/******************************************************************** * This file includes functions to print Verilog modules for a Grid * (CLBs, I/Os, heterogeneous blocks etc.) *******************************************************************/ /* System header files */ #include #include /* Header files from external libs */ #include "vtr_geometry.h" #include "util.h" #include "vtr_assert.h" #include "circuit_library_utils.h" /* Header files for VPR */ #include "vpr_types.h" #include "globals.h" /* Header files for FPGA X2P tool suite */ #include "fpga_x2p_naming.h" #include "fpga_x2p_types.h" #include "fpga_x2p_utils.h" #include "fpga_x2p_pbtypes_utils.h" #include "module_manager_utils.h" #include "fpga_x2p_globals.h" /* Header files for Verilog generator */ #include "verilog_global.h" #include "verilog_utils.h" #include "verilog_writer_utils.h" #include "verilog_module_writer.h" #include "verilog_grid.h" /******************************************************************** * Find the side where I/O pins locate on a grid I/O block * 1. I/O grids on the top side of FPGA only have ports on its bottom side * 2. I/O grids on the right side of FPGA only have ports on its left side * 3. I/O grids on the bottom side of FPGA only have ports on its top side * 4. I/O grids on the left side of FPGA only have ports on its right side *******************************************************************/ static e_side find_grid_module_pin_side(t_type_ptr grid_type_descriptor, const e_side& border_side) { VTR_ASSERT(IO_TYPE == grid_type_descriptor); Side side_manager(border_side); return side_manager.get_opposite(); } /******************************************************************** * Add ports/pins to a grid module * This function will iterate over all the pins that are defined * in type_descripter and give a name by its height, side and index * * In particular, for I/O grid, only part of the ports on required * on a specific side. *******************************************************************/ static void add_grid_module_pb_type_ports(ModuleManager& module_manager, const ModuleId& grid_module, t_type_ptr grid_type_descriptor, const e_side& border_side) { /* Ensure that we have a valid grid_type_descriptor */ VTR_ASSERT(NULL != grid_type_descriptor); /* Find the pin side for I/O grids*/ std::vector grid_pin_sides; /* For I/O grids, we care only one side * Otherwise, we will iterate all the 4 sides */ if (IO_TYPE == grid_type_descriptor) { grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side)); } else { grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT}; } /* Create a map between pin class type and grid pin direction */ std::map pin_type2type_map; pin_type2type_map[RECEIVER] = ModuleManager::MODULE_INPUT_PORT; pin_type2type_map[DRIVER] = ModuleManager::MODULE_OUTPUT_PORT; /* Iterate over sides, height and pins */ for (const e_side& side : grid_pin_sides) { for (int iheight = 0; iheight < grid_type_descriptor->height; ++iheight) { for (int ipin = 0; ipin < grid_type_descriptor->num_pins; ++ipin) { if (1 != grid_type_descriptor->pinloc[iheight][side][ipin]) { continue; } /* Reach here, it means this pin is on this side */ int class_id = grid_type_descriptor->pin_class[ipin]; e_pin_type pin_class_type = grid_type_descriptor->class_inf[class_id].type; /* Generate the pin name, * we give a empty coordinate but it will not be used (see details in the function */ vtr::Point dummy_coordinate; std::string port_name = generate_grid_port_name(dummy_coordinate, iheight, side, ipin, false); BasicPort grid_port(port_name, 0, 0); /* Add the port to the module */ module_manager.add_port(grid_module, grid_port, pin_type2type_map[pin_class_type]); } } } } /******************************************************************** * Add module nets to connect a port of child pb_module * to the grid module *******************************************************************/ static void add_grid_module_net_connect_pb_graph_pin(ModuleManager& module_manager, const ModuleId& grid_module, const ModuleId& child_module, const size_t& child_instance, t_type_ptr grid_type_descriptor, t_pb_graph_pin* pb_graph_pin, const e_side& border_side, const enum e_spice_pin2pin_interc_type& pin2pin_interc_type) { /* Find the pin side for I/O grids*/ std::vector grid_pin_sides; /* For I/O grids, we care only one side * Otherwise, we will iterate all the 4 sides */ if (IO_TYPE == grid_type_descriptor) { grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side)); } else { grid_pin_sides.push_back(TOP); grid_pin_sides.push_back(RIGHT); grid_pin_sides.push_back(BOTTOM); grid_pin_sides.push_back(LEFT); } /* num_pins/capacity = the number of pins that each type_descriptor has. * Capacity defines the number of type_descriptors in each grid * so the pin index at grid level = pin_index_in_type_descriptor * + type_descriptor_index_in_capacity * num_pins_per_type_descriptor */ size_t grid_pin_index = pb_graph_pin->pin_count_in_cluster + child_instance * grid_type_descriptor->num_pins / grid_type_descriptor->capacity; int pin_height = grid_type_descriptor->pin_height[grid_pin_index]; for (const e_side& side : grid_pin_sides) { if (1 != grid_type_descriptor->pinloc[pin_height][side][grid_pin_index]) { continue; } /* Reach here, it means this pin is on this side */ /* Create a net to connect the grid pin to child module pin */ ModuleNetId net = module_manager.create_module_net(grid_module); /* Find the port in grid_module */ vtr::Point dummy_coordinate; std::string grid_port_name = generate_grid_port_name(dummy_coordinate, pin_height, side, grid_pin_index, false); ModulePortId grid_module_port_id = module_manager.find_module_port(grid_module, grid_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_module_port_id)); /* Grid port always has only 1 pin, it is assumed when adding these ports to the module * if you need a