update FPGA_SPICE to support max width for transistors and multi-bin

This commit is contained in:
tangxifan 2020-07-24 17:52:31 -06:00
parent c3fd817bae
commit fd3e947c6d
1 changed files with 326 additions and 67 deletions

View File

@ -5,6 +5,7 @@
* logic gates etc. * logic gates etc.
***********************************************/ ***********************************************/
#include <fstream> #include <fstream>
#include <cmath>
#include <iomanip> #include <iomanip>
/* Headers from vtrutil library */ /* Headers from vtrutil library */
@ -125,15 +126,15 @@ int print_spice_transistor_wrapper(NetlistManager& netlist_manager,
* an inverter. Any preprocessing or subckt definition should not be included! * an inverter. Any preprocessing or subckt definition should not be included!
*******************************************************************/ *******************************************************************/
static static
int print_spice_powergated_inverter_modeling(std::fstream& fp, int print_spice_powergated_inverter_pmos_modeling(std::fstream& fp,
const std::string& trans_name_postfix, const std::string& trans_name_postfix,
const std::string& input_port_name, const std::string& input_port_name,
const std::string& output_port_name, const std::string& output_port_name,
const CircuitLibrary& circuit_lib, const CircuitLibrary& circuit_lib,
const CircuitPortId& enb_port, const CircuitPortId& enb_port,
const CircuitPortId& en_port,
const TechnologyLibrary& tech_lib, const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model) { const TechnologyModelId& tech_model,
const float& trans_width) {
if (false == valid_file_stream(fp)) { if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR; return CMD_EXEC_FATAL_ERROR;
@ -162,11 +163,52 @@ int print_spice_powergated_inverter_modeling(std::fstream& fp,
fp << "LVDD "; fp << "LVDD ";
} }
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
/* Cache the last pin*/ /* Cache the last pin*/
last_enb_pin = power_gate_pin; last_enb_pin = power_gate_pin;
} }
/* Write transistor pairs using the technology model */
fp << "Xpmos_" << trans_name_postfix << " ";
fp << output_port_name << " ";
fp << input_port_name << " ";
fp << output_port_name << "_pmos_pg_" << circuit_lib.pins(enb_port).back() << " ";
fp << "LVDD ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
return CMD_EXEC_SUCCESS;
}
/********************************************************************
* Generate the SPICE modeling for the NMOS part of a power-gated inverter
*
* This function is created to be shared by inverter and buffer SPICE netlist writer
*
* Note:
* - This function does NOT create a file
* but requires a file stream created
* - This function only output SPICE modeling for
* an inverter. Any preprocessing or subckt definition should not be included!
*******************************************************************/
static
int print_spice_powergated_inverter_nmos_modeling(std::fstream& fp,
const std::string& trans_name_postfix,
const std::string& input_port_name,
const std::string& output_port_name,
const CircuitLibrary& circuit_lib,
const CircuitPortId& en_port,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model,
const float& trans_width) {
if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR;
}
bool first_en_pin = true; bool first_en_pin = true;
size_t last_en_pin; size_t last_en_pin;
for (const auto& power_gate_pin : circuit_lib.pins(en_port)) { for (const auto& power_gate_pin : circuit_lib.pins(en_port)) {
@ -180,32 +222,28 @@ int print_spice_powergated_inverter_modeling(std::fstream& fp,
fp << "LGND "; fp << "LGND ";
first_en_pin = false; first_en_pin = false;
} else { } else {
VTR_ASSERT_SAFE(false == first_enb_pin); VTR_ASSERT_SAFE(false == first_en_pin);
fp << output_port_name << "_nmos_pg_" << last_en_pin << " "; fp << output_port_name << "_nmos_pg_" << last_en_pin << " ";
fp << circuit_lib.port_prefix(en_port) << " "; fp << circuit_lib.port_prefix(en_port) << " ";
fp << output_port_name << "_nmos_pg_" << power_gate_pin << " "; fp << output_port_name << "_nmos_pg_" << power_gate_pin << " ";
fp << "LGND "; fp << "LGND ";
} }
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
/* Cache the last pin*/ /* Cache the last pin*/
last_enb_pin = power_gate_pin; last_en_pin = power_gate_pin;
} }
/* Write transistor pairs using the technology model */
fp << "Xpmos_" << trans_name_postfix << " ";
fp << output_port_name << " ";
fp << input_port_name << " ";
fp << output_port_name << "_pmos_pg_" << circuit_lib.pins(enb_port).back() << " ";
