[k] = pin_count; } if (Type->pb_type->ports[j].type == IN_PORT) { Type->class_inf[num_class].type = RECEIVER; } else { assert(Type->pb_type->ports[j].type == OUT_PORT); Type->class_inf[num_class].type = DRIVER; } Type->pin_class[pin_count] = num_class; Type->is_global_pin[pin_count] = (boolean) (Type->pb_type->ports[j].is_clock || Type->pb_type->ports[j].is_non_clock_global); pin_count++; if (!Type->pb_type->ports[j].equivalent) { num_class++; } } if (Type->pb_type->ports[j].equivalent) { num_class++; } } } assert(num_class == Type->num_class); assert(pin_count == Type->num_pins); } /* Sets up the grid_loc_def for the type. Unlinks the loc nodes * from the XML tree. */ static void SetupGridLocations(ezxml_t Locations, t_type_descriptor * Type) { int i; ezxml_t Cur, Prev; const char *Prop; Type->num_grid_loc_def = CountChildren(Locations, "loc", 1); Type->grid_loc_def = (struct s_grid_loc_def *) my_calloc( Type->num_grid_loc_def, sizeof(struct s_grid_loc_def)); /* Load the pin locations */ Cur = Locations->child; i = 0; while (Cur) { CheckElement(Cur, "loc"); /* loc index */ Prop = FindProperty(Cur, "type", TRUE); if (Prop) { if (strcmp(Prop, "perimeter") == 0) { if (Type->num_grid_loc_def != 1) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Another loc specified for perimeter.\n", Cur->line); exit(1); } Type->grid_loc_def[i].grid_loc_type = BOUNDARY; assert(IO_TYPE == Type); /* IO goes to boundary */ } else if (strcmp(Prop, "fill") == 0) { if (Type->num_grid_loc_def != 1 || FILL_TYPE != NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Another loc specified for fill.\n", Cur->line); exit(1); } Type->grid_loc_def[i].grid_loc_type = FILL; FILL_TYPE = Type; } else if (strcmp(Prop, "col") == 0) { Type->grid_loc_def[i].grid_loc_type = COL_REPEAT; } else if (strcmp(Prop, "rel") == 0) { Type->grid_loc_def[i].grid_loc_type = COL_REL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown grid location type '%s' for type '%s'.\n", Cur->line, Prop, Type->name); exit(1); } ezxml_set_attr(Cur, "type", NULL); } Prop = FindProperty(Cur, "start", FALSE); if (Type->grid_loc_def[i].grid_loc_type == COL_REPEAT) { if (Prop == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] grid location property 'start' must be specified for grid location type 'col'.\n", Cur->line); exit(1); } Type->grid_loc_def[i].start_col = my_atoi(Prop); ezxml_set_attr(Cur, "start", NULL); } else if (Prop != NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] grid location property 'start' valid for grid location type 'col' only.\n", Cur->line); exit(1); } Prop = FindProperty(Cur, "repeat", FALSE); if (Type->grid_loc_def[i].grid_loc_type == COL_REPEAT) { if (Prop != NULL) { Type->grid_loc_def[i].repeat = my_atoi(Prop); ezxml_set_attr(Cur, "repeat", NULL); } } else if (Prop != NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] grid location property 'repeat' valid for grid location type 'col' only.\n", Cur->line); exit(1); } Prop = FindProperty(Cur, "pos", FALSE); if (Type->grid_loc_def[i].grid_loc_type == COL_REL) { if (Prop == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] grid location property 'pos' must be specified for grid location type 'rel'.\n", Cur->line); exit(1); } Type->grid_loc_def[i].col_rel = (float) atof(Prop); ezxml_set_attr(Cur, "pos", NULL); } else if (Prop != NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] grid location property 'pos' valid for grid location type 'rel' only.\n", Cur->line); exit(1); } Type->grid_loc_def[i].priority = GetIntProperty(Cur, "priority", FALSE, 1); Prev = Cur; Cur = Cur->next; FreeNode(Prev); i++; } } static void ProcessPinToPinAnnotations(ezxml_t Parent, t_pin_to_pin_annotation *annotation) { int i = 0; const char *Prop; if (FindProperty(Parent, "max", FALSE)) { i++; } if (FindProperty(Parent, "min", FALSE)) { i++; } if (FindProperty(Parent, "type", FALSE)) { i++; } if (FindProperty(Parent, "value", FALSE)) { i++; } if (0 == strcmp(Parent->name, "C_constant") || 0 == strcmp(Parent->name, "C_matrix") || 0 == strcmp(Parent->name, "pack_pattern")) { i = 1; } /* Xifan TANG: FPGA-SPICE, mode select description */ if (0 == strcmp(Parent->name, "mode_select")) { i = 1; } /* END FPGA-SPICE, mode select description */ annotation->num_value_prop_pairs = i; annotation->prop = (int*) my_calloc(i, sizeof(int)); annotation->value = (char**) my_calloc(i, sizeof(char *)); /* Todo: This is slow, I should use a case lookup */ i = 0; if (0 == strcmp(Parent->name, "delay_constant")) { annotation->type = E_ANNOT_PIN_TO_PIN_DELAY; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "max", FALSE); if (Prop) { annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_MAX; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "max", NULL); i++; } Prop = FindProperty(Parent, "min", FALSE); if (Prop) { annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_MIN; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "min", NULL); i++; } annotation->line_num = Parent->line; Prop = FindProperty(Parent, "in_port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", TRUE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); } else if (0 == strcmp(Parent->name, "delay_matrix")) { annotation->type = E_ANNOT_PIN_TO_PIN_DELAY; annotation->format = E_ANNOT_PIN_TO_PIN_MATRIX; Prop = FindProperty(Parent, "type", TRUE); annotation->value[i] = my_strdup(Parent->txt); ezxml_set_txt(Parent, ""); if (0 == strcmp(Prop, "max")) { annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_MAX; } else { assert(0 == strcmp(Prop, "min")); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_MIN; } ezxml_set_attr(Parent, "type", NULL); i++; Prop = FindProperty(Parent, "in_port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", TRUE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); } else if (0 == strcmp(Parent->name, "C_constant")) { annotation->type = E_ANNOT_PIN_TO_PIN_CAPACITANCE; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "C", TRUE); annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "C", NULL); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_CAPACITANCE_C; i++; Prop = FindProperty(Parent, "in_port", FALSE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", FALSE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); assert( annotation->output_pins != NULL || annotation->input_pins != NULL); } else if (0 == strcmp(Parent->name, "C_matrix")) { annotation->type = E_ANNOT_PIN_TO_PIN_CAPACITANCE; annotation->format = E_ANNOT_PIN_TO_PIN_MATRIX; annotation->value[i] = my_strdup(Parent->txt); ezxml_set_txt(Parent, ""); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_CAPACITANCE_C; i++; Prop = FindProperty(Parent, "in_port", FALSE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", FALSE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); assert( annotation->output_pins != NULL || annotation->input_pins != NULL); } else if (0 == strcmp(Parent->name, "T_setup")) { annotation->type = E_ANNOT_PIN_TO_PIN_DELAY; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "value", TRUE); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_TSETUP; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "value", NULL); i++; Prop = FindProperty(Parent, "port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "port", NULL); Prop = FindProperty(Parent, "clock", TRUE); annotation->clock = my_strdup(Prop); ezxml_set_attr(Parent, "clock", NULL); } else if (0 == strcmp(Parent->name, "T_clock_to_Q")) { annotation->type = E_ANNOT_PIN_TO_PIN_DELAY; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "max", FALSE); if (Prop) { annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_CLOCK_TO_Q_MAX; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "max", NULL); i++; } Prop = FindProperty(Parent, "min", FALSE); if (Prop) { annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_CLOCK_TO_Q_MIN; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "min", NULL); i++; } Prop = FindProperty(Parent, "port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "port", NULL); Prop = FindProperty(Parent, "clock", TRUE); annotation->clock = my_strdup(Prop); ezxml_set_attr(Parent, "clock", NULL); } else if (0 == strcmp(Parent->name, "T_hold")) { annotation->type = E_ANNOT_PIN_TO_PIN_DELAY; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "value", TRUE); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_DELAY_THOLD; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "value", NULL); i++; Prop = FindProperty(Parent, "port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "port", NULL); Prop = FindProperty(Parent, "clock", TRUE); annotation->clock = my_strdup(Prop); ezxml_set_attr(Parent, "clock", NULL); } else if (0 == strcmp(Parent->name, "pack_pattern")) { annotation->type = E_ANNOT_PIN_TO_PIN_PACK_PATTERN; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "name", TRUE); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_PACK_PATTERN_NAME; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "name", NULL); i++; Prop = FindProperty(Parent, "in_port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", TRUE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); /* Xifan TANG: FPGA-SPICE, mode select description */ } else if (0 == strcmp(Parent->name, "mode_select")) { annotation->type = E_ANNOT_PIN_TO_PIN_MODE_SELECT; annotation->format = E_ANNOT_PIN_TO_PIN_CONSTANT; Prop = FindProperty(Parent, "mode_name", TRUE); annotation->prop[i] = (int) E_ANNOT_PIN_TO_PIN_MODE_SELECT_MODE_NAME; annotation->value[i] = my_strdup(Prop); ezxml_set_attr(Parent, "mode_name", NULL); i++; /* Normal process for in_port and out_port */ Prop = FindProperty(Parent, "in_port", TRUE); annotation->input_pins = my_strdup(Prop); ezxml_set_attr(Parent, "in_port", NULL); Prop = FindProperty(Parent, "out_port", TRUE); annotation->output_pins = my_strdup(Prop); ezxml_set_attr(Parent, "out_port", NULL); /* END FPGA-SPICE, mode select description */ } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown port type %s in %s in %s", Parent->line, Parent->name, Parent->parent->name, Parent->parent->parent->name); exit(1); } assert(i == annotation->num_value_prop_pairs); } static t_port * findPortByName(const char * name, t_pb_type * pb_type, int * high_index, int * low_index) { t_port * port; int i; unsigned int high; unsigned int low; unsigned int bracket_pos; unsigned int colon_pos; bracket_pos = strcspn(name, "["); /* Find port by name */ port = NULL; for (i = 0; i < pb_type->num_ports; i++) { char * compare_to = pb_type->ports[i].name; if (strlen(compare_to) == bracket_pos && strncmp(name, compare_to, bracket_pos)==0) { port = &pb_type->ports[i]; break; } } if (i >= pb_type->num_ports) { return NULL; } /* Get indices */ if (strlen(name) > bracket_pos) { high = atoi(&name[bracket_pos + 1]); colon_pos = strcspn(name, ":"); if (colon_pos < strlen(name)) { low = atoi(&name[colon_pos + 1]); } else { low = high; } } else { high = port->num_pins - 1; low = 0; } if (high_index && low_index) { *high_index = high; *low_index = low; } return port; } static void ProcessPb_TypePowerPinToggle(ezxml_t parent, t_pb_type * pb_type) { ezxml_t cur, prev; const char * prop; t_port * port; int high, low; cur = FindFirstElement(parent, "port", FALSE); while (cur) { prop = FindProperty(cur, "name", TRUE); port = findPortByName(prop, pb_type, &high, &low); if (!port) { vpr_printf(TIO_MESSAGE_ERROR, "Could not find port '%s' needed for energy per toggle.", prop); return; } if (high != port->num_pins - 1 || low != 0) { vpr_printf(TIO_MESSAGE_ERROR, "Pin-toggle does not support pin indices (%s)", prop); } if (port->port_power->pin_toggle_initialized) { vpr_printf(TIO_MESSAGE_ERROR, "Duplicate pin-toggle energy for port '%s'", port->name); } port->port_power->pin_toggle_initialized = TRUE; ezxml_set_attr(cur, "name", NULL); /* Get energy per toggle */ port->port_power->energy_per_toggle = GetFloatProperty(cur, "energy_per_toggle", TRUE, 0.); /* Get scaled by factor */ boolean reverse_scaled = FALSE; prop = FindProperty(cur, "scaled_by_static_prob", FALSE); if (!prop) { prop = FindProperty(cur, "scaled_by_static_prob_n", FALSE); if (prop) { reverse_scaled = TRUE; } } if (prop) { port->port_power->scaled_by_port = findPortByName(prop, pb_type, &high, &low); if (high != low) { vpr_printf(TIO_MESSAGE_ERROR, "Pin-toggle 'scaled_by_static_prob' must be a single pin (%s)", prop); return; } port->port_power->scaled_by_port_pin_idx = high; port->port_power->reverse_scaled = reverse_scaled; } ezxml_set_attr(cur, "scaled_by_static_prob", NULL); ezxml_set_attr(cur, "scaled_by_static_prob_n", NULL); prev = cur; cur = cur->next; FreeNode(prev); } } static void ProcessPb_TypePower(ezxml_t Parent, t_pb_type * pb_type) { ezxml_t cur, child; boolean require_dynamic_absolute = FALSE; boolean require_static_absolute = FALSE; boolean require_dynamic_C_internal = FALSE; cur = FindFirstElement(Parent, "power", FALSE); if (!cur) { return; } switch (pb_type->pb_type_power->estimation_method) { case POWER_METHOD_TOGGLE_PINS: ProcessPb_TypePowerPinToggle(cur, pb_type); require_static_absolute = TRUE; break; case POWER_METHOD_C_INTERNAL: require_dynamic_C_internal = TRUE; require_static_absolute = TRUE; break; case POWER_METHOD_ABSOLUTE: require_dynamic_absolute = TRUE; require_static_absolute = TRUE; break; default: break; } if (require_static_absolute) { child = FindElement(cur, "static_power", TRUE); pb_type->pb_type_power->absolute_power_per_instance.leakage = GetFloatProperty(child, "power_per_instance", TRUE, 0.); FreeNode(child); } if (require_dynamic_absolute) { child = FindElement(cur, "dynamic_power", TRUE); pb_type->pb_type_power->absolute_power_per_instance.dynamic = GetFloatProperty(child, "power_per_instance", TRUE, 0.); FreeNode(child); } if (require_dynamic_C_internal) { child = FindElement(cur, "dynamic_power", TRUE); pb_type->pb_type_power->C_internal = GetFloatProperty(child, "C_internal", TRUE, 0.); FreeNode(child); } if (cur) { FreeNode(cur); } } static void ProcessPb_TypePowerEstMethod(ezxml_t Parent, t_pb_type * pb_type) { ezxml_t cur; const char * prop; e_power_estimation_method parent_power_method; prop = NULL; cur = FindFirstElement(Parent, "power", FALSE); if (cur) { prop = FindProperty(cur, "method", FALSE); } if (pb_type->parent_mode && pb_type->parent_mode->parent_pb_type) { parent_power_method = pb_type->parent_mode->parent_pb_type->pb_type_power->estimation_method; } else { parent_power_method = POWER_METHOD_AUTO_SIZES; } if (!prop) { /* default method is auto-size */ pb_type->pb_type_power->estimation_method = power_method_inherited( parent_power_method); } else if (strcmp(prop, "auto-size") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_AUTO_SIZES; } else if (strcmp(prop, "specify-size") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_SPECIFY_SIZES; } else if (strcmp(prop, "pin-toggle") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_TOGGLE_PINS; } else if (strcmp(prop, "c-internal") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_C_INTERNAL; } else if (strcmp(prop, "absolute") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_ABSOLUTE; } else if (strcmp(prop, "ignore") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_IGNORE; } else if (strcmp(prop, "sum-of-children") == 0) { pb_type->pb_type_power->estimation_method = POWER_METHOD_SUM_OF_CHILDREN; } else { vpr_printf(TIO_MESSAGE_ERROR, "Invalid power estimation method for pb_type '%s'", pb_type->name); } if (prop) { ezxml_set_attr(cur, "method", NULL); } } /* Takes in a pb_type, allocates and loads data for it and recurses downwards */ static void ProcessPb_Type(INOUTP ezxml_t Parent, t_pb_type * pb_type, t_mode * mode, boolean do_spice) { int num_ports, i, j, k, num_annotations; const char *Prop; ezxml_t Cur, Prev; char* class_name; pb_type->parent_mode = mode; if (mode != NULL && mode->parent_pb_type != NULL) { pb_type->depth = mode->parent_pb_type->depth + 1; Prop = FindProperty(Parent, "name", TRUE); pb_type->name = my_strdup(Prop); ezxml_set_attr(Parent, "name", NULL); } else { pb_type->depth = 0; /* same name as type */ } Prop = FindProperty(Parent, "blif_model", FALSE); pb_type->blif_model = my_strdup(Prop); ezxml_set_attr(Parent, "blif_model", NULL); pb_type->class_type = UNKNOWN_CLASS; Prop = FindProperty(Parent, "class", FALSE); class_name = my_strdup(Prop); if (class_name) { ezxml_set_attr(Parent, "class", NULL); if (0 == strcmp(class_name, "lut")) { pb_type->class_type = LUT_CLASS; } else if (0 == strcmp(class_name, "flipflop")) { pb_type->class_type = LATCH_CLASS; } else if (0 == strcmp(class_name, "memory")) { pb_type->class_type = MEMORY_CLASS; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown class %s in pb_type %s\n", Parent->line, class_name, pb_type->name); exit(1); } free(class_name); } if (mode == NULL) { pb_type->num_pb = 1; } else { pb_type->num_pb = GetIntProperty(Parent, "num_pb", TRUE, 0); } assert(pb_type->num_pb > 0); num_ports = 0; num_ports += CountChildren(Parent, "input", 0); num_ports += CountChildren(Parent, "output", 0); num_ports += CountChildren(Parent, "clock", 0); pb_type->ports = (t_port*) my_calloc(num_ports, sizeof(t_port)); pb_type->num_ports = num_ports; /* Initialize Power Structure */ pb_type->pb_type_power = (t_pb_type_power*) my_calloc(1, sizeof(t_pb_type_power)); ProcessPb_TypePowerEstMethod(Parent, pb_type); /* process ports */ j = 0; for (i = 0; i < 3; i++) { if (i == 0) { k = 0; Cur = FindFirstElement(Parent, "input", FALSE); } else if (i == 1) { k = 0; Cur = FindFirstElement(Parent, "output", FALSE); } else { k = 0; Cur = FindFirstElement(Parent, "clock", FALSE); } while (Cur != NULL) { ProcessPb_TypePort(Cur, &pb_type->ports[j], pb_type->pb_type_power->estimation_method); pb_type->ports[j].parent_pb_type = pb_type; pb_type->ports[j].index = j; pb_type->ports[j].port_index_by_type = k; /* get next iteration */ Prev = Cur; Cur = Cur->next; j++; k++; FreeNode(Prev); } } assert(j == num_ports); /* Count stats on the number of each type of pin */ pb_type->num_clock_pins = pb_type->num_input_pins = pb_type->num_output_pins = 0; for (i = 0; i < pb_type->num_ports; i++) { if (pb_type->ports[i].type == IN_PORT && pb_type->ports[i].is_clock == FALSE) { pb_type->num_input_pins += pb_type->ports[i].num_pins; } else if (pb_type->ports[i].type == OUT_PORT) { assert(pb_type->ports[i].is_clock == FALSE); pb_type->num_output_pins += pb_type->ports[i].num_pins; } else { assert( pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT); pb_type->num_clock_pins += pb_type->ports[i].num_pins; } } /* set max_internal_delay if exist */ pb_type->max_internal_delay = UNDEFINED; Cur = FindElement(Parent, "max_internal_delay", FALSE); if (Cur) { pb_type->max_internal_delay = GetFloatProperty(Cur, "value", TRUE, UNDEFINED); FreeNode(Cur); } pb_type->annotations = NULL; pb_type->num_annotations = 0; i = 0; /* Spice Model Support: Xifan TANG * We should have a spice_model_name if this mode defines the transistor-level circuit design * Since this is a leaf node */ pb_type->spice_model_name = my_strdup(FindProperty(Parent, "spice_model_name", FALSE)); pb_type->spice_model = NULL; ezxml_set_attr(Parent,"spice_model_name",NULL); /* We can read the mode configuration bits if they are defined */ if (NULL != pb_type->spice_model_name) { pb_type->mode_bits = my_strdup(FindProperty(Parent, "mode_bits", FALSE)); ezxml_set_attr(Parent,"mode_bits",NULL); } /* End Spice Model Support*/ /* Determine if this is a leaf or container pb_type */ if (pb_type->blif_model != NULL) { /* Process delay and capacitance annotations */ num_annotations = 0; num_annotations += CountChildren(Parent, "delay_constant", 0); num_annotations += CountChildren(Parent, "delay_matrix", 0); num_annotations += CountChildren(Parent, "C_constant", 0); num_annotations += CountChildren(Parent, "C_matrix", 0); num_annotations += CountChildren(Parent, "T_setup", 0); num_annotations += CountChildren(Parent, "T_clock_to_Q", 0); num_annotations += CountChildren(Parent, "T_hold", 0); pb_type->annotations = (t_pin_to_pin_annotation*) my_calloc( num_annotations, sizeof(t_pin_to_pin_annotation)); pb_type->num_annotations = num_annotations; j = 0; Cur = NULL; for (i = 0; i < 7; i++) { if (i == 0) { Cur = FindFirstElement(Parent, "delay_constant", FALSE); } else if (i == 1) { Cur = FindFirstElement(Parent, "delay_matrix", FALSE); } else if (i == 2) { Cur = FindFirstElement(Parent, "C_constant", FALSE); } else if (i == 3) { Cur = FindFirstElement(Parent, "C_matrix", FALSE); } else if (i == 4) { Cur = FindFirstElement(Parent, "T_setup", FALSE); } else if (i == 5) { Cur = FindFirstElement(Parent, "T_clock_to_Q", FALSE); } else if (i == 6) { Cur = FindFirstElement(Parent, "T_hold", FALSE); } while (Cur != NULL) { ProcessPinToPinAnnotations(Cur, &pb_type->annotations[j]); /* get next iteration */ Prev = Cur; Cur = Cur->next; j++; FreeNode(Prev); } } assert(j == num_annotations); /* leaf pb_type, if special known class, then read class lib otherwise treat as primitive */ if (pb_type->class_type == LUT_CLASS) { ProcessLutClass(pb_type); } else if (pb_type->class_type == MEMORY_CLASS) { ProcessMemoryClass(pb_type); } else { /* other leaf pb_type do not have modes */ pb_type->num_modes = 0; assert(CountChildren(Parent, "mode", 0) == 0); } } else { boolean default_leakage_mode = FALSE; /* container pb_type, process modes */ assert(pb_type->class_type == UNKNOWN_CLASS); pb_type->num_modes = CountChildren(Parent, "mode", 0); pb_type->pb_type_power->leakage_default_mode = 0; if (pb_type->num_modes == 0) { /* The pb_type operates in an implied one mode */ pb_type->num_modes = 1; pb_type->modes = (t_mode*) my_calloc(pb_type->num_modes, sizeof(t_mode)); pb_type->modes[i].parent_pb_type = pb_type; pb_type->modes[i].index = i; /* Spice Model Support: Xifan TANG * We don't need to search the spice_model_mode_name at this level. * There is only one mode, so it should herit. */ if (do_spice) { pb_type->idle_mode_name = my_strdup(pb_type->name); pb_type->physical_mode_name = my_strdup(pb_type->name); } /*END*/ ProcessMode(Parent, &pb_type->modes[i], &default_leakage_mode, do_spice); i++; } else { /* Spice Model Support: Xifan TANG * We don't need to search the spice_model_mode_name at this level. * There is only one mode, so it should herit. */ if (FindProperty(Parent,"idle_mode_name", do_spice)) { pb_type->idle_mode_name = my_strdup(FindProperty(Parent,"idle_mode_name",TRUE)); } else if (do_spice) { vpr_printf(TIO_MESSAGE_ERROR,"[LINE %d]Pb_Type has more than 1 mode, should define a idle_mode_name.\n",Parent->line); exit(1); } ezxml_set_attr(Parent,"idle_mode_name",NULL); /* We need to identify the physical mode that refers to physical design interests */ if (FindProperty(Parent,"physical_mode_name", do_spice)) { pb_type->physical_mode_name = my_strdup(FindProperty(Parent,"physical_mode_name",TRUE)); } else if (do_spice) { vpr_printf(TIO_MESSAGE_ERROR,"[LINE %d]Pb_Type has more than 1 mode, should define a physical_mode_name.\n",Parent->line); exit(1); } ezxml_set_attr(Parent,"physical_mode_name",NULL); /*END*/ pb_type->modes = (t_mode*) my_calloc(pb_type->num_modes, sizeof(t_mode)); Cur = FindFirstElement(Parent, "mode", TRUE); /* Spice Model Support: * If we have multiple mode, it is necessary to check which one * defines the actual transistor-level circuit design */ while (Cur != NULL) { if (0 == strcmp(Cur->name, "mode")) { pb_type->modes[i].parent_pb_type = pb_type; pb_type->modes[i].index = i; ProcessMode(Cur, &pb_type->modes[i], &default_leakage_mode, do_spice); if (default_leakage_mode) { pb_type->pb_type_power->leakage_default_mode = i; } /* get next iteration */ Prev = Cur; Cur = Cur->next; i++; FreeNode(Prev); } } } assert(i == pb_type->num_modes); } ProcessPb_TypePower(Parent, pb_type); } static void ProcessPb_TypePort_Power(ezxml_t Parent, t_port * port, e_power_estimation_method power_method) { ezxml_t cur; const char * prop; bool wire_defined = FALSE; port->port_power = (t_port_power*) my_calloc(1, sizeof(t_port_power)); //Defaults if (power_method == POWER_METHOD_AUTO_SIZES) { port->port_power->wire_type = POWER_WIRE_TYPE_AUTO; port->port_power->buffer_type = POWER_BUFFER_TYPE_AUTO; } else if (power_method == POWER_METHOD_SPECIFY_SIZES) { port->port_power->wire_type = POWER_WIRE_TYPE_IGNORED; port->port_power->buffer_type = POWER_BUFFER_TYPE_NONE; } cur = FindElement(Parent, "power", FALSE); if (cur) { /* Wire capacitance */ /* Absolute C provided */ prop = FindProperty(cur, "wire_capacitance", FALSE); if (prop) { if (!(power_method == POWER_METHOD_AUTO_SIZES || power_method == POWER_METHOD_SPECIFY_SIZES)) { vpr_printf(TIO_MESSAGE_ERROR, "Wire capacitance defined for port '%s'. This is an invalid option for the parent pb_type '%s' power estimation method.", port->name, port->parent_pb_type->name); } else { wire_defined = TRUE; port->port_power->wire_type = POWER_WIRE_TYPE_C; port->port_power->wire.C = (float) atof(prop); } ezxml_set_attr(cur, "wire_capacitance", NULL); } /* Wire absolute length provided */ prop = FindProperty(cur, "wire_length", FALSE); if (prop) { if (!(power_method == POWER_METHOD_AUTO_SIZES || power_method == POWER_METHOD_SPECIFY_SIZES)) { vpr_printf(TIO_MESSAGE_ERROR, "Wire length defined for port '%s'. This is an invalid option for the parent pb_type '%s' power estimation method.", port->name, port->parent_pb_type->name); } else if (wire_defined) { vpr_printf(TIO_MESSAGE_ERROR, "Multiple wire properties defined for port '%s', pb_type '%s'.", port->name, port->parent_pb_type->name); } else if (strcmp(prop, "auto") == 0) { wire_defined = TRUE; port->port_power->wire_type = POWER_WIRE_TYPE_AUTO; } else { wire_defined = TRUE; port->port_power->wire_type = POWER_WIRE_TYPE_ABSOLUTE_LENGTH; port->port_power->wire.absolute_length = (float) atof(prop); } ezxml_set_attr(cur, "wire_length", NULL); } /* Wire relative length provided */ prop = FindProperty(cur, "wire_relative_length", FALSE); if (prop) { if (!(power_method == POWER_METHOD_AUTO_SIZES || power_method == POWER_METHOD_SPECIFY_SIZES)) { vpr_printf(TIO_MESSAGE_ERROR, "Wire relative length defined for port '%s'. This is an invalid option for the parent pb_type '%s' power estimation method.", port->name, port->parent_pb_type->name); } else if (wire_defined) { vpr_printf(TIO_MESSAGE_ERROR, "Multiple wire properties defined for port '%s', pb_type '%s'.", port->name, port->parent_pb_type->name); } else { wire_defined = TRUE; port->port_power->wire_type = POWER_WIRE_TYPE_RELATIVE_LENGTH; port->port_power->wire.relative_length = (float) atof(prop); } ezxml_set_attr(cur, "wire_relative_length", NULL); } /* Buffer Size */ prop = FindProperty(cur, "buffer_size", FALSE); if (prop) { if (!