change, please also change the port adding codes */ size_t grid_module_pin_id = 0; /* Find the port in child module */ std::string child_module_port_name = generate_pb_type_port_name(pb_graph_pin->port); ModulePortId child_module_port_id = module_manager.find_module_port(child_module, child_module_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(child_module, child_module_port_id)); size_t child_module_pin_id = pb_graph_pin->pin_number; /* Add net sources and sinks: * For input-to-input connection, net_source is grid pin, while net_sink is pb_graph_pin * For output-to-output connection, net_source is pb_graph_pin, while net_sink is grid pin */ switch (pin2pin_interc_type) { case INPUT2INPUT_INTERC: module_manager.add_module_net_source(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id); module_manager.add_module_net_sink(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id); break; case OUTPUT2OUTPUT_INTERC: module_manager.add_module_net_source(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id); module_manager.add_module_net_sink(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id); break; default: vpr_printf(TIO_MESSAGE_ERROR, "(File:%s, [LINE%d]) Invalid pin-to-pin interconnection type!\n", __FILE__, __LINE__); exit(1); } } } /******************************************************************** * Add module nets to connect ports/pins of a grid module * to its child modules * This function will iterate over all the pins that are defined * in type_descripter and find the corresponding pin in the top * pb_graph_node of the grid *******************************************************************/ static void add_grid_module_nets_connect_pb_type_ports(ModuleManager& module_manager, const ModuleId& grid_module, const ModuleId& child_module, const size_t& child_instance, t_type_ptr grid_type_descriptor, const e_side& border_side) { /* Ensure that we have a valid grid_type_descriptor */ VTR_ASSERT(NULL != grid_type_descriptor); t_pb_graph_node* top_pb_graph_node = grid_type_descriptor->pb_graph_head; VTR_ASSERT(NULL != top_pb_graph_node); for (int iport = 0; iport < top_pb_graph_node->num_input_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_input_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, grid_type_descriptor, &(top_pb_graph_node->input_pins[iport][ipin]), border_side, INPUT2INPUT_INTERC); } } for (int iport = 0; iport < top_pb_graph_node->num_output_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_output_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, grid_type_descriptor, &(top_pb_graph_node->output_pins[iport][ipin]), border_side, OUTPUT2OUTPUT_INTERC); } } for (int iport = 0; iport < top_pb_graph_node->num_clock_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_clock_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, grid_type_descriptor, &(top_pb_graph_node->clock_pins[iport][ipin]), border_side, INPUT2INPUT_INTERC); } } } /******************************************************************** * Print Verilog modules of a primitive node in the pb_graph_node graph * This generic function can support all the different types of primitive nodes * i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders. * * The Verilog module will consist of two parts: * 1. Logic module of the primitive node * This module performs the logic function of the block * 2. Memory module of the primitive node * This module stores the configuration bits for the logic module * if the logic module is a programmable resource, such as LUT * * Verilog module structure: * * Primitive block * +---------------------------------------+ * | | * | +---------+ +---------+ | * in |----->| |--->| |<------|configuration lines * | | Logic |... | Memory | | * out|<-----| |--->| | | * | +---------+ +---------+ | * | | * +---------------------------------------+ * *******************************************************************/ static void print_verilog_primitive_block(std::fstream& fp, ModuleManager& module_manager, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, t_pb_graph_node* primitive_pb_graph_node, const e_side& io_side, const bool& use_explicit_mapping) { /* Ensure a valid file handler */ check_file_handler(fp); /* Ensure a valid pb_graph_node */ if (NULL == primitive_pb_graph_node) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid primitive_pb_graph_node!\n", __FILE__, __LINE__); exit(1); } /* Find the circuit model id linked to the pb_graph_node */ CircuitModelId& primitive_model = primitive_pb_graph_node->pb_type->circuit_model; /* Generate the module name for this primitive pb_graph_node*/ std::string primitive_module_name_prefix = generate_grid_block_prefix(std::string(grid_verilog_file_name_prefix), io_side); std::string primitive_module_name = generate_physical_block_module_name(primitive_module_name_prefix, primitive_pb_graph_node->pb_type); /* Create a module of the primitive LUT and register it to module manager */ ModuleId primitive_module = module_manager.add_module(primitive_module_name); /* Ensure that the module has been created and thus unique! */ VTR_ASSERT(ModuleId::INVALID() != primitive_module); /* Find the global ports required by the primitive node, and add them to the module */ std::vector primitive_model_global_ports = circuit_lib.model_global_ports(primitive_model, true); for (auto port : primitive_model_global_ports) { /* The global I/O of the FPGA has a special name */ BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Find the inout ports required by the primitive node, and add them to the module * This is mainly due to the I/O blocks, which have inout ports for the top-level fabric */ if (SPICE_MODEL_IOPAD == circuit_lib.model_type(primitive_model)) { std::vector primitive_model_inout_ports = circuit_lib.model_ports_by_type(primitive_model, SPICE_MODEL_PORT_INOUT); for (auto port : primitive_model_inout_ports) { BasicPort