fp << "LVDD ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "Xnmos_" << trans_name_postfix << " "; fp << "Xnmos_" << trans_name_postfix << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
fp << input_port_name << " "; fp << input_port_name << " ";
fp << output_port_name << " _nmos_pg_" << circuit_lib.pins(en_port).back() << " "; fp << output_port_name << " _nmos_pg_" << circuit_lib.pins(en_port).back() << " ";
fp << "LGND "; fp << "LGND ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
return CMD_EXEC_SUCCESS; return CMD_EXEC_SUCCESS;
} }
@ -294,17 +332,58 @@ int print_spice_powergated_inverter_subckt(std::fstream& fp,
int status = CMD_EXEC_SUCCESS; int status = CMD_EXEC_SUCCESS;
/* TODO: may consider use size/bin to compact layout etc. */ /* Consider use size/bin to compact layout:
for (size_t width = 0; width < circuit_lib.buffer_size(circuit_model); ++width) { * Try to size transistors to the max width for each bin
status = print_spice_powergated_inverter_modeling(fp, * The last bin may not reach the max width
std::to_string(width), */
int total_pmos_width = circuit_lib.buffer_size(circuit_model) * tech_lib.model_pn_ratio(tech_model);
int regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = total_pmos_width % regular_pmos_bin_width;
for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
int curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_pmos_bins - 1) {
curr_bin_width = last_pmos_bin_width;
}
status = print_spice_powergated_inverter_pmos_modeling(fp,
std::to_string(ibin),
circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]),
circuit_lib,
enb_port,
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
int total_nmos_width = circuit_lib.buffer_size(circuit_model);
int regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = total_nmos_width % regular_nmos_bin_width;
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
int curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_nmos_bins - 1) {
curr_bin_width = last_nmos_bin_width;
}
status = print_spice_powergated_inverter_nmos_modeling(fp,
std::to_string(ibin),
circuit_lib.port_prefix(input_ports[0]), circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]), circuit_lib.port_prefix(output_ports[0]),
circuit_lib, circuit_lib,
en_port, en_port,
enb_port,
tech_lib, tech_lib,
tech_model); tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) { if (CMD_EXEC_FATAL_ERROR == status) {
return status; return status;
} }
@ -316,7 +395,7 @@ int print_spice_powergated_inverter_subckt(std::fstream& fp,
} }
/******************************************************************** /********************************************************************
* Generate the SPICE modeling for a regular inverter * Generate the SPICE modeling for the PMOS part of a regular inverter
* *
* This function is created to be shared by inverter and buffer SPICE netlist writer * This function is created to be shared by inverter and buffer SPICE netlist writer
* *
@ -327,12 +406,13 @@ int print_spice_powergated_inverter_subckt(std::fstream& fp,
* an inverter. Any preprocessing or subckt definition should not be included! * an inverter. Any preprocessing or subckt definition should not be included!
*******************************************************************/ *******************************************************************/
static static
int print_spice_regular_inverter_modeling(std::fstream& fp, int print_spice_regular_inverter_pmos_modeling(std::fstream& fp,
const std::string& trans_name_postfix, const std::string& trans_name_postfix,
const std::string& input_port_name, const std::string& input_port_name,
const std::string& output_port_name, const std::string& output_port_name,
const TechnologyLibrary& tech_lib, const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model) { const TechnologyModelId& tech_model,
const float& trans_width) {
if (false == valid_file_stream(fp)) { if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR; return CMD_EXEC_FATAL_ERROR;
@ -345,6 +425,35 @@ int print_spice_regular_inverter_modeling(std::fstream& fp,
fp << "LVDD "; fp << "LVDD ";
fp << "LVDD "; fp << "LVDD ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
return CMD_EXEC_SUCCESS;
}
/********************************************************************
* Generate the SPICE modeling for the NMOS part of a regular inverter
*
* This function is created to be shared by inverter and buffer SPICE netlist writer
*
* Note:
* - This function does NOT create a file
* but requires a file stream created
* - This function only output SPICE modeling for
* an inverter. Any preprocessing or subckt definition should not be included!
