Merge pull request #172 from lnis-uofu/dev
Basic Support on Multi-Clock Fabric Netlist Generation and Testbench Generation
This commit is contained in:
commit
ec587a6d46
|
@ -109,6 +109,7 @@ python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/til
|
|||
echo -e "Testing global port definition from tiles";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_clock --debug --show_thread_logs
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_reset --debug --show_thread_logs
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_4clock --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing yosys flow using custom ys script for running quicklogic device";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py quicklogic_tests/flow_test --debug --show_thread_logs
|
||||
|
|
|
@ -710,6 +710,7 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
|
|||
|
||||
/* Find the port of the grid module according to the tile annotation */
|
||||
int grid_pin_start_index = physical_tile->num_pins;
|
||||
t_physical_tile_port physical_tile_port;
|
||||
for (const t_physical_tile_port& tile_port : physical_tile->ports) {
|
||||
if (std::string(tile_port.name) == tile_port_to_connect.get_name()) {
|
||||
BasicPort ref_tile_port(tile_port.name, tile_port.num_pins);
|
||||
|
@ -726,6 +727,7 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
|
|||
return CMD_EXEC_FATAL_ERROR;
|
||||
}
|
||||
grid_pin_start_index = tile_port.absolute_first_pin_index;
|
||||
physical_tile_port = tile_port;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -741,14 +743,21 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
|
|||
|
||||
VTR_ASSERT(1 == physical_tile->equivalent_sites.size());
|
||||
|
||||
/* Ensure port width is in range */
|
||||
BasicPort src_port = module_manager.module_port(top_module, top_module_port);
|
||||
VTR_ASSERT(src_port.get_width() >= size_t(physical_tile_port.num_pins));
|
||||
|
||||
/* A tile may consist of multiple subtile, connect to all the pins from sub tiles */
|
||||
for (int iz = 0; iz < physical_tile->capacity; ++iz) {
|
||||
for (size_t pin_id = 0; pin_id < size_t(physical_tile_port.num_pins); ++pin_id) {
|
||||
/* TODO: This should be replaced by using a pin mapping data structure from physical tile! */
|
||||
int grid_pin_index = grid_pin_start_index + iz * physical_tile->equivalent_sites[0]->pb_type->num_pins;
|
||||
int grid_pin_index = grid_pin_start_index + iz * physical_tile->equivalent_sites[0]->pb_type->num_pins + pin_id;
|
||||
/* Find the module pin */
|
||||
size_t grid_pin_width = physical_tile->pin_width_offset[grid_pin_index];
|
||||
size_t grid_pin_height = physical_tile->pin_height_offset[grid_pin_index];
|
||||
std::vector<e_side> pin_sides = find_physical_tile_pin_side(physical_tile, grid_pin_index, border_side);
|
||||
|
||||
/* Build nets */
|
||||
for (const e_side& pin_side : pin_sides) {
|
||||
std::string grid_port_name = generate_grid_port_name(grid_coordinate,
|
||||
grid_pin_width, grid_pin_height,
|
||||
|
@ -757,16 +766,16 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
|
|||
ModulePortId grid_port_id = module_manager.find_module_port(grid_module, grid_port_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_port_id));
|
||||
|
||||
/* Build nets */
|
||||
BasicPort src_port = module_manager.module_port(top_module, top_module_port);
|
||||
for (size_t pin_id = 0; pin_id < tile_port_to_connect.pins().size(); ++pin_id) {
|
||||
VTR_ASSERT(1 == module_manager.module_port(grid_module, grid_port_id).get_width());
|
||||
|
||||
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
|
||||
top_module, 0,
|
||||
top_module_port, src_port.pins()[pin_id]);
|
||||
VTR_ASSERT(ModuleNetId::INVALID() != net);
|
||||
|
||||
/* Configure the net sink */
|
||||
module_manager.add_module_net_sink(top_module, net, grid_module, grid_instance, grid_port_id, tile_port_to_connect.pins()[pin_id]);
|
||||
BasicPort sink_port = module_manager.module_port(grid_module, grid_port_id);
|
||||
module_manager.add_module_net_sink(top_module, net, grid_module, grid_instance, grid_port_id, sink_port.pins()[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,9 +65,11 @@ void print_verilog_top_random_testbench_ports(std::fstream& fp,
|
|||
/* Create a clock port if the benchmark does not have one!