module_port(generate_fpga_global_io_port_name(std::string(gio_inout_prefix), circuit_lib, primitive_model), circuit_lib.port_size(port)); module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GPIO_PORT); } } /* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here. * Since we have linked pb_type ports to circuit models when setting up FPGA-X2P, * no ports of the circuit model will be missing here */ add_primitive_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type); /* Add configuration ports */ /* Shared SRAM ports*/ size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, cur_sram_orgz_info->type); if (0 < num_shared_config_bits) { /* Check: this SRAM organization type must be memory-bank ! */ VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type ); /* Generate a list of ports */ add_reserved_sram_ports_to_module_manager(module_manager, primitive_module, num_shared_config_bits); } /* TODO: this should be added to the cur_sram_orgz_info !!! */ t_spice_model* mem_model = NULL; get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model); CircuitModelId sram_model = circuit_lib.model(mem_model->name); VTR_ASSERT(CircuitModelId::INVALID() != sram_model); /* Regular (independent) SRAM ports */ size_t num_config_bits = find_circuit_num_config_bits(circuit_lib, primitive_model); if (0 < num_config_bits) { add_sram_ports_to_module_manager(module_manager, primitive_module, circuit_lib, sram_model, cur_sram_orgz_info->type, num_config_bits); } /* Find the module id in the module manager */ ModuleId logic_module = module_manager.find_module(circuit_lib.model_name(primitive_model)); VTR_ASSERT(ModuleId::INVALID() != logic_module); size_t logic_instance_id = module_manager.num_instance(primitive_module, logic_module); /* Add the logic module as a child of primitive module */ module_manager.add_child_module(primitive_module, logic_module); /* Add nets to connect the logic model ports to pb_type ports */ add_primitive_pb_type_module_nets(module_manager, primitive_module, logic_module, logic_instance_id, circuit_lib, primitive_pb_graph_node->pb_type); /* Add the associated memory module as a child of primitive module */ std::string memory_module_name = generate_memory_module_name(circuit_lib, primitive_model, sram_model, std::string(verilog_mem_posfix)); ModuleId memory_module = module_manager.find_module(memory_module_name); /* Vectors to record all the memory modules have been added * They are used to add module nets of configuration bus */ std::vector memory_modules; std::vector memory_instances; /* If there is no memory module required, we can skip the assocated net addition */ if (ModuleId::INVALID() != memory_module) { size_t memory_instance_id = module_manager.num_instance(primitive_module, memory_module); /* Add the memory module as a child of primitive module */ module_manager.add_child_module(primitive_module, memory_module); /* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */ add_module_nets_between_logic_and_memory_sram_bus(module_manager, primitive_module, logic_module, logic_instance_id, memory_module, memory_instance_id, circuit_lib, primitive_model); /* Record memory-related information */ memory_modules.push_back(memory_module); memory_instances.push_back(memory_instance_id); } /* Add all the nets to connect configuration ports from memory module to primitive modules * This is a one-shot addition that covers all the memory modules in this primitive module! */ if (false == memory_modules.empty()) { add_module_nets_memory_config_bus(module_manager, primitive_module, memory_modules, memory_instances, cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model)); } /* Write the verilog module */ write_verilog_module_to_file(fp, module_manager, primitive_module, use_explicit_mapping); /* Add an empty line as a splitter */ fp << std::endl; } /******************************************************************** * This function add a net for a pin-to-pin connection defined in pb_graph * It supports two cases for the pin-to-pin connection * 1. The net source is a pb_graph_pin while the net sink is a pin of an interconnection * 2. The net source is a pin of an interconnection while the net sink a pb_graph_pin * The type is enabled by an argument pin2pin_interc_type *******************************************************************/ static void add_module_pb_graph_pin2pin_net(ModuleManager& module_manager, const ModuleId& pb_module, const ModuleId& interc_module, const size_t& interc_instance, const std::string& interc_port_name, const size_t& interc_pin_id, const std::string& module_name_prefix, t_pb_graph_pin* pb_graph_pin, const enum e_spice_pin2pin_interc_type& pin2pin_interc_type) { ModuleNetId pin2pin_net = module_manager.create_module_net(pb_module); /* Find port and pin ids for the module, which is the parent of pb_graph_pin */ t_pb_type* pin_pb_type = pb_graph_pin->parent_node->pb_type; /* Find the module contains the source pin */ ModuleId pin_pb_type_module = module_manager.find_module(generate_physical_block_module_name(module_name_prefix, pin_pb_type)); VTR_ASSERT(true == module_manager.valid_module_id(pin_pb_type_module)); size_t pin_pb_type_instance = 0; /* Deposite the instance with a zero, which is the default value is the source module is actually pb_module itself */ if (pin_pb_type_module != pb_module) { pin_pb_type_instance = pb_graph_pin->parent_node->placement_index; /* Ensure this is an valid instance */ VTR_ASSERT(pin_pb_type_instance < module_manager.num_instance(pb_module, pin_pb_type_module)); } ModulePortId pin_module_port_id = module_manager.find_module_port(pin_pb_type_module, generate_pb_type_port_name(pb_graph_pin->port)); VTR_ASSERT(true == module_manager.valid_module_port_id(pin_pb_type_module, pin_module_port_id)); size_t pin_module_pin_id = pb_graph_pin->pin_number; /* Ensure this is an valid pin index */ VTR_ASSERT(pin_module_pin_id < module_manager.module_port(pin_pb_type_module, pin_module_port_id).get_width()); /* Find port and pin ids for the interconnection module */ ModulePortId interc_port_id = module_manager.find_module_port(interc_module, interc_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(interc_module, interc_port_id)); /* Ensure this is an valid pin index */ VTR_ASSERT(interc_pin_id < module_manager.module_port(interc_module, interc_port_id).get_width()); /* Add net sources and sinks: * For input-to-input connection, net_source is pin_graph_pin, while net_sink is interc pin * For output-to-output connection, net_source is interc pin, while net_sink is pin_graph pin */ switch (pin2pin_interc_type) { case INPUT2INPUT_INTERC: module_manager.add_module_net_source(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id); module_manager.add_module_net_sink(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id); break; case OUTPUT2OUTPUT_INTERC: module_manager.add_module_net_source(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id); module_manager.add_module_net_sink(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id); break; default: vpr_printf(TIO_MESSAGE_ERROR, "(File:%s, [LINE%d]) Invalid pin-to-pin interconnection type!\n", __FILE__, __LINE__); exit(1); } } /******************************************************************** * We check output_pins of cur_pb_graph_node and its the input_edges * Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node * src_pb_graph_node.[in|out]_pins -----------------> des_pb_graph_node.[in|out]pins * /|\ * | * input_pins, edges, output_pins * * This function does the following task: * 1. identify pin interconnection type, * 2. Identify the number of fan-in (Consider interconnection edges of only selected mode) * 3. Add mux/direct connection as a child module to pb_module * 4. Add nets related to the mux/direction *******************************************************************/ static void add_module_pb_graph_pin_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const CircuitLibrary& circuit_lib, const std::string& module_name_prefix, t_pb_graph_pin* des_pb_graph_pin, t_mode* physical_mode) { /* Find the number of fan-in and detailed interconnection information * related to the destination pb_graph_pin */ int fan_in = 0; t_interconnect* cur_interc = NULL; find_interc_fan_in_des_pb_graph_pin(des_pb_graph_pin, physical_mode, &cur_interc, &fan_in); /* If no interconnection is needed, we can return early */ if ((NULL == cur_interc) || (0 == fan_in)) { return; } /* Initialize the interconnection type that will be physically implemented in module */ enum e_interconnect verilog_interc_type = determine_actual_pb_interc_type(cur_interc, fan_in); /* Find input ports of the wire module */ std::vector interc_model_inputs = circuit_lib.model_ports_by_type(cur_interc->circuit_model, SPICE_MODEL_PORT_INPUT, true); /* the last argument to guarantee that we ignore any global inputs */ /* Find output ports of the wire module */ std::vector interc_model_outputs = circuit_lib.model_ports_by_type(cur_interc->circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* the last argument to guarantee that we ignore any global ports */ /* Ensure that we have only 1 input port and 1 output port, this is valid for both wire and MUX */ VTR_ASSERT(1 == interc_model_inputs.size()); VTR_ASSERT(1 == interc_model_outputs.size()); /* Branch on the type of physical implementation, * We add instances of programmable interconnection */ switch (verilog_interc_type) { case DIRECT_INTERC: { /* Ensure direct interc has only one fan-in */ VTR_ASSERT(1 == fan_in); /* For more than one mode defined, the direct interc has more than one input_edge , * We need to find which edge is connected the pin we want */ int iedge = 0; for (iedge = 0; iedge < des_pb_graph_pin->num_input_edges; iedge++) { if (cur_interc == des_pb_graph_pin->input_edges[iedge]->interconnect) { break; } } t_pb_graph_pin* src_pb_graph_pin = des_pb_graph_pin->input_edges[iedge]->input_pins[0]; /* Ensure that circuit model is a wire */ VTR_ASSERT(SPICE_MODEL_WIRE == circuit_lib.model_type(cur_interc->circuit_model)); /* Find the wire module in the module manager */ ModuleId wire_module = module_manager.find_module(circuit_lib.model_name(cur_interc->circuit_model)); VTR_ASSERT(true == module_manager.valid_module_id(wire_module)); /* Get the instance id and add an instance of wire */ size_t wire_instance = module_manager.num_instance(pb_module, wire_module); module_manager.add_child_module(pb_module, wire_module); /* Ensure input and output ports of the wire model has only 1 pin respectively */ VTR_ASSERT(1 == circuit_lib.port_size(interc_model_inputs[0])); VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0])); /* Add nets to connect the wires to ports of pb_module */ /* First net is to connect input of src_pb_graph_node to input of the wire module */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, wire_module, wire_instance, circuit_lib.port_lib_name(interc_model_inputs[0]), 0, /* wire input port has only 1 pin */ module_name_prefix, src_pb_graph_pin, INPUT2INPUT_INTERC); /* Second net is to connect output of the wire module to output of des_pb_graph_pin */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, wire_module, wire_instance, circuit_lib.port_lib_name(interc_model_outputs[0]), 0, /* wire output port has only 1 pin */ module_name_prefix, des_pb_graph_pin, OUTPUT2OUTPUT_INTERC); break; } case COMPLETE_INTERC: case MUX_INTERC: { /* Check: MUX should have at least 2 fan_in */ VTR_ASSERT((2 == fan_in)||(2 < fan_in)); /* Ensure that circuit model is a MUX */ VTR_ASSERT(SPICE_MODEL_MUX == circuit_lib.model_type(cur_interc->circuit_model)); /* Find the wire module in the module manager */ ModuleId mux_module = module_manager.find_module(generate_mux_subckt_name(circuit_lib, cur_interc->circuit_model, fan_in, std::string())); VTR_ASSERT(true == module_manager.valid_module_id(mux_module)); /* Instanciate the MUX */ size_t mux_instance = module_manager.num_instance(pb_module, mux_module); module_manager.add_child_module(pb_module, mux_module); /* Instanciate a memory module for the MUX */ std::string mux_mem_module_name = generate_mux_subckt_name(circuit_lib, cur_interc->circuit_model, fan_in, std::string(verilog_mem_posfix)); ModuleId mux_mem_module = module_manager.find_module(mux_mem_module_name); VTR_ASSERT(true == module_manager.valid_module_id(mux_mem_module)); size_t mux_mem_instance = module_manager.num_instance(pb_module, mux_mem_module); module_manager.add_child_module(pb_module, mux_mem_module); /* Add nets to connect SRAM ports of the MUX to the SRAM port of memory module */ add_module_nets_between_logic_and_memory_sram_bus(module_manager, pb_module, mux_module, mux_instance, mux_mem_module, mux_mem_instance, circuit_lib, cur_interc->circuit_model); /* Update memory modules and memory instance list */ memory_modules.push_back(mux_mem_module); memory_instances.push_back(mux_mem_instance); /* Ensure output port of the MUX model has only 1 pin, * while the input port size is dependent on the architecture conext, * no constaints on the circuit model definition */ VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0])); /* Create nets to wire between the MUX and PB module */ /* Add a net to wire the inputs of the multiplexer to its source pb_graph_pin inside pb_module * Here is a tricky part. * Not every input edges from the destination pb_graph_pin is used in the physical_model of pb_type * So, we will skip these input edges when building nets */ int mux_input_pin_id = 0; for (int iedge = 0; iedge < des_pb_graph_pin->num_input_edges; iedge++) { if (physical_mode != des_pb_graph_pin->input_edges[iedge]->interconnect->parent_mode) { continue; } /* Ensure that the input edge has only 1 input pin! */ check_pb_graph_edge(*(des_pb_graph_pin->input_edges[iedge])); t_pb_graph_pin* src_pb_graph_pin = des_pb_graph_pin->input_edges[iedge]->input_pins[0]; /* Add a net, set its source and sink */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, mux_module, mux_instance, circuit_lib.port_lib_name(interc_model_inputs[0]), mux_input_pin_id, module_name_prefix, src_pb_graph_pin, INPUT2INPUT_INTERC); mux_input_pin_id++; } /* Ensure all the fan_in has been covered */ VTR_ASSERT(mux_input_pin_id == fan_in); /* Add a net to wire the output of the multiplexer to des_pb_graph_pin */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, mux_module, mux_instance, circuit_lib.port_lib_name(interc_model_outputs[0]), 0, /* MUX should have only 1 pin in its output port */ module_name_prefix, des_pb_graph_pin, OUTPUT2OUTPUT_INTERC); break; } default: vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])Invalid interconnection type for %s [at Architecture XML LINE%d]!\n", __FILE__, __LINE__, cur_interc->name, cur_interc->line_num); exit(1); } } /******************************************************************** * Add modules and nets for programmable/non-programmable interconnections * which end to a port of pb_module * This function will add the following elements to a module * 1. Instances of direct connections * 2. Instances of programmable routing multiplexers * 3. nets to connect direct connections/multiplexer * * +-----------------------------------------+ * | * | +--------------+ +------------+ * |--->| |--->| | * |... | Multiplexers |... | | * |--->| |--->| | * | +--------------+ | des_pb_ | * | | graph_node | * | +--------------+ | | * |--->| |--->| | * | ...| Direct |... | | * |--->| Connections |--->| | * | +--------------+ +------------+ * | * +----------------------------------------+ * * Note: this function should be run after ALL the child pb_modules * have been added to the pb_module and ALL the ports defined * in pb_type have been added to the pb_module!!! * ********************************************************************/ static void add_module_pb_graph_port_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const CircuitLibrary& circuit_lib, t_pb_graph_node* des_pb_graph_node, const std::string& module_name_prefix, const e_spice_pb_port_type& pb_port_type, t_mode* physical_mode) { switch (pb_port_type) { case SPICE_PB_PORT_INPUT: { for (int iport = 0; iport < des_pb_graph_node->num_input_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_input_pins[iport]; ++ipin) { /* Get the selected edge of current pin*/ add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, module_name_prefix, &(des_pb_graph_node->input_pins[iport][ipin]), physical_mode); } } break; } case SPICE_PB_PORT_OUTPUT: { for (int iport = 0; iport < des_pb_graph_node->num_output_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_output_pins[iport]; ++ipin) { add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, module_name_prefix, &(des_pb_graph_node->output_pins[iport][ipin]), physical_mode); } } break; } case SPICE_PB_PORT_CLOCK: { for (int iport = 0; iport < des_pb_graph_node->num_clock_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_clock_pins[iport]; ++ipin) { add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, module_name_prefix, &(des_pb_graph_node->clock_pins[iport][ipin]), physical_mode); } } break; } default: vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid pb port type!\n", __FILE__, __LINE__); exit(1); } } /******************************************************************** * TODO: * Add modules and nets for programmable/non-programmable interconnections * inside a module of pb_type * This function will add the following elements to a module * 1. Instances of direct connections * 2. Instances of programmable routing multiplexers * 3. nets to connect direct connections/multiplexer * * Pb_module * +--------------------------------------------------------------+ * | | * | +--------------+ +------------+ +--------------+ | * |--->| |--->| |--->| |--->| * |... | Multiplexers |... | |... | Multiplexers |... | * |--->| |--->| |--->| |--->| * | +--------------+ | Child | +--------------+ | * | | Pb_modules | | * | +--------------+ | | +--------------+ | * |--->| |--->| |--->| |--->| * | ...