*******************************************************************/
static
int print_spice_regular_inverter_nmos_modeling(std::fstream& fp,
const std::string& trans_name_postfix,
const std::string& input_port_name,
const std::string& output_port_name,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model,
const float& trans_width) {
if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR;
}
fp << "Xnmos_" << trans_name_postfix << " "; fp << "Xnmos_" << trans_name_postfix << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
@ -352,6 +461,8 @@ int print_spice_regular_inverter_modeling(std::fstream& fp,
fp << "LGND "; fp << "LGND ";
fp << "LGND "; fp << "LGND ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "W=" << trans_width;
fp << "\n";
return CMD_EXEC_SUCCESS; return CMD_EXEC_SUCCESS;
} }
@ -409,14 +520,56 @@ int print_spice_regular_inverter_subckt(std::fstream& fp,
VTR_ASSERT( (1 == output_ports.size()) && (1 == circuit_lib.port_size(output_ports[0])) ); VTR_ASSERT( (1 == output_ports.size()) && (1 == circuit_lib.port_size(output_ports[0])) );
int status = CMD_EXEC_SUCCESS; int status = CMD_EXEC_SUCCESS;
/* TODO: may consider use size/bin to compact layout etc. */
for (size_t width = 0; width < circuit_lib.buffer_size(circuit_model); ++width) { /* Consider use size/bin to compact layout:
status = print_spice_regular_inverter_modeling(fp, * Try to size transistors to the max width for each bin
std::to_string(width), * The last bin may not reach the max width
*/
int total_pmos_width = circuit_lib.buffer_size(circuit_model) * tech_lib.model_pn_ratio(tech_model);
int regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = total_pmos_width % regular_pmos_bin_width;
for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
int curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_pmos_bins - 1) {
curr_bin_width = last_pmos_bin_width;
}
status = print_spice_regular_inverter_pmos_modeling(fp,
std::to_string(ibin),
circuit_lib.port_prefix(input_ports[0]), circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]), circuit_lib.port_prefix(output_ports[0]),
tech_lib, tech_lib,
tech_model); tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
int total_nmos_width = circuit_lib.buffer_size(circuit_model);
int regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = total_nmos_width % regular_nmos_bin_width;
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
int curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_nmos_bins - 1) {
curr_bin_width = last_nmos_bin_width;
}
status = print_spice_regular_inverter_nmos_modeling(fp,
std::to_string(ibin),
circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]),
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) { if (CMD_EXEC_FATAL_ERROR == status) {
return status; return status;
} }
@ -544,7 +697,13 @@ int print_spice_powergated_buffer_subckt(std::fstream& fp,
/* Buffers must have >= 2 stages */ /* Buffers must have >= 2 stages */
VTR_ASSERT(2 <= circuit_lib.buffer_num_levels(circuit_model)); VTR_ASSERT(2 <= circuit_lib.buffer_num_levels(circuit_model));
/* TODO: may consider use size/bin to compact layout etc. */ /* Build the array denoting width of inverters per stage */
std::vector<float> buffer_widths(circuit_lib.buffer_num_levels(circuit_model), 1);
for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) {
buffer_widths[level] = circuit_lib.buffer_size(circuit_model)
* std::pow(circuit_lib.buffer_f_per_stage(circuit_model), level);
}
for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) { for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) {
std::string input_port_name = circuit_lib.port_prefix(input_ports[0]); std::string input_port_name = circuit_lib.port_prefix(input_ports[0]);
std::string output_port_name = circuit_lib.port_prefix(output_ports[0]); std::string output_port_name = circuit_lib.port_prefix(output_ports[0]);
@ -559,18 +718,65 @@ int print_spice_powergated_buffer_subckt(std::fstream& fp,
input_port_name += std::string("_level") + std::to_string(level - 1); input_port_name += std::string("_level") + std::to_string(level - 1);
} }
for (size_t width = 0; width < circuit_lib.buffer_size(circuit_model); ++width) { /* Consider use size/bin to compact layout:
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(width); * Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
int total_pmos_width = buffer_widths[level] * tech_lib.model_pn_ratio(tech_model);
int regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = total_pmos_width % regular_pmos_bin_width;