|
||||
* The clock is used for counting and synchronizing input stimulus
|
||||
*/
|
||||
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
|
||||
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
|
||||
print_verilog_comment(fp, std::string("----- Default clock port is added here since benchmark does not contain one -------"));
|
||||
for (const BasicPort& clock_port : clock_ports) {
|
||||
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, clock_port) << ";" << std::endl;
|
||||
}
|
||||
|
||||
/* Add an empty line as splitter */
|
||||
fp << std::endl;
|
||||
|
@ -227,16 +229,16 @@ void print_verilog_random_top_testbench(const std::string& circuit_name,
|
|||
explicit_port_mapping);
|
||||
|
||||
/* Find clock port to be used */
|
||||
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
|
||||
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
|
||||
|
||||
/* Add stimuli for reset, set, clock and iopad signals */
|
||||
print_verilog_testbench_clock_stimuli(fp, simulation_parameters,
|
||||
clock_port);
|
||||
clock_ports);
|
||||
print_verilog_testbench_random_stimuli(fp, atom_ctx,
|
||||
netlist_annotation,
|
||||
clock_port_names,
|
||||
std::string(CHECKFLAG_PORT_POSTFIX),
|
||||
clock_port);
|
||||
clock_ports);
|
||||
|
||||
print_verilog_testbench_check(fp,
|
||||
std::string(AUTOCHECKED_SIMULATION_FLAG),
|
||||
|
|
|
@ -347,14 +347,18 @@ void print_verilog_timeout_and_vcd(std::fstream& fp,
|
|||
* Restrictions:
|
||||
* Assume this is a single clock benchmark
|
||||
*******************************************************************/
|
||||
BasicPort generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
|
||||
std::vector<BasicPort> generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
|
||||
const std::string& default_clock_name) {
|
||||
std::vector<BasicPort> clock_ports;
|
||||
if (0 == clock_port_names.size()) {
|
||||
return BasicPort(default_clock_name, 1);
|
||||
clock_ports.push_back(BasicPort(default_clock_name, 1));
|
||||
} else {
|
||||
for (const std::string& clock_port_name : clock_port_names) {
|
||||
clock_ports.push_back(BasicPort(clock_port_name, 1));
|
||||
}
|
||||
}
|
||||
|
||||
VTR_ASSERT(1 == clock_port_names.size());
|
||||
return BasicPort(clock_port_names[0], 1);
|
||||
return clock_ports;
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
|
@ -382,7 +386,7 @@ void print_verilog_testbench_check(std::fstream& fp,
|
|||
|
||||
print_verilog_comment(fp, std::string("----- Begin checking output vectors -------"));
|
||||
|
||||
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, default_clock_name);
|
||||
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, default_clock_name);
|
||||
|
||||
print_verilog_comment(fp, std::string("----- Skip the first falling edge of clock, it is for initialization -------"));
|
||||
|
||||
|
@ -391,7 +395,14 @@ void print_verilog_testbench_check(std::fstream& fp,
|
|||
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, sim_start_port) << ";" << std::endl;
|