(power_method == POWER_METHOD_AUTO_SIZES || power_method == POWER_METHOD_SPECIFY_SIZES)) { vpr_printf(TIO_MESSAGE_ERROR, "Buffer size defined for port '%s'. This is an invalid option for the parent pb_type '%s' power estimation method.", port->name, port->parent_pb_type->name); } else if (strcmp(prop, "auto") == 0) { port->port_power->buffer_type = POWER_BUFFER_TYPE_AUTO; } else { port->port_power->buffer_type = POWER_BUFFER_TYPE_ABSOLUTE_SIZE; port->port_power->buffer_size = (float) atof(prop); } ezxml_set_attr(cur, "buffer_size", NULL); } FreeNode(cur); } } static void ProcessPb_TypePort(INOUTP ezxml_t Parent, t_port * port, e_power_estimation_method power_method) { const char *Prop; Prop = FindProperty(Parent, "name", TRUE); port->name = my_strdup(Prop); ezxml_set_attr(Parent, "name", NULL); Prop = FindProperty(Parent, "port_class", FALSE); port->port_class = my_strdup(Prop); ezxml_set_attr(Parent, "port_class", NULL); Prop = FindProperty(Parent, "chain", FALSE); port->chain_name = my_strdup(Prop); ezxml_set_attr(Parent, "chain", NULL); port->equivalent = GetBooleanProperty(Parent, "equivalent", FALSE, FALSE); port->num_pins = GetIntProperty(Parent, "num_pins", TRUE, 0); port->is_non_clock_global = GetBooleanProperty(Parent, "is_non_clock_global", FALSE, FALSE); if (0 == strcmp(Parent->name, "input")) { port->type = IN_PORT; port->is_clock = FALSE; } else if (0 == strcmp(Parent->name, "output")) { port->type = OUT_PORT; port->is_clock = FALSE; } else if (0 == strcmp(Parent->name, "clock")) { port->type = IN_PORT; port->is_clock = TRUE; if (port->is_non_clock_global == TRUE) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Port %s cannot be both a clock and a non-clock simultaneously\n", Parent->line, Parent->name); } } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown port type %s", Parent->line, Parent->name); exit(1); } ProcessPb_TypePort_Power(Parent, port, power_method); } static void ProcessInterconnect(INOUTP ezxml_t Parent, t_mode * mode) { int num_interconnect = 0; int i, j, k, L_index, num_annotations; const char *Prop; ezxml_t Cur, Prev; ezxml_t Cur2, Prev2; num_interconnect += CountChildren(Parent, "complete", 0); num_interconnect += CountChildren(Parent, "direct", 0); num_interconnect += CountChildren(Parent, "mux", 0); mode->num_interconnect = num_interconnect; mode->interconnect = (t_interconnect*) my_calloc(num_interconnect, sizeof(t_interconnect)); i = 0; for (L_index = 0; L_index < 3; L_index++) { if (L_index == 0) { Cur = FindFirstElement(Parent, "complete", FALSE); } else if (L_index == 1) { Cur = FindFirstElement(Parent, "direct", FALSE); } else { Cur = FindFirstElement(Parent, "mux", FALSE); } while (Cur != NULL) { if (0 == strcmp(Cur->name, "complete")) { mode->interconnect[i].type = COMPLETE_INTERC; } else if (0 == strcmp(Cur->name, "direct")) { mode->interconnect[i].type = DIRECT_INTERC; } else { assert(0 == strcmp(Cur->name, "mux")); mode->interconnect[i].type = MUX_INTERC; } /* Xifan TANG: SPICE Support */ Prop = FindProperty(Cur, "spice_model_name", FALSE); /* Default spice_model will be define later*/ mode->interconnect[i].spice_model_name = my_strdup(Prop); mode->interconnect[i].spice_model = NULL; /* Initialize*/ mode->interconnect[i].fan_in = 0; mode->interconnect[i].fan_out = 0; mode->interconnect[i].num_mux = 0; ezxml_set_attr(Cur, "spice_model_name", NULL); /* END */ mode->interconnect[i].line_num = Cur->line; mode->interconnect[i].parent_mode_index = mode->index; mode->interconnect[i].parent_mode = mode; Prop = FindProperty(Cur, "input", TRUE); mode->interconnect[i].input_string = my_strdup(Prop); ezxml_set_attr(Cur, "input", NULL); Prop = FindProperty(Cur, "output", TRUE); mode->interconnect[i].output_string = my_strdup(Prop); ezxml_set_attr(Cur, "output", NULL); Prop = FindProperty(Cur, "name", TRUE); mode->interconnect[i].name = my_strdup(Prop); ezxml_set_attr(Cur, "name", NULL); /* Process delay and capacitance annotations */ num_annotations = 0; num_annotations += CountChildren(Cur, "delay_constant", 0); num_annotations += CountChildren(Cur, "delay_matrix", 0); num_annotations += CountChildren(Cur, "C_constant", 0); num_annotations += CountChildren(Cur, "C_matrix", 0); num_annotations += CountChildren(Cur, "pack_pattern", 0); /* Xifan TANG: FPGA-SPICE, mode select description */ num_annotations += CountChildren(Cur, "mode_select", 0); /* END FPGA-SPICE, mode select description */ mode->interconnect[i].annotations = (t_pin_to_pin_annotation*) my_calloc(num_annotations, sizeof(t_pin_to_pin_annotation)); mode->interconnect[i].num_annotations = num_annotations; k = 0; Cur2 = NULL; /* Xifan TANG: FPGA-SPICE, mode select description */ /* for (j = 0; j < 5; j++) { */ for (j = 0; j < 6; j++) { /* END FPGA-SPICE, mode select description */ if (j == 0) { Cur2 = FindFirstElement(Cur, "delay_constant", FALSE); } else if (j == 1) { Cur2 = FindFirstElement(Cur, "delay_matrix", FALSE); } else if (j == 2) { Cur2 = FindFirstElement(Cur, "C_constant", FALSE); } else if (j == 3) { Cur2 = FindFirstElement(Cur, "C_matrix", FALSE); } else if (j == 4) { Cur2 = FindFirstElement(Cur, "pack_pattern", FALSE); /* Xifan TANG: FPGA-SPICE, mode select description */ } else if (j == 5) { Cur2 = FindFirstElement(Cur, "mode_select", FALSE); /* END FPGA-SPICE, mode select description */ } while (Cur2 != NULL) { ProcessPinToPinAnnotations(Cur2, &(mode->interconnect[i].annotations[k])); /* get next iteration */ Prev2 = Cur2; Cur2 = Cur2->next; k++; FreeNode(Prev2); } } assert(k == num_annotations); /* Power */ mode->interconnect[i].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); mode->interconnect[i].interconnect_power->port_info_initialized = FALSE; //ProcessInterconnectMuxArch(Cur, &mode->interconnect[i]); /* get next iteration */ Prev = Cur; Cur = Cur->next; FreeNode(Prev); i++; } } assert(i == num_interconnect); } static void ProcessMode(INOUTP ezxml_t Parent, t_mode * mode, boolean * default_leakage_mode, boolean do_spice) { int i; const char *Prop; ezxml_t Cur, Prev; if (0 == strcmp(Parent->name, "pb_type")) { /* implied mode */ mode->name = my_strdup(mode->parent_pb_type->name); } else { Prop = FindProperty(Parent, "name", TRUE); mode->name = my_strdup(Prop); ezxml_set_attr(Parent, "name", NULL); } /* Spice Model Support: Xifan TANG * We don't need to search the idle_mode_name at this level. * The mode should herit the define_spice_model from its parent */ if (do_spice) { if (0 == strcmp(mode->name, mode->parent_pb_type->idle_mode_name)) { if (NULL == mode->parent_pb_type->parent_mode) { mode->define_idle_mode = 1; } else { mode->define_idle_mode = mode->parent_pb_type->parent_mode->define_idle_mode; } } else { mode->define_idle_mode = 0; } /* For physical design mode */ if (0 == strcmp(mode->name, mode->parent_pb_type->physical_mode_name)) { if (NULL == mode->parent_pb_type->parent_mode) { mode->define_physical_mode = 1; } else { mode->define_physical_mode = mode->parent_pb_type->parent_mode->define_physical_mode; } } else { mode->define_physical_mode = 0; } } /* Spice Model Support: Xifan TANG * More option: specify if this mode is available during packing */ mode->disabled_in_packing = GetBooleanProperty(Parent, "disabled_in_packing", FALSE, FALSE); ezxml_set_attr(Parent, "disabled_in_packing", NULL); /* END */ mode->num_pb_type_children = CountChildren(Parent, "pb_type", 0); if (mode->num_pb_type_children > 0) { mode->pb_type_children = (t_pb_type*) my_calloc( mode->num_pb_type_children, sizeof(t_pb_type)); i = 0; Cur = FindFirstElement(Parent, "pb_type", TRUE); while (Cur != NULL) { if (0 == strcmp(Cur->name, "pb_type")) { ProcessPb_Type(Cur, &mode->pb_type_children[i], mode, do_spice); /* get next iteration */ Prev = Cur; Cur = Cur->next; i++; FreeNode(Prev); } } } else { mode->pb_type_children = NULL; } /* Allocate power structure */ mode->mode_power = (t_mode_power*) my_calloc(1, sizeof(t_mode_power)); Cur = FindElement(Parent, "interconnect", TRUE); ProcessInterconnect(Cur, mode); FreeNode(Cur); } /* Takes in the node ptr for the 'fc_in' and 'fc_out' elements and initializes * the appropriate fields of type. Unlinks the contents of the nodes. */ static void Process_Fc(ezxml_t Node, t_type_descriptor * Type) { enum Fc_type def_type_in, def_type_out, ovr_type; const char *Prop, *Prop2; char *port_name; float def_in_val, def_out_val, ovr_val; int ipin, iclass, end_pin_index, start_pin_index, match_count; int iport, iport_pin, curr_pin, port_found; ezxml_t Child, Junk; def_type_in = FC_FRAC; def_type_out = FC_FRAC; def_in_val = OPEN; def_out_val = OPEN; Type->is_Fc_frac = (boolean *) my_malloc(Type->num_pins * sizeof(boolean)); Type->is_Fc_full_flex = (boolean *) my_malloc( Type->num_pins * sizeof(boolean)); Type->Fc = (float *) my_malloc(Type->num_pins * sizeof(float)); /* Load the default fc_in, if specified */ Prop = FindProperty(Node, "default_in_type", FALSE); if (Prop != NULL) { if (0 == strcmp(Prop, "abs")) { def_type_in = FC_ABS; } else if (0 == strcmp(Prop, "frac")) { def_type_in = FC_FRAC; } else if (0 == strcmp(Prop, "full")) { def_type_in = FC_FULL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid type '%s' for Fc. Only abs, frac " "and full are allowed.\n", Node->line, Prop); exit(1); } switch (def_type_in) { case FC_FULL: def_in_val = 0.0; break; case FC_ABS: case FC_FRAC: Prop2 = FindProperty(Node, "default_in_val", TRUE); def_in_val = (float) atof(Prop2); ezxml_set_attr(Node, "default_in_val", NULL); break; default: def_in_val = -1; } /* Release the property */ ezxml_set_attr(Node, "default_in_type", NULL); } /* Load the default fc_out, if specified */ Prop = FindProperty(Node, "default_out_type", FALSE); if (Prop != NULL) { if (0 == strcmp(Prop, "abs")) { def_type_out = FC_ABS; } else if (0 == strcmp(Prop, "frac")) { def_type_out = FC_FRAC; } else if (0 == strcmp(Prop, "full")) { def_type_out = FC_FULL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid type '%s' for Fc. Only abs, frac " "and full are allowed.\n", Node->line, Prop); exit(1); } switch (def_type_out) { case FC_FULL: def_out_val = 0.0; break; case FC_ABS: case FC_FRAC: Prop2 = FindProperty(Node, "default_out_val", TRUE); def_out_val = (float) atof(Prop2); ezxml_set_attr(Node, "default_out_val", NULL); break; default: def_out_val = -1; } /* Release the property */ ezxml_set_attr(Node, "default_out_type", NULL); } /* Go though all the pins in Type, assign def_in_val and def_out_val * * to entries in Type->Fc array corresponding to input pins and output * * pins. Also sets up the type of fc of the pin in the boolean arrays */ for (ipin = 0; ipin < Type->num_pins; ipin++) { iclass = Type->pin_class[ipin]; if (Type->class_inf[iclass].type == DRIVER) { Type->Fc[ipin] = def_out_val; Type->is_Fc_full_flex[ipin] = (def_type_out == FC_FULL) ? TRUE : FALSE; Type->is_Fc_frac[ipin] = (def_type_out == FC_FRAC) ? TRUE : FALSE; } else if (Type->class_inf[iclass].type == RECEIVER) { Type->Fc[ipin] = def_in_val; Type->is_Fc_full_flex[ipin] = (def_type_in == FC_FULL) ? TRUE : FALSE; Type->is_Fc_frac[ipin] = (def_type_in == FC_FRAC) ? TRUE : FALSE; } else { Type->Fc[ipin] = -1; Type->is_Fc_full_flex[ipin] = FALSE; Type->is_Fc_frac[ipin] = FALSE; } } /* Now, check for pin-based fc override - look for pin child. */ Child = ezxml_child(Node, "pin"); while (Child != NULL) { /* Get all the properties of the child first */ Prop = FindProperty(Child, "name", TRUE); if (Prop == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Pin child with no name " "is not allowed.\n", Child->line); exit(1); } ezxml_set_attr(Child, "name", NULL); Prop2 = FindProperty(Child, "fc_type", TRUE); if (Prop2 != NULL) { if (0 == strcmp(Prop2, "abs")) { ovr_type = FC_ABS; } else if (0 == strcmp(Prop2, "frac")) { ovr_type = FC_FRAC; } else if (0 == strcmp(Prop2, "full")) { ovr_type = FC_FULL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid type '%s' for Fc. Only abs, frac " "and full are allowed.\n", Child->line, Prop2); exit(1); } switch (ovr_type) { case FC_FULL: ovr_val = 0.0; break; case FC_ABS: case FC_FRAC: Prop2 = FindProperty(Child, "fc_val", TRUE); if (Prop2 == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Pin child with no fc_val specified " "is not allowed.\n", Child->line); exit(1); } ovr_val = (float) atof(Prop2); ezxml_set_attr(Child, "fc_val", NULL); break; default: ovr_val = -1; } /* Release the property */ ezxml_set_attr(Child, "fc_type", NULL); port_name = NULL; /* Search for the child pin in Type and overwrites the default values */ /* Check whether the name is in the format of "" or * * " [start_index:end_index]" by looking for the symbol '[' */ Prop2 = strstr(Prop, "["); if (Prop2 == NULL) { /* Format "port_name" , Prop stores the port_name */ end_pin_index = start_pin_index = -1; } else { /* Format "port_name [start_index:end_index]" */ match_count = sscanf(Prop, "%s [%d:%d]", port_name, &end_pin_index, &start_pin_index); Prop = port_name; if (match_count != 3 || (match_count != 1 && port_name == NULL)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid name for pin child, " "name should be in the format \"port_name\" or " "\"port_name [end_pin_index:start_pin_index]\", " " The end_pin_index and start_pin_index can be the same.\n", Child->line); exit(1); } if (end_pin_index < 0 || start_pin_index < 0) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The pin_index should not " "be a negative value.\n", Child->line); exit(1); } if (end_pin_index < start_pin_index) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The end_pin_index should " "be not be less than start_pin_index.\n", Child->line); exit(1); } } /* Find the matching port_name in Type */ /* TODO: Check for pins assigned more than one override fc's - right now assigning the last value specified. */ iport_pin = 0; port_found = FALSE; for (iport = 0; ((iport < Type->pb_type->num_ports) && (port_found == FALSE)); iport++) { if (strcmp(Prop, Type->pb_type->ports[iport].name) == 0) { /* This is the port, the start_pin_index and end_pin_index offset starts * here. The indices are inclusive. */ port_found = TRUE; if (end_pin_index > Type->pb_type->ports[iport].num_pins) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The end_pin_index for this port: %d " "cannot be greater than the number of pins in this port: %d.