status = print_spice_powergated_inverter_modeling(fp, for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
int curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_pmos_bins - 1) {
curr_bin_width = last_pmos_bin_width;
}
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(ibin);
status = print_spice_powergated_inverter_pmos_modeling(fp,
name_postfix,
circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]),
circuit_lib,
enb_port,
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
int total_nmos_width = buffer_widths[level] ;
int regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = total_nmos_width % regular_nmos_bin_width;
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
int curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_nmos_bins - 1) {
curr_bin_width = last_nmos_bin_width;
}
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(ibin);
status = print_spice_powergated_inverter_nmos_modeling(fp,
name_postfix, name_postfix,
circuit_lib.port_prefix(input_ports[0]), circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]), circuit_lib.port_prefix(output_ports[0]),
circuit_lib, circuit_lib,
en_port, en_port,
enb_port,
tech_lib, tech_lib,
tech_model); tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) { if (CMD_EXEC_FATAL_ERROR == status) {
return status; return status;
} }
@ -642,7 +848,13 @@ int print_spice_regular_buffer_subckt(std::fstream& fp,
/* Buffers must have >= 2 stages */ /* Buffers must have >= 2 stages */
VTR_ASSERT(2 <= circuit_lib.buffer_num_levels(circuit_model)); VTR_ASSERT(2 <= circuit_lib.buffer_num_levels(circuit_model));
/* TODO: may consider use size/bin to compact layout etc. */ /* Build the array denoting width of inverters per stage */
std::vector<float> buffer_widths(circuit_lib.buffer_num_levels(circuit_model), 1);
for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) {
buffer_widths[level] = circuit_lib.buffer_size(circuit_model)
* std::pow(circuit_lib.buffer_f_per_stage(circuit_model), level);
}
for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) { for (size_t level = 0; level < circuit_lib.buffer_num_levels(circuit_model); ++level) {
std::string input_port_name = circuit_lib.port_prefix(input_ports[0]); std::string input_port_name = circuit_lib.port_prefix(input_ports[0]);
std::string output_port_name = circuit_lib.port_prefix(output_ports[0]); std::string output_port_name = circuit_lib.port_prefix(output_ports[0]);
@ -657,14 +869,61 @@ int print_spice_regular_buffer_subckt(std::fstream& fp,
input_port_name += std::string("_level") + std::to_string(level - 1); input_port_name += std::string("_level") + std::to_string(level - 1);
} }
for (size_t width = 0; width < circuit_lib.buffer_size(circuit_model); ++width) { /* Consider use size/bin to compact layout:
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(width); * Try to size transistors to the max width for each bin
status = print_spice_regular_inverter_modeling(fp, * The last bin may not reach the max width
*/
int total_pmos_width = buffer_widths[level] * tech_lib.model_pn_ratio(tech_model);
int regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = total_pmos_width % regular_pmos_bin_width;
for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
int curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_pmos_bins - 1) {
curr_bin_width = last_pmos_bin_width;
}
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(ibin);
status = print_spice_regular_inverter_pmos_modeling(fp,
name_postfix, name_postfix,
input_port_name, circuit_lib.port_prefix(input_ports[0]),
output_port_name, circuit_lib.port_prefix(output_ports[0]),
tech_lib, tech_lib,
tech_model); tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
int total_nmos_width = buffer_widths[level] ;
int regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = total_nmos_width % regular_nmos_bin_width;
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
int curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if (ibin == num_nmos_bins - 1) {
curr_bin_width = last_nmos_bin_width;
}
std::string name_postfix = std::string("level") + std::to_string(level) + std::string("_bin") + std::to_string(ibin);
status = print_spice_regular_inverter_nmos_modeling(fp,
name_postfix,
circuit_lib.port_prefix(input_ports[0]),
circuit_lib.port_prefix(output_ports[0]),
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) { if (CMD_EXEC_FATAL_ERROR == status) {
return status; return status;
} }