||||
fp << std::endl;
|
||||
|
||||
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << ") begin" << std::endl;
|
||||
/* TODO: This is limitation when multiple clock signals exist
|
||||
* Ideally, all the input signals are generated by different clock edges,
|
||||
* depending which clock domain the signals belong to
|
||||
* Currently, as we lack the information, we only use the first clock signal
|
||||
*/
|
||||
VTR_ASSERT(1 <= clock_ports.size());
|
||||
|
||||
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_ports[0]) << ") begin" << std::endl;
|
||||
fp << "\t\tif (1'b1 == " << generate_verilog_port(VERILOG_PORT_CONKT, sim_start_port) << ") begin" << std::endl;
|
||||
fp << "\t\t";
|
||||
print_verilog_register_connection(fp, sim_start_port, sim_start_port, true);
|
||||
|
@ -466,11 +477,12 @@ void print_verilog_testbench_check(std::fstream& fp,
|
|||
*******************************************************************/
|
||||
void print_verilog_testbench_clock_stimuli(std::fstream& fp,
|
||||
const SimulationSetting& simulation_parameters,
|
||||
const BasicPort& clock_port) {
|
||||
const std::vector<BasicPort>& clock_ports) {
|
||||
/* Validate the file stream */
|
||||
valid_file_stream(fp);
|
||||
|
||||
print_verilog_comment(fp, std::string("----- Clock Initialization -------"));
|
||||
for (const BasicPort& clock_port : clock_ports) {
|
||||
print_verilog_comment(fp, std::string("----- Clock '") + clock_port.get_name() + std::string("' Initialization -------"));
|
||||
|
||||
fp << "\tinitial begin" << std::endl;
|
||||
/* Create clock stimuli */
|
||||
|
@ -488,6 +500,7 @@ void print_verilog_testbench_clock_stimuli(std::fstream& fp,
|
|||
/* Add an empty line as splitter */
|
||||
fp << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Generate random stimulus for the input ports (non-clock signals)
|
||||
|
@ -498,7 +511,7 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
|
|||
const VprNetlistAnnotation& netlist_annotation,
|
||||
const std::vector<std::string>& clock_port_names,
|
||||
const std::string& check_flag_port_postfix,
|
||||
const BasicPort& clock_port) {
|
||||
const std::vector<BasicPort>& clock_ports) {
|
||||
/* Validate the file stream */
|
||||
valid_file_stream(fp);
|
||||
|
||||
|
@ -557,25 +570,14 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
|
|||
/* Add an empty line as splitter */
|
||||
fp << std::endl;
|
||||
|
||||
// Not ready yet to determine if input is reset
|
||||
/*
|
||||
fprintf(fp, "//----- Reset Stimulis\n");
|
||||
fprintf(fp, " initial begin\n");
|
||||
fprintf(fp, " #%.3f\n",(rand() % 10) + 0.001);
|
||||
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
|
||||
fprintf(fp, " #%.3f\n",(rand() % 10) + 0.001);
|
||||
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
|
||||
fprintf(fp, " while(1) begin\n");
|
||||
fprintf(fp, " #%.3f\n", (rand() % 15) + 0.5);
|
||||
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
|
||||
fprintf(fp, " #%.3f\n", (rand() % 10000) + 200);
|
||||