\n", Child->line, end_pin_index, Type->pb_type->ports[iport].num_pins); exit(1); } // The pin indices is not specified - override whole port. if (end_pin_index == -1 && start_pin_index == -1) { start_pin_index = 0; // Minus one since it is going to be assessed inclusively. end_pin_index = Type->pb_type->ports[iport].num_pins - 1; } /* Go through the pins in the port from start_pin_index to end_pin_index * and overwrite the default fc_val and fc_type with the values parsed in * from above. */ for (curr_pin = start_pin_index; curr_pin <= end_pin_index; curr_pin++) { // Check whether the value had been overwritten if (ovr_val != Type->Fc[iport_pin + curr_pin] || Type->is_Fc_full_flex[iport_pin + curr_pin] != (ovr_type == FC_FULL) ? TRUE : FALSE || Type->is_Fc_frac[iport_pin + curr_pin] != (ovr_type == FC_FRAC) ? TRUE : FALSE) { Type->Fc[iport_pin + curr_pin] = ovr_val; Type->is_Fc_full_flex[iport_pin + curr_pin] = (ovr_type == FC_FULL) ? TRUE : FALSE; Type->is_Fc_frac[iport_pin + curr_pin] = (ovr_type == FC_FRAC) ? TRUE : FALSE; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Multiple Fc override detected!\n", Child->line); exit(1); } } } else { /* This is not the matching port, move the iport_pin index forward. */ iport_pin += Type->pb_type->ports[iport].num_pins; } } /* Finish going through all the ports in pb_type looking for the pin child's port. */ /* The override pin child is not in any of the ports in pb_type. */ if (port_found == FALSE) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The port \"%s\" " "cannot be found.\n", Child->line); exit(1); } /* End of case where fc_type of pin_child is specified. */ } else { /* fc_type of pin_child is not specified. Error out. */ vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Pin child with no fc_type specified " "is not allowed.\n", Child->line); exit(1); } /* Find next child and frees up the current child. */ Junk = Child; Child = ezxml_next(Child); FreeNode(Junk); } /* End of processing pin children */ } /* Thie processes attributes of the 'type' tag and then unlinks them */ static void ProcessComplexBlockProps(ezxml_t Node, t_type_descriptor * Type) { const char *Prop; /* Load type name */ Prop = FindProperty(Node, "name", TRUE); Type->name = my_strdup(Prop); ezxml_set_attr(Node, "name", NULL); /* Load properties */ Type->capacity = GetIntProperty(Node, "capacity", FALSE, 1); /* TODO: Any block with capacity > 1 that is not I/O has not been tested, must test */ Type->height = GetIntProperty(Node, "height", FALSE, 1); Type->area = GetFloatProperty(Node, "area", FALSE, UNDEFINED); /* Xifan TANG: add opin_to_cb support */ Type->opin_to_cb = GetBooleanProperty(Node, "opin_to_cb", FALSE, FALSE); if (atof(Prop) < 0) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Area for type %s must be non-negative\n", Node->line, Type->name); exit(1); } } /* Takes in node pointing to and loads all the * child type objects. Unlinks the entire node * when complete. */ static void ProcessModels(INOUTP ezxml_t Node, OUTP struct s_arch *arch) { const char *Prop; ezxml_t child; ezxml_t p; ezxml_t junk; ezxml_t junkp; t_model *temp; t_model_ports *tp; int L_index; L_index = NUM_MODELS_IN_LIBRARY; arch->models = NULL; child = ezxml_child(Node, "model"); while (child != NULL) { temp = (t_model*) my_calloc(1, sizeof(t_model)); temp->used = 0; temp->inputs = temp->outputs = NULL; temp->instances = NULL; Prop = FindProperty(child, "name", TRUE); temp->name = my_strdup(Prop); ezxml_set_attr(child, "name", NULL); temp->pb_types = NULL; temp->index = L_index; L_index++; /* Process the inputs */ p = ezxml_child(child, "input_ports"); junkp = p; if (p == NULL) vpr_printf(TIO_MESSAGE_ERROR, "Required input ports not found for element '%s'.\n", temp->name); p = ezxml_child(p, "port"); if (p != NULL) { while (p != NULL) { tp = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); Prop = FindProperty(p, "name", TRUE); tp->name = my_strdup(Prop); ezxml_set_attr(p, "name", NULL); tp->size = -1; /* determined later by pb_types */ tp->min_size = -1; /* determined later by pb_types */ tp->next = temp->inputs; tp->dir = IN_PORT; tp->is_non_clock_global = GetBooleanProperty(p, "is_non_clock_global", FALSE, FALSE); tp->is_clock = FALSE; Prop = FindProperty(p, "is_clock", FALSE); if (Prop && my_atoi(Prop) != 0) { tp->is_clock = TRUE; } ezxml_set_attr(p, "is_clock", NULL); if (tp->is_clock == TRUE && tp->is_non_clock_global == TRUE) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Signal cannot be both a clock and a non-clock signal simultaneously\n", p->line); } temp->inputs = tp; junk = p; p = ezxml_next(p); FreeNode(junk); } } else /* No input ports? */ { vpr_printf(TIO_MESSAGE_ERROR, "Required input ports not found for element '%s'.\n", temp->name); } FreeNode(junkp); /* Process the outputs */ p = ezxml_child(child, "output_ports"); junkp = p; if (p == NULL) vpr_printf(TIO_MESSAGE_ERROR, "Required output ports not found for element '%s'.\n", temp->name); p = ezxml_child(p, "port"); if (p != NULL) { while (p != NULL) { tp = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); Prop = FindProperty(p, "name", TRUE); tp->name = my_strdup(Prop); ezxml_set_attr(p, "name", NULL); tp->size = -1; /* determined later by pb_types */ tp->min_size = -1; /* determined later by pb_types */ tp->next = temp->outputs; tp->dir = OUT_PORT; temp->outputs = tp; junk = p; p = ezxml_next(p); FreeNode(junk); } } else /* No output ports? */ { vpr_printf(TIO_MESSAGE_ERROR, "Required output ports not found for element '%s'.\n", temp->name); } FreeNode(junkp); /* Find the next model */ temp->next = arch->models; arch->models = temp; junk = child; child = ezxml_next(child); FreeNode(junk); } return; } /* Takes in node pointing to and loads all the * child type objects. Unlinks the entire node * when complete. */ static void ProcessLayout(INOUTP ezxml_t Node, OUTP struct s_arch *arch) { const char *Prop; arch->clb_grid.IsAuto = TRUE; /* Load width and height if applicable */ Prop = FindProperty(Node, "width", FALSE); if (Prop != NULL) { arch->clb_grid.IsAuto = FALSE; arch->clb_grid.W = my_atoi(Prop); ezxml_set_attr(Node, "width", NULL); arch->clb_grid.H = GetIntProperty(Node, "height", TRUE, UNDEFINED); } /* Load aspect ratio if applicable */ Prop = FindProperty(Node, "auto", arch->clb_grid.IsAuto); if (Prop != NULL) { if (arch->clb_grid.IsAuto == FALSE) { vpr_printf(TIO_MESSAGE_ERROR, "Auto-sizing, width and height cannot be specified\n"); } arch->clb_grid.Aspect = (float) atof(Prop); ezxml_set_attr(Node, "auto", NULL); if (arch->clb_grid.Aspect <= 0) { vpr_printf(TIO_MESSAGE_ERROR, "Grid aspect ratio is less than or equal to zero %g\n", arch->clb_grid.Aspect); } } } /* Takes in node pointing to and loads all the * child type objects. Unlinks the entire node * when complete. */ static void ProcessDevice(INOUTP ezxml_t Node, OUTP struct s_arch *arch, INP boolean timing_enabled) { const char *Prop; ezxml_t Cur; Cur = FindElement(Node, "sizing", TRUE); arch->R_minW_nmos = GetFloatProperty(Cur, "R_minW_nmos", timing_enabled, 0); arch->R_minW_pmos = GetFloatProperty(Cur, "R_minW_pmos", timing_enabled, 0); arch->ipin_mux_trans_size = GetFloatProperty(Cur, "ipin_mux_trans_size", FALSE, 0); FreeNode(Cur); Cur = FindElement(Node, "timing", timing_enabled); if (Cur != NULL) { arch->C_ipin_cblock = GetFloatProperty(Cur, "C_ipin_cblock", FALSE, 0); arch->T_ipin_cblock = GetFloatProperty(Cur, "T_ipin_cblock", FALSE, 0); FreeNode(Cur); } Cur = FindElement(Node, "area", TRUE); arch->grid_logic_tile_area = GetFloatProperty(Cur, "grid_logic_tile_area", FALSE, 0); FreeNode(Cur); // Xifan TANG: SRAM and SPICE Support Cur = FindElement(Node, "sram", arch->read_xml_spice); if (NULL != Cur) { ProcessSpiceSRAM(Cur, arch); // END FreeNode(Cur); } Cur = FindElement(Node, "chan_width_distr", FALSE); if (Cur != NULL) { ProcessChanWidthDistr(Cur, arch); FreeNode(Cur); } Cur = FindElement(Node, "switch_block", TRUE); Prop = FindProperty(Cur, "type", TRUE); if (strcmp(Prop, "wilton") == 0) { arch->SBType = WILTON; } else if (strcmp(Prop, "universal") == 0) { arch->SBType = UNIVERSAL; } else if (strcmp(Prop, "subset") == 0) { arch->SBType = SUBSET; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown property %s for switch block type x\n", Cur->line, Prop); exit(1); } ezxml_set_attr(Cur, "type", NULL); arch->Fs = GetIntProperty(Cur, "fs", TRUE, 3); FreeNode(Cur); } /* Takes in node pointing to and loads all the * child type objects. Unlinks the entire node * when complete. */ static void ProcessChanWidthDistr(INOUTP ezxml_t Node, OUTP struct s_arch *arch) { ezxml_t Cur; Cur = FindElement(Node, "io", TRUE); arch->Chans.chan_width_io = GetFloatProperty(Cur, "width", TRUE, UNDEFINED); FreeNode(Cur); Cur = FindElement(Node, "x", TRUE); ProcessChanWidthDistrDir(Cur, &arch->Chans.chan_x_dist); FreeNode(Cur); Cur = FindElement(Node, "y", TRUE); ProcessChanWidthDistrDir(Cur, &arch->Chans.chan_y_dist); FreeNode(Cur); } /* Takes in node within and loads all the * child type objects. Unlinks the entire node when complete. */ static void ProcessChanWidthDistrDir(INOUTP ezxml_t Node, OUTP t_chan * chan) { const char *Prop; boolean hasXpeak, hasWidth, hasDc; hasXpeak = hasWidth = hasDc = FALSE; Prop = FindProperty(Node, "distr", TRUE); if (strcmp(Prop, "uniform") == 0) { chan->type = UNIFORM; } else if (strcmp(Prop, "gaussian") == 0) { chan->type = GAUSSIAN; hasXpeak = hasWidth = hasDc = TRUE; } else if (strcmp(Prop, "pulse") == 0) { chan->type = PULSE; hasXpeak = hasWidth = hasDc = TRUE; } else if (strcmp(Prop, "delta") == 0) { hasXpeak = hasDc = TRUE; chan->type = DELTA; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Unknown property %s for chan_width_distr x\n", Node->line, Prop); exit(1); } ezxml_set_attr(Node, "distr", NULL); chan->peak = GetFloatProperty(Node, "peak", TRUE, UNDEFINED); chan->width = GetFloatProperty(Node, "width", hasWidth, 0); chan->xpeak = GetFloatProperty(Node, "xpeak", hasXpeak, 0); chan->dc = GetFloatProperty(Node, "dc", hasDc, 0); } static void SetupEmptyType(void) { t_type_descriptor * type; type = &cb_type_descriptors[EMPTY_TYPE->index]; type->name = ""; type->num_pins = 0; type->height = 1; type->capacity = 0; type->num_drivers = 0; type->num_receivers = 0; type->pinloc = NULL; type->num_class = 0; type->class_inf = NULL; type->pin_class = NULL; type->is_global_pin = NULL; type->is_Fc_frac = NULL; type->is_Fc_full_flex = NULL; type->Fc = NULL; type->pb_type = NULL; type->area = UNDEFINED; /* Used as lost area filler, no definition */ type->grid_loc_def = NULL; type->num_grid_loc_def = 0; } static void alloc_and_load_default_child_for_pb_type( INOUTP t_pb_type *pb_type, char *new_name, t_pb_type *copy) { int i, j; char *dot; assert(pb_type->blif_model != NULL); copy->name = my_strdup(new_name); copy->blif_model = my_strdup(pb_type->blif_model); copy->class_type = pb_type->class_type; copy->depth = pb_type->depth; copy->model = pb_type->model; copy->modes = NULL; copy->num_modes = 0; copy->num_clock_pins = pb_type->num_clock_pins; copy->num_input_pins = pb_type->num_input_pins; copy->num_output_pins = pb_type->num_output_pins; copy->num_pb = 1; /* Power */ copy->pb_type_power = (t_pb_type_power*) my_calloc(1, sizeof(t_pb_type_power)); copy->pb_type_power->estimation_method = power_method_inherited( pb_type->pb_type_power->estimation_method); /* Ports */ copy->num_ports = pb_type->num_ports; copy->ports = (t_port*) my_calloc(pb_type->num_ports, sizeof(t_port)); for (i = 0; i < pb_type->num_ports; i++) { copy->ports[i].is_clock = pb_type->ports[i].is_clock; copy->ports[i].model_port = pb_type->ports[i].model_port; copy->ports[i].type = pb_type->ports[i].type; copy->ports[i].num_pins = pb_type->ports[i].num_pins; copy->ports[i].parent_pb_type = copy; copy->ports[i].name = my_strdup(pb_type->ports[i].name); copy->ports[i].port_class = my_strdup(pb_type->ports[i].port_class); copy->ports[i].port_power = (t_port_power*) my_calloc(1, sizeof(t_port_power)); //Defaults if (copy->pb_type_power->estimation_method == POWER_METHOD_AUTO_SIZES) { copy->ports[i].port_power->wire_type = POWER_WIRE_TYPE_AUTO; copy->ports[i].port_power->buffer_type = POWER_BUFFER_TYPE_AUTO; } else if (copy->pb_type_power->estimation_method == POWER_METHOD_SPECIFY_SIZES) { copy->ports[i].port_power->wire_type = POWER_WIRE_TYPE_IGNORED; copy->ports[i].port_power->buffer_type = POWER_BUFFER_TYPE_NONE; } } copy->max_internal_delay = pb_type->max_internal_delay; copy->annotations = (t_pin_to_pin_annotation*) my_calloc( pb_type->num_annotations, sizeof(t_pin_to_pin_annotation)); copy->num_annotations = pb_type->num_annotations; for (i = 0; i < copy->num_annotations; i++) { copy->annotations[i].clock = my_strdup(pb_type->annotations[i].clock); dot = strstr(pb_type->annotations[i].input_pins, "."); copy->annotations[i].input_pins = (char*) my_malloc( sizeof(char) * (strlen(new_name) + strlen(dot) + 1)); copy->annotations[i].input_pins[0] = '\0'; strcat(copy->annotations[i].input_pins, new_name); strcat(copy->annotations[i].input_pins, dot); if (pb_type->annotations[i].output_pins != NULL) { dot = strstr(pb_type->annotations[i].output_pins, "."); copy->annotations[i].output_pins = (char*) my_malloc( sizeof(char) * (strlen(new_name) + strlen(dot) + 1)); copy->annotations[i].output_pins[0] = '\0'; strcat(copy->annotations[i].output_pins, new_name); strcat(copy->annotations[i].output_pins, dot); } else { copy->annotations[i].output_pins = NULL; } copy->annotations[i].line_num = pb_type->annotations[i].line_num; copy->annotations[i].format = pb_type->annotations[i].format; copy->annotations[i].type = pb_type->annotations[i].type; copy->annotations[i].num_value_prop_pairs = pb_type->annotations[i].num_value_prop_pairs; copy->annotations[i].prop = (int*) my_malloc( sizeof(int) * pb_type->annotations[i].num_value_prop_pairs); copy->annotations[i].value = (char**) my_malloc( sizeof(char *) * pb_type->annotations[i].num_value_prop_pairs); for (j = 0; j < pb_type->annotations[i].num_value_prop_pairs; j++) { copy->annotations[i].prop[j] = pb_type->annotations[i].prop[j]; copy->annotations[i].value[j] = my_strdup( pb_type->annotations[i].value[j]); } } } /* populate special lut class */ void ProcessLutClass(INOUTP t_pb_type *lut_pb_type) { char *default_name; t_port *in_port; t_port *out_port; int i, j; if (strcmp(lut_pb_type->name, "lut") != 0) { default_name = my_strdup("lut"); } else { default_name = my_strdup("lut_child"); } lut_pb_type->num_modes = 2; lut_pb_type->pb_type_power->leakage_default_mode = 1; lut_pb_type->modes = (t_mode*) my_calloc(lut_pb_type->num_modes, sizeof(t_mode)); /* First mode, route_through */ lut_pb_type->modes[0].name = my_strdup("wire"); lut_pb_type->modes[0].parent_pb_type = lut_pb_type; lut_pb_type->modes[0].index = 0; lut_pb_type->modes[0].num_pb_type_children = 0; lut_pb_type->modes[0].mode_power = (t_mode_power*) my_calloc(1, sizeof(t_mode_power)); /* Xifan TANG: LUT default idle mode */ lut_pb_type->modes[0].define_idle_mode = 1; /* Process interconnect */ /* TODO: add timing annotations to route-through */ assert(lut_pb_type->num_ports == 2); if (strcmp(lut_pb_type->ports[0].port_class, "lut_in") == 0) { assert(strcmp(lut_pb_type->ports[1].port_class, "lut_out") == 0); in_port = &lut_pb_type->ports[0]; out_port = &lut_pb_type->ports[1]; } else { assert(strcmp(lut_pb_type->ports[0].port_class, "lut_out") == 0); assert(strcmp(lut_pb_type->ports[1].port_class, "lut_in") == 0); out_port = &lut_pb_type->ports[0]; in_port = &lut_pb_type->ports[1]; } lut_pb_type->modes[0].num_interconnect = 1; lut_pb_type->modes[0].interconnect = (t_interconnect*) my_calloc(1, sizeof(t_interconnect)); lut_pb_type->modes[0].interconnect[0].name = (char*) my_calloc( strlen(lut_pb_type->name) + 10, sizeof(char)); sprintf(lut_pb_type->modes[0].interconnect[0].name, "complete:%s", lut_pb_type->name); lut_pb_type->modes[0].interconnect[0].type = COMPLETE_INTERC; lut_pb_type->modes[0].interconnect[0].input_string = (char*) my_calloc( strlen(lut_pb_type->name) + strlen(in_port->name) + 2, sizeof(char)); sprintf(lut_pb_type->modes[0].interconnect[0].input_string, "%s.