| Direct |... | |... | Direct |... | * |--->| Connections |--->| |--->| Connections |--->| * | +--------------+ +------------+ +--------------+ | * | | * +--------------------------------------------------------------+ * * Note: this function should be run after ALL the child pb_modules * have been added to the pb_module and ALL the ports defined * in pb_type have been added to the pb_module!!! * ********************************************************************/ static void add_module_pb_graph_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const CircuitLibrary& circuit_lib, t_pb_graph_node* physical_pb_graph_node, const std::string& module_name_prefix, const int& physical_mode_index) { /* Check cur_pb_graph_node*/ if (NULL == physical_pb_graph_node) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n", __FILE__, __LINE__); exit(1); } /* Assign physical mode */ t_mode* physical_mode = &(physical_pb_graph_node->pb_type->modes[physical_mode_index]); /* We check output_pins of cur_pb_graph_node and its the input_edges * Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node * child_pb_graph_node.output_pins -----------------> cur_pb_graph_node.outpins * /|\ * | * input_pins, edges, output_pins */ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, physical_pb_graph_node, module_name_prefix, SPICE_PB_PORT_OUTPUT, physical_mode); /* We check input_pins of child_pb_graph_node and its the input_edges * Built the interconnections between inputs of cur_pb_graph_node and inputs of child_pb_graph_node * cur_pb_graph_node.input_pins -----------------> child_pb_graph_node.input_pins * /|\ * | * input_pins, edges, output_pins */ for (int child = 0; child < physical_pb_graph_node->pb_type->modes[physical_mode_index].num_pb_type_children; ++child) { for (int inst = 0; inst < physical_pb_graph_node->pb_type->modes[physical_mode_index].pb_type_children[child].num_pb; ++inst) { t_pb_graph_node* child_pb_graph_node = &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][child][inst]); /* For each child_pb_graph_node input pins*/ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, child_pb_graph_node, module_name_prefix, SPICE_PB_PORT_INPUT, physical_mode); /* For each child_pb_graph_node clock pins*/ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, child_pb_graph_node, module_name_prefix, SPICE_PB_PORT_CLOCK, physical_mode); } } } /******************************************************************** * Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.) * This function will traverse the graph of complex logic block (t_pb_graph_node) * in a recursive way, using a Depth First Search (DFS) algorithm. * As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph * will be printed out first, while the top-level will be printed out in the last * * Note: this function will print a unique Verilog module for each type of * t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly * hierarchical Verilog organization as well as simplify the Verilog file sizes. * * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager *******************************************************************/ static void print_verilog_physical_blocks_rec(std::fstream& fp, ModuleManager& module_manager, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, t_sram_orgz_info* cur_sram_orgz_info, t_pb_graph_node* physical_pb_graph_node, const e_side& io_side, const bool& use_explicit_mapping) { /* Check the file handler*/ check_file_handler(fp); /* Check cur_pb_graph_node*/ if (NULL == physical_pb_graph_node) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n", __FILE__, __LINE__); exit(1); } /* Get the pb_type definition related to the node */ t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type; /* Find the mode that physical implementation of a pb_type */ int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type)); /* For non-leaf node in the pb_type graph: * Recursively Depth-First Generate all the child pb_type at the level */ if (FALSE == is_primitive_pb_type(physical_pb_type)) { for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) { /* Go recursive to visit the children */ print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib, cur_sram_orgz_info, &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]), io_side, use_explicit_mapping); } } /* For leaf node, a primitive Verilog module will be generated */ if (TRUE == is_primitive_pb_type(physical_pb_type)) { print_verilog_primitive_block(fp, module_manager, circuit_lib, cur_sram_orgz_info, physical_pb_graph_node, io_side, use_explicit_mapping); /* Finish for primitive node, return */ return; } /* Generate the name of the Verilog module for this pb_type */ std::string pb_module_name_prefix = generate_grid_block_prefix(std::string(grid_verilog_file_name_prefix), io_side); std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, physical_pb_type); /* Register the Verilog module in module manager */ ModuleId pb_module = module_manager.add_module(pb_module_name); VTR_ASSERT(ModuleId::INVALID() != pb_module); /* Add ports to the Verilog module */ add_pb_type_ports_to_module_manager(module_manager, pb_module, physical_pb_type); /* Vectors to record all the memory modules have been added * They are used to add module nets of configuration bus */ std::vector memory_modules; std::vector memory_instances; /* TODO: this should be added to the cur_sram_orgz_info !!! */ t_spice_model* mem_model = NULL; get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model); CircuitModelId sram_model = circuit_lib.model(mem_model->name); VTR_ASSERT(CircuitModelId::INVALID() != sram_model); /* Add all the child Verilog modules as instances */ for (int ichild = 0; ichild < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ichild) { /* Get the name and module id for this child pb_type */ std::string child_pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, &(physical_pb_type->modes[physical_mode_index].pb_type_children[ichild])); ModuleId child_pb_module = module_manager.find_module(child_pb_module_name); /* We must have one valid id! */ VTR_ASSERT(true == module_manager.valid_module_id(child_pb_module)); /* Each child may exist multiple times in the hierarchy*/ for (int inst = 0; inst < physical_pb_type->modes[physical_mode_index].pb_type_children[ichild].num_pb; ++inst) { size_t child_instance_id = module_manager.num_instance(pb_module, child_pb_module); /* Ensure the instance of this child module is the same as placement index, * This check is necessary because placement_index is used to identify instance id for children * when adding local interconnection for this pb_type */ VTR_ASSERT(child_instance_id == (size_t)physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ichild][inst].placement_index); /* Add the memory module as a child of primitive module */ module_manager.add_child_module(pb_module, child_pb_module); /* Identify if this sub module includes configuration bits, * we will update the memory module and instance list */ if (0 < find_module_num_config_bits(module_manager, child_pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type)) { memory_modules.push_back(child_pb_module); memory_instances.push_back(child_instance_id); } } } /* Add modules and nets for programmable/non-programmable interconnections * inside the Verilog module */ add_module_pb_graph_interc(module_manager, pb_module, memory_modules, memory_instances, circuit_lib, physical_pb_graph_node, pb_module_name_prefix, physical_mode_index); /* Add global ports to the pb_module: * This is a much easier job after adding sub modules (instances), * we just need to find all the global ports from the child modules and build a list of it */ add_module_global_ports_from_child_modules(module_manager, pb_module); /* Count GPIO ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ add_module_gpio_ports_from_child_modules(module_manager, pb_module); /* Count shared SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, pb_module); if (0 < module_num_shared_config_bits) { add_reserved_sram_ports_to_module_manager(module_manager, pb_module, module_num_shared_config_bits); } /* Count SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type); if (0 < module_num_config_bits) { add_sram_ports_to_module_manager(module_manager, pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type, module_num_config_bits); } /* Add module nets to connect memory cells inside * This is a one-shot addition that covers all the memory modules in this pb module! */ if (false == memory_modules.empty()) { add_module_nets_memory_config_bus(module_manager, pb_module, memory_modules, memory_instances, cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model)); } /* Comment lines */ print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----")); /* Write the verilog module */ write_verilog_module_to_file(fp, module_manager, pb_module, use_explicit_mapping); print_verilog_comment(fp, std::string("----- END Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----")); /* Add an empty line as a splitter */ fp << std::endl; } /***************************************************************************** * This function will create a Verilog file and print out a Verilog netlist * for a type of physical block * * For IO blocks: * The param 'border_side' is required, which is specify which side of fabric * the I/O block locates at. *****************************************************************************/ static void print_verilog_grid(ModuleManager& module_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, const std::string& verilog_dir, const std::string& subckt_dir, t_type_ptr phy_block_type, const e_side& border_side, const bool& use_explicit_mapping) { /* Check code: if this is an IO block, the border side MUST be valid */ if (IO_TYPE == phy_block_type) { VTR_ASSERT(NUM_SIDES != border_side); } /* Give a name to the Verilog netlist */ /* Create the file name for Verilog */ std::string verilog_fname(subckt_dir + generate_grid_block_netlist_name(std::string(phy_block_type->name), IO_TYPE == phy_block_type, border_side, std::string(verilog_netlist_file_postfix)) ); /* TODO: remove the bak file when the file is ready */ verilog_fname += ".bak"; /* Echo status */ if (IO_TYPE == phy_block_type) { Side side_manager(border_side); vpr_printf(TIO_MESSAGE_INFO, "Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ...\n", verilog_fname.c_str(), phy_block_type->name, side_manager.c_str()); } else { vpr_printf(TIO_MESSAGE_INFO, "Writing FPGA Verilog Netlist (%s) for logic block %s...