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
|
||||
fprintf(fp, " end\n");
|
||||
fprintf(fp, " end\n\n");
|
||||
*/
|
||||
|
||||
print_verilog_comment(fp, std::string("----- Input Stimulus -------"));
|
||||
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << ") begin" << std::endl;
|
||||
/* TODO: This is limitation when multiple clock signals exist
|
||||
* Ideally, all the input signals are generated by different clock edges,
|
||||
* depending which clock domain the signals belong to
|
||||
* Currently, as we lack the information, we only use the first clock signal
|
||||
*/
|
||||
VTR_ASSERT(1 <= clock_ports.size());
|
||||
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_ports[0]) << ") begin" << std::endl;
|
||||
|
||||
for (const AtomBlockId& atom_blk : atom_ctx.nlist.blocks()) {
|
||||
/* Bypass non-I/O atom blocks ! */
|
||||
|
|
|
@ -60,7 +60,7 @@ void print_verilog_timeout_and_vcd(std::fstream& fp,
|
|||
const std::string& error_counter_name,
|
||||
const float& simulation_time);
|
||||
|
||||
BasicPort generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
|
||||
std::vector<BasicPort> generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
|
||||
const std::string& default_clock_name);
|
||||
|
||||
void print_verilog_testbench_check(std::fstream& fp,
|
||||
|
@ -77,14 +77,14 @@ void print_verilog_testbench_check(std::fstream& fp,
|
|||
|
||||
void print_verilog_testbench_clock_stimuli(std::fstream& fp,
|
||||
const SimulationSetting& simulation_parameters,
|
||||
const BasicPort& clock_port);
|
||||
const std::vector<BasicPort>& clock_ports);
|
||||
|
||||
void print_verilog_testbench_random_stimuli(std::fstream& fp,
|
||||
const AtomContext& atom_ctx,
|
||||
const VprNetlistAnnotation& netlist_annotation,
|
||||
const std::vector<std::string>& clock_port_names,
|
||||
const std::string& check_flag_port_postfix,
|
||||
const BasicPort& clock_port);
|
||||
const std::vector<BasicPort>& clock_ports);
|
||||
|
||||
void print_verilog_testbench_shared_ports(std::fstream& fp,
|
||||
const AtomContext& atom_ctx,
|
||||
|
|
|
@ -288,10 +288,17 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
|
|||
* The wiring will be inverted if the default value of the global port is 1
|
||||
* Otherwise, the wiring will not be inverted!
|
||||
*/
|
||||
print_verilog_wire_connection(fp, module_manager.module_port(top_module, module_global_port),
|
||||
for (const size_t& pin : module_manager.module_port(top_module, module_global_port).pins()) {
|
||||
BasicPort global_port_to_connect(module_manager.module_port(top_module, module_global_port).get_name(), pin, pin);
|
||||
/* TODO: This is a temporary fix to make the testbench generator run in multi-clock scenario
|
||||
* Need to consider multiple clock sources to connect
|
||||
* each of which may operate in different ferquency!!!
|
||||
*/
|
||||
print_verilog_wire_connection(fp, global_port_to_connect,
|
||||
stimuli_clock_port,
|
||||
1 == fabric_global_port_info.global_port_default_value(fabric_global_port));