%s", lut_pb_type->name, in_port->name); lut_pb_type->modes[0].interconnect[0].output_string = (char*) my_calloc( strlen(lut_pb_type->name) + strlen(out_port->name) + 2, sizeof(char)); sprintf(lut_pb_type->modes[0].interconnect[0].output_string, "%s.%s", lut_pb_type->name, out_port->name); lut_pb_type->modes[0].interconnect[0].parent_mode_index = 0; lut_pb_type->modes[0].interconnect[0].parent_mode = &lut_pb_type->modes[0]; lut_pb_type->modes[0].interconnect[0].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); lut_pb_type->modes[0].interconnect[0].annotations = (t_pin_to_pin_annotation*) my_calloc(lut_pb_type->num_annotations, sizeof(t_pin_to_pin_annotation)); lut_pb_type->modes[0].interconnect[0].num_annotations = lut_pb_type->num_annotations; for (i = 0; i < lut_pb_type->modes[0].interconnect[0].num_annotations; i++) { lut_pb_type->modes[0].interconnect[0].annotations[i].clock = my_strdup( lut_pb_type->annotations[i].clock); lut_pb_type->modes[0].interconnect[0].annotations[i].input_pins = my_strdup(lut_pb_type->annotations[i].input_pins); lut_pb_type->modes[0].interconnect[0].annotations[i].output_pins = my_strdup(lut_pb_type->annotations[i].output_pins); lut_pb_type->modes[0].interconnect[0].annotations[i].line_num = lut_pb_type->annotations[i].line_num; lut_pb_type->modes[0].interconnect[0].annotations[i].format = lut_pb_type->annotations[i].format; lut_pb_type->modes[0].interconnect[0].annotations[i].type = lut_pb_type->annotations[i].type; lut_pb_type->modes[0].interconnect[0].annotations[i].num_value_prop_pairs = lut_pb_type->annotations[i].num_value_prop_pairs; lut_pb_type->modes[0].interconnect[0].annotations[i].prop = (int*) my_malloc( sizeof(int) * lut_pb_type->annotations[i].num_value_prop_pairs); lut_pb_type->modes[0].interconnect[0].annotations[i].value = (char**) my_malloc( sizeof(char *) * lut_pb_type->annotations[i].num_value_prop_pairs); for (j = 0; j < lut_pb_type->annotations[i].num_value_prop_pairs; j++) { lut_pb_type->modes[0].interconnect[0].annotations[i].prop[j] = lut_pb_type->annotations[i].prop[j]; lut_pb_type->modes[0].interconnect[0].annotations[i].value[j] = my_strdup(lut_pb_type->annotations[i].value[j]); } } /* Second mode, LUT */ lut_pb_type->modes[1].name = my_strdup(lut_pb_type->name); lut_pb_type->modes[1].parent_pb_type = lut_pb_type; lut_pb_type->modes[1].index = 1; lut_pb_type->modes[1].num_pb_type_children = 1; lut_pb_type->modes[1].mode_power = (t_mode_power*) my_calloc(1, sizeof(t_mode_power)); lut_pb_type->modes[1].pb_type_children = (t_pb_type*) my_calloc(1, sizeof(t_pb_type)); alloc_and_load_default_child_for_pb_type(lut_pb_type, default_name, lut_pb_type->modes[1].pb_type_children); /* Xifan TANG: LUT default idle mode */ lut_pb_type->modes[1].define_idle_mode = 0; /* moved annotations to child so delete old annotations */ for (i = 0; i < lut_pb_type->num_annotations; i++) { for (j = 0; j < lut_pb_type->annotations[i].num_value_prop_pairs; j++) { free(lut_pb_type->annotations[i].value[j]); } free(lut_pb_type->annotations[i].value); free(lut_pb_type->annotations[i].prop); if (lut_pb_type->annotations[i].input_pins) { free(lut_pb_type->annotations[i].input_pins); } if (lut_pb_type->annotations[i].output_pins) { free(lut_pb_type->annotations[i].output_pins); } if (lut_pb_type->annotations[i].clock) { free(lut_pb_type->annotations[i].clock); } } lut_pb_type->num_annotations = 0; free(lut_pb_type->annotations); lut_pb_type->annotations = NULL; lut_pb_type->modes[1].pb_type_children[0].depth = lut_pb_type->depth + 1; lut_pb_type->modes[1].pb_type_children[0].parent_mode = &lut_pb_type->modes[1]; /* Process interconnect */ lut_pb_type->modes[1].num_interconnect = 2; lut_pb_type->modes[1].interconnect = (t_interconnect*) my_calloc(2, sizeof(t_interconnect)); lut_pb_type->modes[1].interconnect[0].name = (char*) my_calloc( strlen(lut_pb_type->name) + 10, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[0].name, "direct:%s", lut_pb_type->name); lut_pb_type->modes[1].interconnect[0].type = DIRECT_INTERC; lut_pb_type->modes[1].interconnect[0].input_string = (char*) my_calloc( strlen(lut_pb_type->name) + strlen(in_port->name) + 2, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[0].input_string, "%s.%s", lut_pb_type->name, in_port->name); lut_pb_type->modes[1].interconnect[0].output_string = (char*) my_calloc( strlen(default_name) + strlen(in_port->name) + 2, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[0].output_string, "%s.%s", default_name, in_port->name); lut_pb_type->modes[1].interconnect[0].infer_annotations = TRUE; lut_pb_type->modes[1].interconnect[0].parent_mode_index = 1; lut_pb_type->modes[1].interconnect[0].parent_mode = &lut_pb_type->modes[1]; lut_pb_type->modes[1].interconnect[0].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); lut_pb_type->modes[1].interconnect[1].name = (char*) my_calloc( strlen(lut_pb_type->name) + 11, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[1].name, "direct:%s", lut_pb_type->name); lut_pb_type->modes[1].interconnect[1].type = DIRECT_INTERC; lut_pb_type->modes[1].interconnect[1].input_string = (char*) my_calloc( strlen(default_name) + strlen(out_port->name) + 4, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[1].input_string, "%s.%s", default_name, out_port->name); lut_pb_type->modes[1].interconnect[1].output_string = (char*) my_calloc( strlen(lut_pb_type->name) + strlen(out_port->name) + strlen(in_port->name) + 2, sizeof(char)); sprintf(lut_pb_type->modes[1].interconnect[1].output_string, "%s.%s", lut_pb_type->name, out_port->name); lut_pb_type->modes[1].interconnect[1].infer_annotations = TRUE; lut_pb_type->modes[1].interconnect[1].parent_mode_index = 1; lut_pb_type->modes[1].interconnect[1].parent_mode = &lut_pb_type->modes[1]; lut_pb_type->modes[1].interconnect[1].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); free(default_name); free(lut_pb_type->blif_model); lut_pb_type->blif_model = NULL; lut_pb_type->model = NULL; } /* populate special memory class */ static void ProcessMemoryClass(INOUTP t_pb_type *mem_pb_type) { char *default_name; char *input_name, *input_port_name, *output_name, *output_port_name; int i, j, i_inter, num_pb; if (strcmp(mem_pb_type->name, "memory_slice") != 0) { default_name = my_strdup("memory_slice"); } else { default_name = my_strdup("memory_slice_1bit"); } mem_pb_type->modes = (t_mode*) my_calloc(1, sizeof(t_mode)); mem_pb_type->modes[0].name = my_strdup(default_name); mem_pb_type->modes[0].parent_pb_type = mem_pb_type; mem_pb_type->modes[0].index = 0; mem_pb_type->modes[0].mode_power = (t_mode_power*) my_calloc(1, sizeof(t_mode_power)); num_pb = OPEN; for (i = 0; i < mem_pb_type->num_ports; i++) { if (mem_pb_type->ports[i].port_class != NULL && strstr(mem_pb_type->ports[i].port_class, "data") == mem_pb_type->ports[i].port_class) { if (num_pb == OPEN) { num_pb = mem_pb_type->ports[i].num_pins; } else if (num_pb != mem_pb_type->ports[i].num_pins) { vpr_printf(TIO_MESSAGE_ERROR, "memory %s has inconsistent number of data bits %d and %d\n", mem_pb_type->name, num_pb, mem_pb_type->ports[i].num_pins); exit(1); } } } mem_pb_type->modes[0].num_pb_type_children = 1; mem_pb_type->modes[0].pb_type_children = (t_pb_type*) my_calloc(1, sizeof(t_pb_type)); alloc_and_load_default_child_for_pb_type(mem_pb_type, default_name, &mem_pb_type->modes[0].pb_type_children[0]); mem_pb_type->modes[0].pb_type_children[0].depth = mem_pb_type->depth + 1; mem_pb_type->modes[0].pb_type_children[0].parent_mode = &mem_pb_type->modes[0]; mem_pb_type->modes[0].pb_type_children[0].num_pb = num_pb; mem_pb_type->num_modes = 1; free(mem_pb_type->blif_model); mem_pb_type->blif_model = NULL; mem_pb_type->model = NULL; mem_pb_type->modes[0].num_interconnect = mem_pb_type->num_ports * num_pb; mem_pb_type->modes[0].interconnect = (t_interconnect*) my_calloc( mem_pb_type->modes[0].num_interconnect, sizeof(t_interconnect)); for (i = 0; i < mem_pb_type->modes[0].num_interconnect; i++) { mem_pb_type->modes[0].interconnect[i].parent_mode_index = 0; mem_pb_type->modes[0].interconnect[i].parent_mode = &mem_pb_type->modes[0]; } /* Xifan TANG: Memory default idle mode */ mem_pb_type->modes[0].define_idle_mode = 1; /* Process interconnect */ i_inter = 0; for (i = 0; i < mem_pb_type->num_ports; i++) { mem_pb_type->modes[0].interconnect[i_inter].type = DIRECT_INTERC; input_port_name = mem_pb_type->ports[i].name; output_port_name = mem_pb_type->ports[i].name; if (mem_pb_type->ports[i].type == IN_PORT) { input_name = mem_pb_type->name; output_name = default_name; } else { input_name = default_name; output_name = mem_pb_type->name; } if (mem_pb_type->ports[i].port_class != NULL && strstr(mem_pb_type->ports[i].port_class, "data") == mem_pb_type->ports[i].port_class) { mem_pb_type->modes[0].interconnect[i_inter].name = (char*) my_calloc(i_inter / 10 + 8, sizeof(char)); sprintf(mem_pb_type->modes[0].interconnect[i_inter].name, "direct%d", i_inter); if (mem_pb_type->ports[i].type == IN_PORT) { /* force data pins to be one bit wide and update stats */ mem_pb_type->modes[0].pb_type_children[0].ports[i].num_pins = 1; mem_pb_type->modes[0].pb_type_children[0].num_input_pins -= (mem_pb_type->ports[i].num_pins - 1); mem_pb_type->modes[0].interconnect[i_inter].input_string = (char*) my_calloc( strlen(input_name) + strlen(input_port_name) + 2, sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].input_string, "%s.%s", input_name, input_port_name); mem_pb_type->modes[0].interconnect[i_inter].output_string = (char*) my_calloc( strlen(output_name) + strlen(output_port_name) + 2 * (6 + num_pb / 10), sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].output_string, "%s[%d:0].%s", output_name, num_pb - 1, output_port_name); } else { /* force data pins to be one bit wide and update stats */ mem_pb_type->modes[0].pb_type_children[0].ports[i].num_pins = 1; mem_pb_type->modes[0].pb_type_children[0].num_output_pins -= (mem_pb_type->ports[i].num_pins - 1); mem_pb_type->modes[0].interconnect[i_inter].input_string = (char*) my_calloc( strlen(input_name) + strlen(input_port_name) + 2 * (6 + num_pb / 10), sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].input_string, "%s[%d:0].%s", input_name, num_pb - 1, input_port_name); mem_pb_type->modes[0].interconnect[i_inter].output_string = (char*) my_calloc( strlen(output_name) + strlen(output_port_name) + 2, sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].output_string, "%s.%s", output_name, output_port_name); } /* Allocate interconnect power structures */ mem_pb_type->modes[0].interconnect[i_inter].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); i_inter++; } else { for (j = 0; j < num_pb; j++) { /* Anything that is not data must be an input */ mem_pb_type->modes[0].interconnect[i_inter].name = (char*) my_calloc(i_inter / 10 + j / 10 + 10, sizeof(char)); sprintf(mem_pb_type->modes[0].interconnect[i_inter].name, "direct%d_%d", i_inter, j); if (mem_pb_type->ports[i].type == IN_PORT) { mem_pb_type->modes[0].interconnect[i_inter].type = DIRECT_INTERC; mem_pb_type->modes[0].interconnect[i_inter].input_string = (char*) my_calloc( strlen(input_name) + strlen(input_port_name) + 2, sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].input_string, "%s.%s", input_name, input_port_name); mem_pb_type->modes[0].interconnect[i_inter].output_string = (char*) my_calloc( strlen(output_name) + strlen(output_port_name) + 2 * (6 + num_pb / 10), sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].output_string, "%s[%d:%d].%s", output_name, j, j, output_port_name); } else { mem_pb_type->modes[0].interconnect[i_inter].type = DIRECT_INTERC; mem_pb_type->modes[0].interconnect[i_inter].input_string = (char*) my_calloc( strlen(input_name) + strlen(input_port_name) + 2 * (6 + num_pb / 10), sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].input_string, "%s[%d:%d].