\n", verilog_fname.c_str(), phy_block_type->name); } /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_handler(fp); print_verilog_file_header(fp, std::string("Verilog modules for physical block: " + std::string(phy_block_type->name) + "]")); /* Print preprocessing flags */ print_verilog_include_defines_preproc_file(fp, verilog_dir); /* Print Verilog modules for all the pb_types/pb_graph_nodes * use a Depth-First Search Algorithm to print the sub-modules * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager */ print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); /* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */ print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib, cur_sram_orgz_info, phy_block_type->pb_graph_head, border_side, use_explicit_mapping); print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); /* Create a Verilog Module for the top-level physical block, and add to module manager */ std::string grid_module_name = generate_grid_block_module_name(std::string(grid_verilog_file_name_prefix), std::string(phy_block_type->name), IO_TYPE == phy_block_type, border_side); ModuleId grid_module = module_manager.add_module(grid_module_name); VTR_ASSERT(true == module_manager.valid_module_id(grid_module)); /* Vectors to record all the memory modules have been added * They are used to add module nets of configuration bus */ std::vector memory_modules; std::vector memory_instances; /* TODO: this should be added to the cur_sram_orgz_info !!! */ t_spice_model* mem_model = NULL; get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model); CircuitModelId sram_model = circuit_lib.model(mem_model->name); VTR_ASSERT(CircuitModelId::INVALID() != sram_model); /* Generate the name of the Verilog module for this pb_type */ std::string pb_module_name_prefix(grid_verilog_file_name_prefix); std::string pb_module_name = generate_grid_physical_block_module_name(pb_module_name_prefix, phy_block_type->pb_graph_head->pb_type, border_side); ModuleId pb_module = module_manager.find_module(pb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(pb_module)); /* Add all the sub modules */ for (int iz = 0; iz < phy_block_type->capacity; ++iz) { size_t pb_instance_id = module_manager.num_instance(grid_module, pb_module); module_manager.add_child_module(grid_module, pb_module); /* Identify if this sub module includes configuration bits, * we will update the memory module and instance list */ if (0 < find_module_num_config_bits(module_manager, pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type)) { memory_modules.push_back(pb_module); memory_instances.push_back(pb_instance_id); } } /* Add grid ports(pins) to the module */ add_grid_module_pb_type_ports(module_manager, grid_module, phy_block_type, border_side); /* Add module nets to connect the pb_type ports to sub modules */ for (const size_t& child_instance : module_manager.child_module_instances(grid_module, pb_module)) { add_grid_module_nets_connect_pb_type_ports(module_manager, grid_module, pb_module, child_instance, phy_block_type, border_side); } /* Add global ports to the pb_module: * This is a much easier job after adding sub modules (instances), * we just need to find all the global ports from the child modules and build a list of it */ add_module_global_ports_from_child_modules(module_manager, grid_module); /* Count GPIO ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ add_module_gpio_ports_from_child_modules(module_manager, grid_module); /* Count shared SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, grid_module); if (0 < module_num_shared_config_bits) { add_reserved_sram_ports_to_module_manager(module_manager, grid_module, module_num_shared_config_bits); } /* Count SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, grid_module, circuit_lib, sram_model, cur_sram_orgz_info->type); if (0 < module_num_config_bits) { add_sram_ports_to_module_manager(module_manager, grid_module, circuit_lib, sram_model, cur_sram_orgz_info->type, module_num_config_bits); } /* Add module nets to connect memory cells inside * This is a one-shot addition that covers all the memory modules in this pb module! */ if (false == memory_modules.empty()) { add_module_nets_memory_config_bus(module_manager, grid_module, memory_modules, memory_instances, cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model)); } /* Write the verilog module */ print_verilog_comment(fp, std::string("----- BEGIN Grid Verilog module: " + module_manager.module_name(grid_module) + " -----")); write_verilog_module_to_file(fp, module_manager, grid_module, use_explicit_mapping); print_verilog_comment(fp, std::string("----- END Grid Verilog module: " + module_manager.module_name(grid_module) + " -----")); /* Add an empty line as a splitter */ fp << std::endl; /* Close file handler */ fp.close(); /* Add fname to the linked list */ /* TODO: add it when it is ready grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str()); */ } /***************************************************************************** * Create logic block modules in a compact way: * 1. Only one module for each I/O on each border side (IO_TYPE) * 2. Only one module for each CLB (FILL_TYPE) * 3. Only one module for each heterogeneous block ****************************************************************************/ void print_verilog_grids(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, t_sram_orgz_info* cur_sram_orgz_info, const std::string& verilog_dir, const std::string& subckt_dir, const bool& is_explicit_mapping) { /* Enumerate the types, dump one Verilog module for each */ for (int itype = 0; itype < num_types; itype++) { if (EMPTY_TYPE == &type_descriptors[itype]) { /* Bypass empty type or NULL */ continue; } else if (IO_TYPE == &type_descriptors[itype]) { /* Special for I/O block, generate one module for each border side */ for (int iside = 0; iside < NUM_SIDES; iside++) { Side side_manager(iside); print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], side_manager.get_side(), is_explicit_mapping); } continue; } else if (FILL_TYPE == &type_descriptors[itype]) { /* For CLB */ print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], NUM_SIDES, is_explicit_mapping); continue; } else { /* For heterogenenous blocks */ print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], NUM_SIDES, is_explicit_mapping); } } /* Output a header file for all the logic blocks */ vpr_printf(TIO_MESSAGE_INFO, "Generating header file for grid Verilog modules...\n"); std::string grid_verilog_fname(logic_block_verilog_file_name); /* TODO: remove .bak when it is ready */ grid_verilog_fname += ".bak"; dump_verilog_subckt_header_file(grid_verilog_subckt_file_path_head, subckt_dir.c_str(), grid_verilog_fname.c_str()); }