|
||||
}
|
||||
}
|
||||
|
||||
/* Connect global configuration done ports to configuration done signal */
|
||||
for (const FabricGlobalPortId& fabric_global_port : fabric_global_port_info.global_ports()) {
|
||||
|
@ -1935,7 +1942,7 @@ void print_verilog_top_testbench(const ModuleManager& module_manager,
|
|||
netlist_annotation,
|
||||
clock_port_names,
|
||||
std::string(TOP_TESTBENCH_CHECKFLAG_PORT_POSTFIX),
|
||||
BasicPort(std::string(TOP_TB_OP_CLOCK_PORT_NAME), 1));
|
||||
std::vector<BasicPort>(1, BasicPort(std::string(TOP_TB_OP_CLOCK_PORT_NAME), 1)));
|
||||
|
||||
/* Add output autocheck */
|
||||
print_verilog_testbench_check(fp,
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
clk0 0.505000 0.204400
|
||||
rst0 0.491000 0.206000
|
||||
clk1 0.472000 0.204400
|
||||
rst1 0.501400 0.204600
|
||||
q1[0] 0.278800 0.557400
|
||||
q1[1] 0.240600 0.268800
|
||||
q1[2] 0.178200 0.120000
|
||||
q1[3] 0.098400 0.041600
|
||||
q0[0] 0.283400 0.566600
|
||||
q0[1] 0.246800 0.272000
|
||||
q0[2] 0.181000 0.122200
|
||||
q0[3] 0.093200 0.048800
|
||||
n34 0.178200 0.068356
|
||||
n38 0.098400 0.002698
|
||||
$abc$226$new_n22_ 0.880800 0.004943
|
||||
n42 0.283400 0.129291
|
||||
n46 0.246800 0.084119
|
||||
n50 0.181000 0.067113
|
||||
n54 0.093200 0.002644
|
||||
$abc$226$new_n27_ 0.883200 0.005398
|
||||
n26 0.278800 0.038636
|
||||
n30 0.240600 0.082416
|
|
@ -0,0 +1,48 @@
|
|||
# Benchmark "counter4bit_2clock" written by ABC on Wed Jan 13 13:27:00 2021
|
||||
.model counter4bit_2clock
|
||||
.inputs clk0 rst0 clk1 rst1
|
||||
.outputs q0[0] q0[1] q0[2] q0[3] q1[0] q1[1] \
|
||||
q1[2] q1[3]
|
||||
|
||||
.latch n26 q1[0] re clk1 2
|
||||
.latch n30 q1[1] re clk1 2
|
||||
.latch n34 q1[2] re clk1 2
|
||||
.latch n38 q1[3] re clk1 2
|
||||
.latch n42 q0[0] re clk0 2
|
||||
.latch n46 q0[1] re clk0 2
|
||||
.latch n50 q0[2] re clk0 2
|
||||
.latch n54 q0[3] re clk0 2
|
||||
|
||||
.names q1[0] q1[1] rst1 q1[2] n34
|
||||
-001 1
|
||||
0-01 1
|
||||
1100 1
|
||||
.names rst1 $abc$226$new_n22_ n38
|
||||
00 1
|
||||
.names q1[2] q1[0] q1[1] q1[3] $abc$226$new_n22_
|
||||
--00 1
|
||||
-0-0 1
|
||||
0--0 1
|
||||
1111 1
|
||||
.names rst0 q0[0] n42
|
||||
00 1
|
||||
.names rst0 q0[1] q0[0] n46
|
||||
001 1
|
||||
010 1
|
||||
.names q0[1] q0[0] rst0 q0[2] n50
|
||||
-001 1
|
||||
0-01 1
|
||||
1100 1
|
||||
.names rst0 $abc$226$new_n27_ n54
|
||||
00 1
|
||||
.names q0[2] q0[1] q0[0] q0[3] $abc$226$new_n27_
|
||||
--00 1
|
||||
-0-0 1
|
||||
0--0 1
|
||||
1111 1
|
||||
.names q1[0] rst1 n26
|
||||
00 1
|
||||
.names rst1 q1[0] q1[1] n30
|
||||
001 1
|
||||
010 1
|
||||
.end
|
|
@ -0,0 +1,29 @@
|
|||
module counter4bit_2clock(clk0, rst0, clk1, rst1, q0, q1);
|
||||
|
||||
input clk0;
|
||||
input rst0;
|
||||
output [3:0] q0;
|
||||
reg [3:0] q0;
|
||||
|
||||
input clk1;
|
||||
input rst1;
|
||||
output [3:0] q1;
|
||||
reg [3:0] q1;
|
||||
|
||||
always @ (posedge clk0)
|
||||
begin
|
||||
if(rst0)
|
||||
q0 <= 4'b0000;
|
||||
else
|
||||