%s", input_name, j, j, input_port_name); mem_pb_type->modes[0].interconnect[i_inter].output_string = (char*) my_calloc( strlen(output_name) + strlen(output_port_name) + 2, sizeof(char)); sprintf( mem_pb_type->modes[0].interconnect[i_inter].output_string, "%s.%s", output_name, output_port_name); } /* Allocate interconnect power structures */ mem_pb_type->modes[0].interconnect[i_inter].interconnect_power = (t_interconnect_power*) my_calloc(1, sizeof(t_interconnect_power)); i_inter++; } } } mem_pb_type->modes[0].num_interconnect = i_inter; free(default_name); } /* Takes in node pointing to and loads all the * child type objects. Unlinks the entire node * when complete. */ static void ProcessComplexBlocks(INOUTP ezxml_t Node, OUTP t_type_descriptor ** Types, OUTP int *NumTypes, boolean timing_enabled, boolean do_spice) { ezxml_t CurType, Prev; ezxml_t Cur; t_type_descriptor * Type; int i; /* Alloc the type list. Need one additional t_type_desctiptors: * 1: empty psuedo-type */ *NumTypes = CountChildren(Node, "pb_type", 1) + 1; *Types = (t_type_descriptor *) my_malloc( sizeof(t_type_descriptor) * (*NumTypes)); cb_type_descriptors = *Types; EMPTY_TYPE = &cb_type_descriptors[EMPTY_TYPE_INDEX]; IO_TYPE = &cb_type_descriptors[IO_TYPE_INDEX]; cb_type_descriptors[EMPTY_TYPE_INDEX].index = EMPTY_TYPE_INDEX; cb_type_descriptors[IO_TYPE_INDEX].index = IO_TYPE_INDEX; SetupEmptyType(); /* Process the types */ /* TODO: I should make this more flexible but release is soon and I don't have time so assert values for empty and io types*/ assert(EMPTY_TYPE_INDEX == 0); assert(IO_TYPE_INDEX == 1); i = 1; /* Skip over 'empty' type */ CurType = Node->child; while (CurType) { CheckElement(CurType, "pb_type"); /* Alias to current type */ Type = &(*Types)[i]; /* Parses the properties fields of the type */ ProcessComplexBlockProps(CurType, Type); /* Load pb_type info */ Type->pb_type = (t_pb_type*) my_malloc(sizeof(t_pb_type)); Type->pb_type->name = my_strdup(Type->name); if (i == IO_TYPE_INDEX) { if (strcmp(Type->name, "io") != 0) { vpr_printf(TIO_MESSAGE_ERROR, "First complex block must be named \"io\" and define the inputs and outputs for the FPGA"); exit(1); } } ProcessPb_Type(CurType, Type->pb_type, NULL, do_spice); Type->num_pins = Type->capacity * (Type->pb_type->num_input_pins + Type->pb_type->num_output_pins + Type->pb_type->num_clock_pins); Type->num_receivers = Type->capacity * Type->pb_type->num_input_pins; Type->num_drivers = Type->capacity * Type->pb_type->num_output_pins; /* Xifan TANG: pin equivalence auto-detection */ if (1 == CountChildren(CurType, "pin_equivalence_auto_detect", 0)) { Cur = FindFirstElement(CurType, "pin_equivalence_auto_detect", TRUE); SetupPinEquivalenceAutoDetect(Cur, Type); FreeNode(Cur); } else { assert(0 == CountChildren(CurType, "pin_equivalence_auto_detect", 0)); /* Initialize */ Type->input_ports_eq_auto_detect = FALSE; Type->output_ports_eq_auto_detect = FALSE; } /* Load pin names and classes and locations */ Cur = FindElement(CurType, "pinlocations", TRUE); SetupPinLocationsAndPinClasses(Cur, Type); FreeNode(Cur); Cur = FindElement(CurType, "gridlocations", TRUE); SetupGridLocations(Cur, Type); FreeNode(Cur); /* Load Fc */ Cur = FindElement(CurType, "fc", TRUE); Process_Fc(Cur, Type); FreeNode(Cur); #if 0 Cur = FindElement(CurType, "timing", timing_enabled); if (Cur) { SetupTypeTiming(Cur, Type); FreeNode(Cur); } #endif Type->index = i; /* Type fully read */ ++i; /* Free this node and get its next sibling node */ Prev = CurType; CurType = CurType->next; FreeNode(Prev); } if (FILL_TYPE == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "grid location type 'fill' must be specified.\n"); exit(1); } } /* Loads the given architecture file. Currently only * handles type information */ void XmlReadArch(INP const char *ArchFile, INP boolean timing_enabled, OUTP struct s_arch *arch, OUTP t_type_descriptor ** Types, OUTP int *NumTypes) { ezxml_t Cur, Next; const char *Prop; boolean power_reqd; /* Parse the file */ Cur = ezxml_parse_file(ArchFile); if (NULL == Cur) { vpr_printf(TIO_MESSAGE_ERROR, "Unable to load architecture file '%s'.\n", ArchFile); exit(1); } /* Root node should be architecture */ CheckElement(Cur, "architecture"); /* TODO: do version processing properly with string delimiting on the . */ Prop = FindProperty(Cur, "version", FALSE); if (Prop != NULL) { if (atof(Prop) > atof(VPR_VERSION)) { vpr_printf(TIO_MESSAGE_WARNING, "This architecture version is for VPR %f while your current VPR version is " VPR_VERSION ", compatability issues may arise\n", atof(Prop)); } ezxml_set_attr(Cur, "version", NULL); } /* Process models */ Next = FindElement(Cur, "models", TRUE); ProcessModels(Next, arch); FreeNode(Next); CreateModelLibrary(arch); /* Process layout */ Next = FindElement(Cur, "layout", TRUE); ProcessLayout(Next, arch); FreeNode(Next); /* Process device */ Next = FindElement(Cur, "device", TRUE); ProcessDevice(Next, arch, timing_enabled); FreeNode(Next); /* Xifan TANG: Connection Block Support*/ Next = FindElement(Cur,"cblocks",arch->read_xml_spice); if (Next) { ProcessSwitches(Next, &(arch->cb_switches), &(arch->num_cb_switch), timing_enabled); FreeNode(Next); } /* end */ /* Xifan TANG: HSPICE Support*/ Next = FindElement(Cur,"spice_settings", arch->read_xml_spice); // Not mandatory options but we will check it later if (Next) { ProcessSpiceSettings(Next,arch->spice); FreeNode(Next); } /* end */ /* mrFPGA */ /* Process technology */ Next = FindElement(Cur, "mrFPGA_settings", FALSE); ProcessTechnology(Next, arch); if (Next) { FreeNode(Next); } /* end */ /* Process types */ Next = FindElement(Cur, "complexblocklist", TRUE); ProcessComplexBlocks(Next, Types, NumTypes, timing_enabled, arch->read_xml_spice); FreeNode(Next); /* Process switches */ Next = FindElement(Cur, "switchlist", TRUE); ProcessSwitches(Next, &(arch->Switches), &(arch->num_switches), timing_enabled); FreeNode(Next); /* Process segments. This depends on switches */ Next = FindElement(Cur, "segmentlist", TRUE); ProcessSegments(Next, &(arch->Segments), &(arch->num_segments), arch->Switches, arch->num_switches, timing_enabled); FreeNode(Next); /*Xifan TANG: switch_segment_pattern*/ Next = FindElement(Cur, "switch_segment_patterns", FALSE); // FALSE: not mandatory required if (Next) { ProcessSwitchSegmentPatterns(Next,&(arch->num_swseg_pattern), &(arch->swseg_patterns), arch->num_switches, arch->Switches, timing_enabled); FreeNode(Next); } else { // Set 0 arch->num_swseg_pattern = 0; arch->swseg_patterns = NULL; } /* Process directs */ Next = FindElement(Cur, "directlist", FALSE); if (Next) { ProcessDirects(Next, &(arch->Directs), &(arch->num_directs), timing_enabled); FreeNode(Next); } /* Process architecture power information */ /* If arch->power has been initialized, meaning the user has requested power estimation, * then the power architecture information is required. */ if (arch->power) { power_reqd = TRUE; } else { power_reqd = FALSE; } Next = FindElement(Cur, "power", power_reqd); if (Next) { if (arch->power) { ProcessPower(Next, arch->power, *Types, *NumTypes); } else { /* This information still needs to be read, even if it is just * thrown away. */ t_power_arch * power_arch_fake = (t_power_arch*) my_calloc(1, sizeof(t_power_arch)); ProcessPower(Next, power_arch_fake, *Types, *NumTypes); free(power_arch_fake); } FreeNode(Next); } // Process Clocks Next = FindElement(Cur, "clocks", power_reqd); if (Next) { if (arch->clocks) { ProcessClocks(Next, arch->clocks); } else { /* This information still needs to be read, even if it is just * thrown away. */ t_clock_arch * clocks_fake = (t_clock_arch*) my_calloc(1, sizeof(t_clock_arch)); ProcessClocks(Next, clocks_fake); free(clocks_fake->clock_inf); free(clocks_fake); } FreeNode(Next); } SyncModelsPbTypes(arch, *Types, *NumTypes); UpdateAndCheckModels(arch); /* Release the full XML tree */ FreeNode(Cur); } /* Xifan TANG: read in switch_segment_patterns * Current Support: pattern type = unbuf_sb seg_type= undir * Switch should have at least one unbuf_mux */ static void ProcessSwitchSegmentPatterns(INOUTP ezxml_t Parent, OUTP int* num_swseg_pattern, OUTP t_swseg_pattern_inf** swseg_patterns, INP int num_switch, INP struct s_switch_inf* switches, INP boolean timing_enabled) { int i,j; const char* tmp; const char* pattern_tag; ezxml_t SubElem; ezxml_t Node; /* Count the number of segs and check they are in fact * of segment elements. */ (*num_swseg_pattern) = 0; /* if there is no input, return */ if (NULL == Parent) { (*swseg_patterns) = NULL; return; } /* Under switch_segment_patterns, count the number of patterns*/ (*num_swseg_pattern) = CountChildren(Parent, "pattern", 0); /* Alloc segment list */ (*swseg_patterns) = NULL; if ((*num_swseg_pattern) > 0) { (*swseg_patterns) = (t_swseg_pattern_inf*) my_malloc((*num_swseg_pattern) * sizeof(t_swseg_pattern_inf)); memset((*swseg_patterns), 0, ((*num_swseg_pattern) * sizeof(t_swseg_pattern_inf))); } /* Load the switch segment pattern. */ for (i = 0; i < (*num_swseg_pattern); ++i) { Node = ezxml_child(Parent, "pattern"); /* Get segment type: support unbuf_sb */ tmp = FindProperty(Node, "type", FALSE); /* DEFAULT: SWSEG_UNBUF_SB*/ (*swseg_patterns[i]).type = SWSEG_UNBUF_SB; if (0 == strcmp(tmp,"unbuf_sb")) { (*swseg_patterns)[i].type = SWSEG_UNBUF_SB; pattern_tag = "sb"; } else if (0 == strcmp(tmp, "unbuf_cb")) { (*swseg_patterns)[i].type = SWSEG_UNBUF_CB; pattern_tag = "cb"; } else { /*Invalid type!*/ vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid switch segment pattern type '%s'.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "type", NULL); /*Load segment length that the pattern will be applied*/ tmp = FindProperty(Node, "seg_length", FALSE); (*swseg_patterns)[i].seg_length = 1; /* DEFAULT: seg_length = 1*/ if (tmp) { (*swseg_patterns)[i].seg_length = my_atoi(tmp); } if ((*swseg_patterns)[i].seg_length < 1) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid seg_length '%s'.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "seg_length", NULL); /* Get the seg_type */ (*swseg_patterns)[i].seg_direction_type = UNI_DIRECTIONAL; /*DEFAULT*/ tmp = FindProperty(Node, "seg_type", TRUE); if (0 == strcmp(tmp, "bidir")) { (*swseg_patterns)[i].seg_direction_type = BI_DIRECTIONAL; } else if (0 == strcmp(tmp, "unidir")) { (*swseg_patterns)[i].seg_direction_type = UNI_DIRECTIONAL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid seg_type '%s'.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "seg_type", NULL); /*Only support unidirection*/ if (UNI_DIRECTIONAL != (*swseg_patterns)[i].seg_direction_type) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] seg_type should be unidir only! '%s'.\n", Node->line, tmp); exit(1); } /* Get the wire and opin switches, or mux switch if unidir */ if (UNI_DIRECTIONAL == (*swseg_patterns)[i].seg_direction_type) { SubElem = FindElement(Node, "unbuf_mux", TRUE); tmp = FindProperty(SubElem, "name", TRUE); /* Match names */ for (j = 0; j < num_switch; ++j) { if (0 == strcmp(tmp, switches[j].name)) { break; /* End loop so j is where we want it */ } } if (j >= num_switch) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid mux name.\n", SubElem->line, tmp); exit(1); } (*swseg_patterns)[i].unbuf_switch = j; ezxml_set_attr(SubElem, "name", NULL); FreeNode(SubElem); } else { assert(BI_DIRECTIONAL == (*swseg_patterns[i]).seg_direction_type); vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] seg_type should be unidir only! '%s'.\n", Node->line, tmp); exit(1); } /* Setup the pattern if they give one, otherwise use full */ /* Find the pattern length*/ tmp = FindProperty(Node, "pattern_length", FALSE); (*swseg_patterns)[i].pattern_length = 2; /* DEFAULT: seg_length = 2*/ if (tmp) { (*swseg_patterns)[i].pattern_length = my_atoi(tmp); } if ((*swseg_patterns)[i].pattern_length < 2) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid pattern_length '%s'.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "pattern_length", NULL); /* Search a pattern_tag*/ /* For unbuf_sb, we expect sb or we make it full*/ SubElem = FindElement(Node,pattern_tag, FALSE); (*swseg_patterns)[i].patterns = (boolean *) my_malloc((*swseg_patterns)[i].pattern_length * sizeof(boolean)); /* DEFAULT: All is 1 */ for (j = 0; j < (*swseg_patterns)[i].pattern_length; ++j) { (*swseg_patterns)[i].patterns[j] = TRUE; } /* Load the pattern*/ if (SubElem) { ProcessCB_SB(SubElem, (*swseg_patterns)[i].patterns, (*swseg_patterns)[i].pattern_length); FreeNode(SubElem); } FreeNode(Node); } } static void ProcessSegments(INOUTP ezxml_t Parent, OUTP struct s_segment_inf **Segs, OUTP int *NumSegs, INP struct s_switch_inf *Switches, INP int NumSwitches, INP boolean timing_enabled) { int i, j, length; const char *tmp; ezxml_t SubElem; ezxml_t Node; /* Count the number of segs and check they are in fact * of segment elements. */ *NumSegs = CountChildren(Parent, "segment", 1); /* Alloc segment list */ *Segs = NULL; if (*NumSegs > 0) { *Segs = (struct s_segment_inf *) my_malloc( *NumSegs * sizeof(struct s_segment_inf)); memset(*Segs, 0, (*NumSegs * sizeof(struct s_segment_inf))); } /* Load the segments. */ for (i = 0; i < *NumSegs; ++i) { Node = ezxml_child(Parent, "segment"); /* Get segment length */ length = 1; /* DEFAULT */ tmp = FindProperty(Node, "length", FALSE); if (tmp) { if (strcmp(tmp, "longline") == 0) { (*Segs)[i].longline = TRUE; } else { length = my_atoi(tmp); } } (*Segs)[i].length = length; ezxml_set_attr(Node, "length", NULL); /* Get the frequency */ (*Segs)[i].frequency = 1; /* DEFAULT */ tmp = FindProperty(Node, "freq", FALSE); if (tmp) { (*Segs)[i].frequency = (int) (atof(tmp) * MAX_CHANNEL_WIDTH); } ezxml_set_attr(Node, "freq", NULL); /* Get timing info */ (*Segs)[i].Rmetal = GetFloatProperty(Node, "Rmetal", timing_enabled, 0); (*Segs)[i].Cmetal = GetFloatProperty(Node, "Cmetal", timing_enabled, 0); /* Xifan TANG: SPICE Model Support*/ (*Segs)[i].spice_model_name = my_strdup(FindProperty(Node, "spice_model_name", FALSE)); (*Segs)[i].spice_model = NULL; ezxml_set_attr(Node, "spice_model_name", NULL); /* Get Power info */ /* (*Segs)[i].Cmetal_per_m = GetFloatProperty(Node, "Cmetal_per_m", FALSE, 0.);*/ /* Get the type */ tmp = FindProperty(Node, "type", TRUE); if (0 == strcmp(tmp, "bidir")) { (*Segs)[i].directionality = BI_DIRECTIONAL; } else if (0 == strcmp(tmp, "unidir")) { (*Segs)[i].directionality = UNI_DIRECTIONAL; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid switch type '%s'.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "type", NULL); /* Get the wire and opin switches, or mux switch if unidir */ if (UNI_DIRECTIONAL == (*Segs)[i].directionality) { SubElem = FindElement(Node, "mux", TRUE); tmp = FindProperty(SubElem, "name", TRUE); /* Match names */ for (j = 0; j < NumSwitches; ++j) { if (0 == strcmp(tmp, Switches[j].name)) { break; /* End loop so j is where we want it */ } } if (j >= NumSwitches) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid mux name.\n", SubElem->line, tmp); exit(1); } ezxml_set_attr(SubElem, "name", NULL); FreeNode(SubElem); /* Unidir muxes must have the same switch * for wire and opin fanin since there is * really only the mux in unidir. */ (*Segs)[i].wire_switch = j; (*Segs)[i].opin_switch = j; } else { assert(BI_DIRECTIONAL == (*Segs)[i].directionality); SubElem = FindElement(Node, "wire_switch", TRUE); tmp = FindProperty(SubElem, "name", TRUE); /* Match names */ for (j = 0; j < NumSwitches; ++j) { if (0 == strcmp(tmp, Switches[j].name)) { break; /* End loop so j is where we want it */ } } if (j >= NumSwitches) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid wire_switch name.\n", SubElem->line, tmp); exit(1); } (*Segs)[i].wire_switch = j; ezxml_set_attr(SubElem, "name", NULL); FreeNode(SubElem); SubElem = FindElement(Node, "opin_switch", TRUE); tmp = FindProperty(SubElem, "name", TRUE); /* Match names */ for (j = 0; j < NumSwitches; ++j) { if (0 == strcmp(tmp, Switches[j].name)) { break; /* End loop so j is where we want it */ } } if (j >= NumSwitches) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid opin_switch name.\n", SubElem->line, tmp); exit(1); } (*Segs)[i].opin_switch = j; ezxml_set_attr(SubElem, "name", NULL); FreeNode(SubElem); } /* Setup the CB list if they give one, otherwise use full */ (*Segs)[i].cb_len = length; (*Segs)[i].cb = (boolean *) my_malloc(length * sizeof(boolean)); for (j = 0; j < length; ++j) { (*Segs)[i].cb[j] = TRUE; } SubElem = FindElement(Node, "cb", FALSE); if (SubElem) { ProcessCB_SB(SubElem, (*Segs)[i].cb, length); FreeNode(SubElem); } /* Setup the SB list if they give one, otherwise use full */ (*Segs)[i].sb_len = (length + 1); (*Segs)[i].sb = (boolean *) my_malloc((length + 1) * sizeof(boolean)); for (j = 0; j < (length + 1); ++j) { (*Segs)[i].sb[j] = TRUE; } SubElem = FindElement(Node, "sb", FALSE); if (SubElem) { ProcessCB_SB(SubElem, (*Segs)[i].sb, (length + 1)); FreeNode(SubElem); } FreeNode(Node); } } static void ProcessCB_SB(INOUTP ezxml_t Node, INOUTP boolean * list, INP int len) { const char *tmp = NULL; int i; /* Check the type. We only support 'pattern' for now. * Should add frac back eventually. */ tmp = FindProperty(Node, "type", TRUE); if (0 == strcmp(tmp, "pattern")) { i = 0; /* Get the content string */ tmp = Node->txt; while (*tmp) { switch (*tmp) { case ' ': case '\t': case '\n': break; case 'T': case '1': if (i >= len) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] CB or SB depopulation is too long. It " "should be (length) symbols for CBs and (length+1) " "symbols for SBs.\n", Node->line); exit(1); } list[i] = TRUE; ++i; break; case 'F': case '0': if (i >= len) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] CB or SB depopulation is too long. It " "should be (length) symbols for CBs and (length+1) " "symbols for SBs.\n", Node->line); exit(1); } list[i] = FALSE; ++i; break; default: vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid character %c in CB or " "SB depopulation list.\n", Node->line, *tmp); exit(1); } ++tmp; } if (i < len) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] CB or SB depopulation is too short. It " "should be (length) symbols for CBs and (length+1) " "symbols for SBs.\n", Node->line); exit(1); } /* Free content string */ ezxml_set_txt(Node, ""); } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] '%s' is not a valid type for specifying " "cb and sb depopulation.\n", Node->line, tmp); exit(1); } ezxml_set_attr(Node, "type", NULL); } static void ProcessSwitches(INOUTP ezxml_t Parent, OUTP struct s_switch_inf **Switches, OUTP int *NumSwitches, INP boolean timing_enabled) { int i, j; const char *type_name; const char *switch_name; const char *buf_size; const char *structure_type; boolean has_buf_size; ezxml_t Node; has_buf_size = FALSE; /* Count the children and check they are switches */ *NumSwitches = CountChildren(Parent, "switch", 1); /* Alloc switch list */ *Switches = NULL; if (*NumSwitches > 0) { *Switches = (struct s_switch_inf *) my_malloc( *NumSwitches * sizeof(struct s_switch_inf)); memset(*Switches, 0, (*NumSwitches * sizeof(struct s_switch_inf))); } /* Load the switches. */ for (i = 0; i < *NumSwitches; ++i) { Node = ezxml_child(Parent, "switch"); switch_name = FindProperty(Node, "name", TRUE); type_name = FindProperty(Node, "type", TRUE); /* Check for switch name collisions */ for (j = 0; j < i; ++j) { if (0 == strcmp((*Switches)[j].name, switch_name)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Two switches with the same name '%s' were " "found.\n", Node->line, switch_name); exit(1); } } (*Switches)[i].name = my_strdup(switch_name); ezxml_set_attr(Node, "name", NULL); /* Figure out the type of switch. */ if (0 == strcmp(type_name, "mux")) { (*Switches)[i].buffered = TRUE; (*Switches)[i].type = "mux"; has_buf_size = TRUE; } else if (0 == strcmp(type_name, "pass_trans")) { (*Switches)[i].buffered = FALSE; (*Switches)[i].type = "pass_trans"; } else if (0 == strcmp(type_name, "buffer")) { (*Switches)[i].buffered = TRUE; (*Switches)[i].type = "buffer"; } // Xifan TANG: new type : unbuf_mux else if (0 == strcmp(type_name, "unbuf_mux")) { (*Switches)[i].buffered = FALSE; (*Switches)[i].type = "unbuf_mux"; (*Switches)[i].buf_size = 0; has_buf_size = FALSE; } // END else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Invalid switch type '%s'.\n", Node->line, type_name); exit(1); } ezxml_set_attr(Node, "type", NULL); (*Switches)[i].R = GetFloatProperty(Node, "R", timing_enabled, 0); (*Switches)[i].Cin = GetFloatProperty(Node, "Cin", timing_enabled, 0); (*Switches)[i].Cout = GetFloatProperty(Node, "Cout", timing_enabled, 0); (*Switches)[i].Tdel = GetFloatProperty(Node, "Tdel", timing_enabled, 0); // Xifan TANG: Switch Segment Pattern support (*Switches)[i].buf_size = GetFloatProperty(Node, "buf_size", has_buf_size, 0); (*Switches)[i].mux_trans_size = GetFloatProperty(Node, "mux_trans_size", FALSE, 1); /* Xifan TANG: Spice Model Support */ (*Switches)[i].spice_model_name = my_strdup(FindProperty(Node, "spice_model_name", FALSE)); (*Switches)[i].spice_model = NULL; ezxml_set_attr(Node, "spice_model_name", NULL); /* Xifan TANG : Read in MUX structure*/ /* Default, we use tree */ structure_type = FindProperty(Node, "structure", FALSE); if (NULL == structure_type) { (*Switches)[i].structure = SPICE_MODEL_STRUCTURE_TREE; vpr_printf(TIO_MESSAGE_INFO, "FPGA-SPICE: Auto-assign structure type of Switch(name=%s) to default(=tree).\n", (*Switches)[i].name); } else if (0 == strcmp("one-level", structure_type)) { (*Switches)[i].structure = SPICE_MODEL_STRUCTURE_ONELEVEL; } else if (0 == strcmp("multi-level", structure_type)) { (*Switches)[i].structure = SPICE_MODEL_STRUCTURE_MULTILEVEL; } else if (0 == strcmp("tree", structure_type)) { (*Switches)[i].structure = SPICE_MODEL_STRUCTURE_TREE; } ezxml_set_attr(Node, "structure", NULL); if (SPICE_MODEL_STRUCTURE_MULTILEVEL == (*Switches)[i].structure) { (*Switches)[i].switch_num_level = GetIntProperty(Node, "num_level", TRUE, 1); if (1 == (*Switches)[i].switch_num_level) { (*Switches)[i].structure = SPICE_MODEL_STRUCTURE_ONELEVEL; vpr_printf(TIO_MESSAGE_INFO, "[LINE%d] Automatically convert switch structure from multi-level to one-level!\nReason: Switch structure is defined to be multi-level but num of level is set to 1.\n", Node->line); } } ezxml_set_attr(Node, "num_level", NULL); /* END */ buf_size = FindProperty(Node, "power_buf_size", FALSE); if (buf_size == NULL) { (*Switches)[i].power_buffer_type = POWER_BUFFER_TYPE_AUTO; } else if (strcmp(buf_size, "auto") == 0) { (*Switches)[i].power_buffer_type = POWER_BUFFER_TYPE_AUTO; } else { (*Switches)[i].power_buffer_type = POWER_BUFFER_TYPE_ABSOLUTE_SIZE; (*Switches)[i].power_buffer_size = (float) atof(buf_size); } ezxml_set_attr(Node, "power_buf_size", NULL); /* Remove the switch element from parse tree */ FreeNode(Node); } } static void ProcessDirects(INOUTP ezxml_t Parent, OUTP t_direct_inf **Directs, OUTP int *NumDirects, INP boolean timing_enabled) { int i, j; const char *direct_name; const char *from_pin_name; const char *to_pin_name; ezxml_t Node; /* Count the children and check they are direct connections */ *NumDirects = CountChildren(Parent, "direct", 1); /* Alloc direct list */ *Directs = NULL; if (*NumDirects > 0) { *Directs = (t_direct_inf *) my_malloc( *NumDirects * sizeof(t_direct_inf)); memset(*Directs, 0, (*NumDirects * sizeof(t_direct_inf))); } /* Load the directs. */ for (i = 0; i < *NumDirects; ++i) { Node = ezxml_child(Parent, "direct"); direct_name = FindProperty(Node, "name", TRUE); /* Check for direct name collisions */ for (j = 0; j < i; ++j) { if (0 == strcmp((*Directs)[j].name, direct_name)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] Two directs with the same name '%s' were " "found.\n", Node->line, direct_name); exit(1); } } (*Directs)[i].name = my_strdup(direct_name); ezxml_set_attr(Node, "name", NULL); /* Figure out the source pin and sink pin name */ from_pin_name = FindProperty(Node, "from_pin", TRUE); to_pin_name = FindProperty(Node, "to_pin", TRUE); /* Check that to_pin and the from_pin are not the same */ if (0 == strcmp(to_pin_name, from_pin_name)) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The source pin and sink pin are the same: %s.\n", Node->line, to_pin_name); exit(1); } (*Directs)[i].from_pin = my_strdup(from_pin_name); (*Directs)[i].to_pin = my_strdup(to_pin_name); ezxml_set_attr(Node, "from_pin", NULL); ezxml_set_attr(Node, "to_pin", NULL); (*Directs)[i].x_offset = GetIntProperty(Node, "x_offset", TRUE, 0); (*Directs)[i].y_offset = GetIntProperty(Node, "y_offset", TRUE, 0); (*Directs)[i].z_offset = GetIntProperty(Node, "z_offset", TRUE, 0); ezxml_set_attr(Node, "x_offset", NULL); ezxml_set_attr(Node, "y_offset", NULL); ezxml_set_attr(Node, "z_offset", NULL); /* Check that the direct chain connection is not zero in both direction */ if ((*Directs)[i].x_offset == 0 && (*Directs)[i].y_offset == 0) { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] The x_offset and y_offset are both zero, " "this is a length 0 direct chain connection.\n", Node->line); exit(1); } /* Spice Model Support: Xifan TANG * We should have a spice_model_name for this direct connection */ (*Directs)[i].spice_model_name = my_strdup(FindProperty(Node, "spice_model_name", FALSE)); (*Directs)[i].spice_model = NULL; ezxml_set_attr(Node,"spice_model_name",NULL); (*Directs)[i].line = Node->line; /* Should I check that the direct chain offset is not greater than the chip? How? */ /* Remove the direct element from parse tree */ FreeNode(Node); } } static void CreateModelLibrary(OUTP struct s_arch *arch) { t_model* model_library; model_library = (t_model*) my_calloc(4, sizeof(t_model)); /* Origin input pads */ model_library[0].name = my_strdup("input"); model_library[0].index = 0; model_library[0].inputs = NULL; model_library[0].instances = NULL; model_library[0].next = &model_library[1]; model_library[0].outputs = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); model_library[0].outputs->dir = OUT_PORT; model_library[0].outputs->name = my_strdup("inpad"); model_library[0].outputs->next = NULL; model_library[0].outputs->size = 1; model_library[0].outputs->min_size = 1; model_library[0].outputs->index = 0; model_library[0].outputs->is_clock = FALSE; /* END Origin input pads */ /* Origin output pads */ model_library[1].name = my_strdup("output"); model_library[1].index = 1; model_library[1].inputs = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); model_library[1].inputs->dir = IN_PORT; model_library[1].inputs->name = my_strdup("outpad"); model_library[1].inputs->next = NULL; model_library[1].inputs->size = 1; model_library[1].inputs->min_size = 1; model_library[1].inputs->index = 0; model_library[1].inputs->is_clock = FALSE; model_library[1].instances = NULL; model_library[1].next = &model_library[2]; model_library[1].outputs = NULL; /* END Origin output pads */ model_library[2].name = my_strdup("latch"); model_library[2].index = 2; model_library[2].inputs = (t_model_ports*) my_calloc(2, sizeof(t_model_ports)); model_library[2].inputs[0].dir = IN_PORT; model_library[2].inputs[0].name = my_strdup("D"); model_library[2].inputs[0].next = &model_library[2].inputs[1]; model_library[2].inputs[0].size = 1; model_library[2].inputs[0].min_size = 1; model_library[2].inputs[0].index = 0; model_library[2].inputs[0].is_clock = FALSE; model_library[2].inputs[1].dir = IN_PORT; model_library[2].inputs[1].name = my_strdup("clk"); model_library[2].inputs[1].next = NULL; model_library[2].inputs[1].size = 1; model_library[2].inputs[1].min_size = 1; model_library[2].inputs[1].index = 0; model_library[2].inputs[1].is_clock = TRUE; model_library[2].instances = NULL; model_library[2].next = &model_library[3]; model_library[2].outputs = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); model_library[2].outputs->dir = OUT_PORT; model_library[2].outputs->name = my_strdup("Q"); model_library[2].outputs->next = NULL; model_library[2].outputs->size = 1; model_library[2].outputs->min_size = 1; model_library[2].outputs->index = 0; model_library[2].outputs->is_clock = FALSE; model_library[3].name = my_strdup("names"); model_library[3].index = 3; model_library[3].inputs = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); model_library[3].inputs->dir = IN_PORT; model_library[3].inputs->name = my_strdup("in"); model_library[3].inputs->next = NULL; model_library[3].inputs->size = 1; model_library[3].inputs->min_size = 1; model_library[3].inputs->index = 0; model_library[3].inputs->is_clock = FALSE; model_library[3].instances = NULL; model_library[3].next = NULL; model_library[3].outputs = (t_model_ports*) my_calloc(1, sizeof(t_model_ports)); model_library[3].outputs->dir = OUT_PORT; model_library[3].outputs->name = my_strdup("out"); model_library[3].outputs->next = NULL; model_library[3].outputs->size = 1; model_library[3].outputs->min_size = 1; model_library[3].outputs->index = 0; model_library[3].outputs->is_clock = FALSE; arch->model_library = model_library; } static void SyncModelsPbTypes(INOUTP struct s_arch *arch, INP t_type_descriptor * Types, INP int NumTypes) { int i; for (i = 0; i < NumTypes; i++) { if (Types[i].pb_type != NULL) { SyncModelsPbTypes_rec(arch, Types[i].pb_type); } } } static void SyncModelsPbTypes_rec(INOUTP struct s_arch *arch, INOUTP t_pb_type * pb_type) { int i, j, p; t_model *model_match_prim, *cur_model; t_model_ports *model_port; struct s_linked_vptr *old; char* blif_model_name; boolean found; if (pb_type->blif_model != NULL) { /* get actual name of subckt */ if (strstr(pb_type->blif_model, ".subckt ") == pb_type->blif_model) { blif_model_name = strchr(pb_type->blif_model, ' '); } else { blif_model_name = strchr(pb_type->blif_model, '.'); } if (blif_model_name) { blif_model_name++; /* get character after the '.' or ' ' */ } else { vpr_printf(TIO_MESSAGE_ERROR, "Unknown blif model %s in pb_type %s\n", pb_type->blif_model, pb_type->name); } /* There are two sets of models to consider, the standard library of models and the user defined models */ if ((strcmp(blif_model_name, "input") == 0) || (strcmp(blif_model_name, "output") == 0) || (strcmp(blif_model_name, "names") == 0) || (strcmp(blif_model_name, "latch") == 0)) { cur_model = arch->model_library; } else { cur_model = arch->models; } /* Determine the logical model to use */ found = FALSE; model_match_prim = NULL; while (cur_model && !found) { /* blif model always starts with .subckt so need to skip first 8 characters */ if (strcmp(blif_model_name, cur_model->name) == 0) { found = TRUE; model_match_prim = cur_model; } cur_model = cur_model->next; } if (found != TRUE) { vpr_printf(TIO_MESSAGE_ERROR, "No matching model for pb_type %s\n", pb_type->blif_model); exit(1); } pb_type->model = model_match_prim; old = model_match_prim->pb_types; model_match_prim->pb_types = (struct s_linked_vptr*) my_malloc( sizeof(struct s_linked_vptr)); model_match_prim->pb_types->next = old; model_match_prim->pb_types->data_vptr = pb_type; for (p = 0; p < pb_type->num_ports; p++) { found = FALSE; /* TODO: Parse error checking - check if INPUT matches INPUT and OUTPUT matches OUTPUT (not yet done) */ model_port = model_match_prim->inputs; while (model_port && !found) { if (strcmp(model_port->name, pb_type->ports[p].name) == 0) { if (model_port->size < pb_type->ports[p].num_pins) { model_port->size = pb_type->ports[p].num_pins; } if (model_port->min_size > pb_type->ports[p].num_pins || model_port->min_size == -1) { model_port->min_size = pb_type->ports[p].num_pins; } pb_type->ports[p].model_port = model_port; assert(pb_type->ports[p].type == model_port->dir); assert(pb_type->ports[p].is_clock == model_port->is_clock); found = TRUE; } model_port = model_port->next; } model_port = model_match_prim->outputs; while (model_port && !found) { if (strcmp(model_port->name, pb_type->ports[p].name) == 0) { if (model_port->size < pb_type->ports[p].num_pins) { model_port->size = pb_type->ports[p].num_pins; } if (model_port->min_size > pb_type->ports[p].num_pins || model_port->min_size == -1) { model_port->min_size = pb_type->ports[p].num_pins; } pb_type->ports[p].model_port = model_port; assert(pb_type->ports[p].type == model_port->dir); found = TRUE; } model_port = model_port->next; } if (found != TRUE) { vpr_printf(TIO_MESSAGE_ERROR, "No matching model port for port %s in pb_type %s\n", pb_type->ports[p].name, pb_type->name); exit(1); } } } else { for (i = 0; i < pb_type->num_modes; i++) { for (j = 0; j < pb_type->modes[i].num_pb_type_children; j++) { SyncModelsPbTypes_rec(arch, &(pb_type->modes[i].pb_type_children[j])); } } } } static void UpdateAndCheckModels(INOUTP struct s_arch *arch) { t_model * cur_model; t_model_ports *port; int i, j; cur_model = arch->models; while (cur_model) { if (cur_model->pb_types == NULL) { vpr_printf(TIO_MESSAGE_ERROR, "No pb_type found for model %s\n", cur_model->name); exit(1); } port = cur_model->inputs; i = 0; j = 0; while (port) { if (port->is_clock) { port->index = i; i++; } else { port->index = j; j++; } port = port->next; } port = cur_model->outputs; i = 0; while (port) { port->index = i; i++; port = port->next; } cur_model = cur_model->next; } } /* Output the data from architecture data so user can verify it * was interpretted correctly. */ void EchoArch(INP const char *EchoFile, INP const t_type_descriptor * Types, INP int NumTypes, struct s_arch *arch) { int i, j; FILE * Echo; t_model * cur_model; t_model_ports * model_port; struct s_linked_vptr *cur_vptr; Echo = my_fopen(EchoFile, "w", 0); cur_model = NULL; for (j = 0; j < 2; j++) { if (j == 0) { fprintf(Echo, "Printing user models \n"); cur_model = arch->models; } else if (j == 1) { fprintf(Echo, "Printing library models \n"); cur_model = arch->model_library; } while (cur_model) { fprintf(Echo, "Model: \"%s\"\n", cur_model->name); model_port = cur_model->inputs; while (model_port) { fprintf(Echo, "\tInput Ports: \"%s\" \"%d\" min_size=\"%d\"\n", model_port->name, model_port->size, model_port->min_size); model_port = model_port->next; } model_port = cur_model->outputs; while (model_port) { fprintf(Echo, "\tOutput Ports: \"%s\" \"%d\" min_size=\"%d\"\n", model_port->name, model_port->size, model_port->min_size); model_port = model_port->next; } cur_vptr = cur_model->pb_types; i = 0; while (cur_vptr != NULL) { fprintf(Echo, "\tpb_type %d: \"%s\"\n", i, ((t_pb_type*) cur_vptr->data_vptr)->name); cur_vptr = cur_vptr->next; i++; } cur_model = cur_model->next; } } for (i = 0; i < NumTypes; ++i) { fprintf(Echo, "Type: \"%s\"\n", Types[i].name); fprintf(Echo, "\tcapacity: %d\n", Types[i].capacity); fprintf(Echo, "\theight: %d\n", Types[i].height); for (j = 0; j < Types[i].num_pins; j++) { fprintf(Echo, "\tis_Fc_frac: \n"); fprintf(Echo, "\t\tPin number %d: %s\n", j, (Types[i].is_Fc_frac[j] ? "TRUE" : "FALSE")); fprintf(Echo, "\tis_Fc_full_flex: \n"); fprintf(Echo, "\t\tPin number %d: %s\n", j, (Types[i].is_Fc_full_flex[j] ? "TRUE" : "FALSE")); fprintf(Echo, "\tFc_val: \n"); fprintf(Echo, "\tPin number %d: %f\n", j, Types[i].Fc[j]); } fprintf(Echo, "\tnum_drivers: %d\n", Types[i].num_drivers); fprintf(Echo, "\tnum_receivers: %d\n", Types[i].num_receivers); fprintf(Echo, "\tindex: %d\n", Types[i].index); if (Types[i].pb_type) { PrintPb_types_rec(Echo, Types[i].pb_type, 2); } fprintf(Echo, "\n"); } fclose(Echo); } static void PrintPb_types_rec(INP FILE * Echo, INP const t_pb_type * pb_type, int level) { int i, j, k; char *tabs; tabs = (char*) my_malloc((level + 1) * sizeof(char)); for (i = 0; i < level; i++) { tabs[i] = '\t'; } tabs[level] = '\0'; fprintf(Echo, "%spb_type name: %s\n", tabs, pb_type->name); fprintf(Echo, "%s\tblif_model: %s\n", tabs, pb_type->blif_model); fprintf(Echo, "%s\tclass_type: %d\n", tabs, pb_type->class_type); fprintf(Echo, "%s\tnum_modes: %d\n", tabs, pb_type->num_modes); fprintf(Echo, "%s\tnum_ports: %d\n", tabs, pb_type->num_ports); for (i = 0; i < pb_type->num_ports; i++) { fprintf(Echo, "%s\tport %s type %d num_pins %d\n", tabs, pb_type->ports[i].name, pb_type->ports[i].type, pb_type->ports[i].num_pins); } for (i = 0; i < pb_type->num_modes; i++) { fprintf(Echo, "%s\tmode %s:\n", tabs, pb_type->modes[i].name); for (j = 0; j < pb_type->modes[i].num_pb_type_children; j++) { PrintPb_types_rec(Echo, &pb_type->modes[i].pb_type_children[j], level + 2); } for (j = 0; j < pb_type->modes[i].num_interconnect; j++) { fprintf(Echo, "%s\t\tinterconnect %d %s %s\n", tabs, pb_type->modes[i].interconnect[j].type, pb_type->modes[i].interconnect[j].input_string, pb_type->modes[i].interconnect[j].output_string); for (k = 0; k < pb_type->modes[i].interconnect[j].num_annotations; k++) { fprintf(Echo, "%s\t\t\tannotation %s %s %d: %s\n", tabs, pb_type->modes[i].interconnect[j].annotations[k].input_pins, pb_type->modes[i].interconnect[j].annotations[k].output_pins, pb_type->modes[i].interconnect[j].annotations[k].format, pb_type->modes[i].interconnect[j].annotations[k].value[0]); } } } free(tabs); } static void ProcessPower( INOUTP ezxml_t parent, INOUTP t_power_arch * power_arch, INP t_type_descriptor * Types, INP int NumTypes) { ezxml_t Cur; /* Get the local interconnect capacitances */ power_arch->local_interc_factor = 0.5; Cur = FindElement(parent, "local_interconnect", FALSE); if (Cur) { power_arch->C_wire_local = GetFloatProperty(Cur, "C_wire", FALSE, 0.); power_arch->local_interc_factor = GetFloatProperty(Cur, "factor", FALSE, 0.5); FreeNode(Cur); } /* Get segment split */ /* power_arch->seg_buffer_split = 1; Cur = FindElement(parent, "segment_buffer_split", FALSE); if (Cur) { power_arch->seg_buffer_split = GetIntProperty(Cur, "split_into", TRUE, 1); FreeNode(Cur); }*/ /* Get logical effort factor */ power_arch->logical_effort_factor = 4.0; Cur = FindElement(parent, "buffers", FALSE); if (Cur) { power_arch->logical_effort_factor = GetFloatProperty(Cur, "logical_effort_factor", TRUE, 0); FreeNode(Cur); } /* Get SRAM Size */ power_arch->transistors_per_SRAM_bit = 6.0; Cur = FindElement(parent, "sram", FALSE); if (Cur) { power_arch->transistors_per_SRAM_bit = GetFloatProperty(Cur, "transistors_per_bit", TRUE, 0); FreeNode(Cur); } /* Get Mux transistor size */ power_arch->mux_transistor_size = 1.0; Cur = FindElement(parent, "mux_transistor_size", FALSE); if (Cur) { power_arch->mux_transistor_size = GetFloatProperty(Cur, "mux_transistor_size", TRUE, 0); FreeNode(Cur); } /* Get FF size */ power_arch->FF_size = 1.0; Cur = FindElement(parent, "FF_size", FALSE); if (Cur) { power_arch->FF_size = GetFloatProperty(Cur, "FF_size", TRUE, 0); FreeNode(Cur); } /* Get LUT transistor size */ power_arch->LUT_transistor_size = 1.0; Cur = FindElement(parent, "LUT_transistor_size", FALSE); if (Cur) { power_arch->LUT_transistor_size = GetFloatProperty(Cur, "LUT_transistor_size", TRUE, 0); FreeNode(Cur); } } /* Get the clock architcture */ static void ProcessClocks(ezxml_t Parent, t_clock_arch * clocks) { ezxml_t Node; int i; const char *tmp; clocks->num_global_clocks = CountChildren(Parent, "clock", 0); /* Alloc the clockdetails */ clocks->clock_inf = NULL; if (clocks->num_global_clocks > 0) { clocks->clock_inf = (t_clock_network *) my_malloc( clocks->num_global_clocks * sizeof(t_clock_network)); memset(clocks->clock_inf, 0, clocks->num_global_clocks * sizeof(t_clock_network)); } /* Load the clock info. */ for (i = 0; i < clocks->num_global_clocks; ++i) { /* get the next clock item */ Node = ezxml_child(Parent, "clock"); tmp = FindProperty(Node, "buffer_size", TRUE); if (strcmp(tmp, "auto") == 0) { clocks->clock_inf[i].autosize_buffer = TRUE; } else { clocks->clock_inf[i].autosize_buffer = FALSE; clocks->clock_inf[i].buffer_size = (float) atof(tmp); } ezxml_set_attr(Node, "buffer_size", NULL); clocks->clock_inf[i].C_wire = GetFloatProperty(Node, "C_wire", TRUE, 0); FreeNode(Node); } } e_power_estimation_method power_method_inherited( e_power_estimation_method parent_power_method) { switch (parent_power_method) { case POWER_METHOD_IGNORE: case POWER_METHOD_AUTO_SIZES: case POWER_METHOD_SPECIFY_SIZES: case POWER_METHOD_TOGGLE_PINS: return parent_power_method; case POWER_METHOD_C_INTERNAL: case POWER_METHOD_ABSOLUTE: return POWER_METHOD_IGNORE; case POWER_METHOD_UNDEFINED: return POWER_METHOD_UNDEFINED; case POWER_METHOD_SUM_OF_CHILDREN: /* Just revert to the default */ return POWER_METHOD_AUTO_SIZES; default: assert(0); return POWER_METHOD_UNDEFINED; // Should never get here, but avoids a compiler warning. } } /* Xifan TANG: Pin Equivalence Auto-Detection */ static void SetupPinEquivalenceAutoDetect(ezxml_t Parent, t_type_descriptor* Type) { const char* Prop; Prop = FindProperty(Parent, "input_ports", TRUE); Type->input_ports_eq_auto_detect = FALSE; if (strcmp(Prop, "on") == 0) { Type->input_ports_eq_auto_detect = TRUE; } else if (strcmp(Prop, "off") == 0) { Type->input_ports_eq_auto_detect = FALSE; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] %s is an invalid pin equivalence auto detect attribute.\n", Parent->line, Prop); exit(1); } ezxml_set_attr(Parent, "input_ports", NULL); Prop = FindProperty(Parent, "output_ports", TRUE); Type->output_ports_eq_auto_detect = FALSE; if (strcmp(Prop, "on") == 0) { Type->output_ports_eq_auto_detect = TRUE; } else if (strcmp(Prop, "off") == 0) { Type->output_ports_eq_auto_detect = FALSE; } else { vpr_printf(TIO_MESSAGE_ERROR, "[LINE %d] %s is an invalid pin equivalence auto detect attribute.\n", Parent->line, Prop); exit(1); } ezxml_set_attr(Parent, "output_ports", NULL); return; }