q0 <= q0 + 1;
|
||||
end
|
||||
|
||||
always @ (posedge clk1)
|
||||
begin
|
||||
if(rst1)
|
||||
q1 <= 4'b0000;
|
||||
else
|
||||
q1 <= q1 + 1;
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,60 @@
|
|||
/* Generated by Yosys 0.9+2406 (git sha1 a0606e09, gcc 8.4.0 -fPIC -Os) */
|
||||
|
||||
module counter4bit_2clock(clk0, rst0, clk1, rst1, \q0[0] , \q0[1] , \q0[2] , \q0[3] , \q1[0] , \q1[1] , \q1[2] , \q1[3] );
|
||||
wire _00_;
|
||||
wire _01_;
|
||||
input clk0;
|
||||
input clk1;
|
||||
wire n26;
|
||||
wire n30;
|
||||
wire n34;
|
||||
wire n38;
|
||||
wire n42;
|
||||
wire n46;
|
||||
wire n50;
|
||||
wire n54;
|
||||
output \q0[0] ;
|
||||
reg \q0[0] ;
|
||||
output \q0[1] ;
|
||||
reg \q0[1] ;
|
||||
output \q0[2] ;
|
||||
reg \q0[2] ;
|
||||
output \q0[3] ;
|
||||
reg \q0[3] ;
|
||||
output \q1[0] ;
|
||||
reg \q1[0] ;
|
||||
output \q1[1] ;
|
||||
reg \q1[1] ;
|
||||
output \q1[2] ;
|
||||
reg \q1[2] ;
|
||||
output \q1[3] ;
|
||||
reg \q1[3] ;
|
||||
input rst0;
|
||||
input rst1;
|
||||
always @(posedge clk1)
|
||||
\q1[0] <= n26;
|
||||
always @(posedge clk1)
|
||||
\q1[1] <= n30;
|
||||
always @(posedge clk1)
|
||||
\q1[2] <= n34;
|
||||
always @(posedge clk1)
|
||||
\q1[3] <= n38;
|
||||
always @(posedge clk1)
|
||||
\q0[0] <= n42;
|
||||
always @(posedge clk1)
|
||||
\q0[1] <= n46;
|
||||
always @(posedge clk1)
|
||||
\q0[2] <= n50;
|
||||
always @(posedge clk1)
|
||||
\q0[3] <= n54;
|
||||
assign n38 = 4'h1 >> { _00_, rst1 };
|
||||
assign _00_ = 16'h807f >> { \q1[3] , \q1[1] , \q1[0] , \q1[2] };
|
||||
assign n42 = 4'h1 >> { \q0[0] , rst0 };
|
||||
assign n46 = 8'h14 >> { \q0[0] , \q0[1] , rst0 };
|
||||
assign n50 = 16'h0708 >> { \q0[2] , rst0, \q0[0] , \q0[1] };
|
||||
assign n54 = 4'h1 >> { _01_, rst0 };
|
||||
assign _01_ = 16'h807f >> { \q0[3] , \q0[0] , \q0[1] , \q0[2] };
|
||||
assign n26 = 4'h1 >> { rst1, \q1[0] };
|
||||
assign n30 = 8'h14 >> { \q1[1] , \q1[0] , rst1 };
|
||||
assign n34 = 16'h0708 >> { \q1[2] , rst1, \q1[1] , \q1[0] };
|
||||
endmodule
|
|
@ -0,0 +1,42 @@
|
|||
module counter4bit_2clock_tb;
|
||||
|
||||
reg clk0, rst0;
|
||||
wire [3:0] q0;
|
||||
|
||||
reg clk1, rst1;
|
||||
wire [3:0] q1;
|
||||
|
||||
counter_2clock C_1(
|
||||
clk0,
|
||||
q0,
|
||||
rst0);
|
||||
|
||||
counter_2clock C_1(
|
||||
clk1,
|
||||
q1,
|
||||
rst1);
|
||||
|
||||
initial begin
|
||||
#0 rst0 = 1'b1; clk0 = 1'b0;
|
||||
#100 rst0 = 1'b0;
|
||||
end
|
||||
|
||||
always begin
|
||||
#10 clk0 = ~clk0;
|
||||
end
|
||||
|
||||
initial begin
|
||||
#0 rst1 = 1'b1; clk1 = 1'b0;
|
||||
#100 rst1 = 1'b0;
|
||||
end
|
||||
|
||||
always begin
|
||||
#20 clk1 = ~clk1;
|
||||
end
|
||||
|
||||
|
||||
initial begin
|
||||
#5000 $stop;
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -26,5 +26,6 @@ Note that an OpenFPGA architecture can be applied to multiple VPR architecture f
|
|||
- tree\_mux: If routing multiplexers are built with a tree-like structure
|
||||
- <feature_size>: The technology node which the delay numbers are extracted from.
|
||||
- powergate : The FPGA has power-gating techniques applied. If not defined, there is no power-gating.
|
||||
- GlobalTile<Int>Clk: How many clocks are defined through global ports from physical tiles. <Int> is the number of clocks
|
||||
|
||||
Other features are used in naming should be listed here.
|
||||
|
|
|
@ -0,0 +1,198 @@
|
|||
<!-- Architecture annotation for OpenFPGA framework
|
||||
This annotation supports the k6_N10_40nm.xml
|
||||
- General purpose logic block
|
||||
- K = 6, N = 10, I = 40
|
||||
- Single mode
|
||||
- Routing architecture
|
||||
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||
- 4 operating clocks
|
||||
-->
|
||||
<openfpga_architecture>
|
||||
<technology_library>
|
||||
<device_library>
|
||||
<device_model name="logic" type="transistor">
|
||||
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="0.9" pn_ratio="2"/>
|
||||
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
</device_model>
|
||||
<device_model name="io" type="transistor">
|
||||
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="2.5" pn_ratio="3"/>
|
||||
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
</device_model>
|
||||
</device_library>
|
||||
<variation_library>
|
||||
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="false" default_val="0"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="4"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="16"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="DFF" prefix="DFF" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="QN" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="DFF"/>
|
||||
</configuration_protocol>
|
||||
<connection_block>
|
||||
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</connection_block>
|
||||
<switch_block>
|
||||
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</switch_block>
|
||||
<routing_segment>
|
||||
<segment name="L4" circuit_model_name="chan_segment"/>
|
||||
</routing_segment>
|
||||
<tile_annotations>
|
||||
<global_port name="clk" is_clock="true" default_val="0">
|
||||
<!-- MUST explicitly define the number of clock bits
|
||||
being consistent with physical tile port definition
|
||||
-->
|
||||
<tile name="clb" port="clk[0:3]" x="-1" y="-1"/>
|
||||
</global_port>
|
||||
</tile_annotations>
|
||||
<pb_type_annotations>
|
||||
<!-- physical pb_type binding in complex block IO -->
|
||||
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
|
||||
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
|
||||
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
|
||||
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block CLB -->
|
||||
<!-- physical mode will be the default mode if not specified -->
|
||||
<pb_type name="clb">
|
||||
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
|
||||
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
</pb_type_annotations>
|
||||
</openfpga_architecture>
|
|
@ -57,7 +57,7 @@ write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --pri
|
|||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator --explicit_port_mapping
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator #--explicit_port_mapping
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
# Due to the limitation in ACE2 which cannot output .blif files
|
||||
# with correct multi-clock assignments to .latch lines
|
||||
# We have to use the vpr_blif flow where the .blif is modified
|
||||
# based on yosys outputs with correct clock assignment!
|
||||
# TODO: This limitation should be removed and we should use yosys_vpr flow!!!
|
||||
fpga_flow=vpr_blif
|
||||
#fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/global_tile_clock_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_GlobalTile4Clk_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_GlobalTile4Clk_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.blif
|
||||
#bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = counter4bit_2clock
|
||||
bench0_act=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.act
|
||||
bench0_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock_post_yosys.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -21,5 +21,6 @@ Please reveal the following architecture features in the names to help quickly s
|
|||
* Top-left (Tl): the pins of a tile are placed on the top side and left side only
|
||||
* Top-right (Tr): the pins of a tile are placed on the top side and right side only
|
||||
* Bottom-right (Br): the pins of a tile are placed on the bottom side and right side only
|
||||
- GlobalTile<Int>Clk: How many clocks are defined through global ports from physical tiles. <Int> is the number of clocks
|
||||
|
||||
Other features are used in naming should be listed here.
|
||||
|
|
|
@ -0,0 +1,296 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
- 4 operating clocks which can be selected for each logic element
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="4"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="4"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
Loading…
Reference in New Issue