Merge pull request #172 from lnis-uofu/dev

Basic Support on Multi-Clock Fabric Netlist Generation and Testbench Generation
This commit is contained in:
tangxifan 2021-01-13 17:14:56 -07:00 committed by GitHub
commit ec587a6d46
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 839 additions and 77 deletions

View File

@ -109,6 +109,7 @@ python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/til
echo -e "Testing global port definition from tiles";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_clock --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_4clock --debug --show_thread_logs
echo -e "Testing yosys flow using custom ys script for running quicklogic device";
python3 openfpga_flow/scripts/run_fpga_task.py quicklogic_tests/flow_test --debug --show_thread_logs

View File

@ -710,6 +710,7 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
/* Find the port of the grid module according to the tile annotation */
int grid_pin_start_index = physical_tile->num_pins;
t_physical_tile_port physical_tile_port;
for (const t_physical_tile_port& tile_port : physical_tile->ports) {
if (std::string(tile_port.name) == tile_port_to_connect.get_name()) {
BasicPort ref_tile_port(tile_port.name, tile_port.num_pins);
@ -726,6 +727,7 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
return CMD_EXEC_FATAL_ERROR;
}
grid_pin_start_index = tile_port.absolute_first_pin_index;
physical_tile_port = tile_port;
break;
}
}
@ -741,32 +743,39 @@ int build_top_module_global_net_for_given_grid_module(ModuleManager& module_mana
VTR_ASSERT(1 == physical_tile->equivalent_sites.size());
/* Ensure port width is in range */
BasicPort src_port = module_manager.module_port(top_module, top_module_port);
VTR_ASSERT(src_port.get_width() >= size_t(physical_tile_port.num_pins));
/* A tile may consist of multiple subtile, connect to all the pins from sub tiles */
for (int iz = 0; iz < physical_tile->capacity; ++iz) {
/* TODO: This should be replaced by using a pin mapping data structure from physical tile! */
int grid_pin_index = grid_pin_start_index + iz * physical_tile->equivalent_sites[0]->pb_type->num_pins;
/* Find the module pin */
size_t grid_pin_width = physical_tile->pin_width_offset[grid_pin_index];
size_t grid_pin_height = physical_tile->pin_height_offset[grid_pin_index];
std::vector<e_side> pin_sides = find_physical_tile_pin_side(physical_tile, grid_pin_index, border_side);
for (const e_side& pin_side : pin_sides) {
std::string grid_port_name = generate_grid_port_name(grid_coordinate,
grid_pin_width, grid_pin_height,
pin_side,
grid_pin_index, false);
ModulePortId grid_port_id = module_manager.find_module_port(grid_module, grid_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_port_id));
for (size_t pin_id = 0; pin_id < size_t(physical_tile_port.num_pins); ++pin_id) {
/* TODO: This should be replaced by using a pin mapping data structure from physical tile! */
int grid_pin_index = grid_pin_start_index + iz * physical_tile->equivalent_sites[0]->pb_type->num_pins + pin_id;
/* Find the module pin */
size_t grid_pin_width = physical_tile->pin_width_offset[grid_pin_index];
size_t grid_pin_height = physical_tile->pin_height_offset[grid_pin_index];
std::vector<e_side> pin_sides = find_physical_tile_pin_side(physical_tile, grid_pin_index, border_side);
/* Build nets */
BasicPort src_port = module_manager.module_port(top_module, top_module_port);
for (size_t pin_id = 0; pin_id < tile_port_to_connect.pins().size(); ++pin_id) {
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
top_module, 0,
top_module_port, src_port.pins()[pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Configure the net sink */
module_manager.add_module_net_sink(top_module, net, grid_module, grid_instance, grid_port_id, tile_port_to_connect.pins()[pin_id]);
for (const e_side& pin_side : pin_sides) {
std::string grid_port_name = generate_grid_port_name(grid_coordinate,
grid_pin_width, grid_pin_height,
pin_side,
grid_pin_index, false);
ModulePortId grid_port_id = module_manager.find_module_port(grid_module, grid_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_port_id));
VTR_ASSERT(1 == module_manager.module_port(grid_module, grid_port_id).get_width());
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
top_module, 0,
top_module_port, src_port.pins()[pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Configure the net sink */
BasicPort sink_port = module_manager.module_port(grid_module, grid_port_id);
module_manager.add_module_net_sink(top_module, net, grid_module, grid_instance, grid_port_id, sink_port.pins()[0]);
}
}
}

View File

@ -65,9 +65,11 @@ void print_verilog_top_random_testbench_ports(std::fstream& fp,
/* Create a clock port if the benchmark does not have one!
* The clock is used for counting and synchronizing input stimulus
*/
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
print_verilog_comment(fp, std::string("----- Default clock port is added here since benchmark does not contain one -------"));
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, clock_port) << ";" << std::endl;
for (const BasicPort& clock_port : clock_ports) {
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, clock_port) << ";" << std::endl;
}
/* Add an empty line as splitter */
fp << std::endl;
@ -227,16 +229,16 @@ void print_verilog_random_top_testbench(const std::string& circuit_name,
explicit_port_mapping);
/* Find clock port to be used */
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, std::string(DEFAULT_CLOCK_NAME));
/* Add stimuli for reset, set, clock and iopad signals */
print_verilog_testbench_clock_stimuli(fp, simulation_parameters,
clock_port);
clock_ports);
print_verilog_testbench_random_stimuli(fp, atom_ctx,
netlist_annotation,
clock_port_names,
std::string(CHECKFLAG_PORT_POSTFIX),
clock_port);
clock_ports);
print_verilog_testbench_check(fp,
std::string(AUTOCHECKED_SIMULATION_FLAG),

View File

@ -347,14 +347,18 @@ void print_verilog_timeout_and_vcd(std::fstream& fp,
* Restrictions:
* Assume this is a single clock benchmark
*******************************************************************/
BasicPort generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
const std::string& default_clock_name) {
std::vector<BasicPort> generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
const std::string& default_clock_name) {
std::vector<BasicPort> clock_ports;
if (0 == clock_port_names.size()) {
return BasicPort(default_clock_name, 1);
clock_ports.push_back(BasicPort(default_clock_name, 1));
} else {
for (const std::string& clock_port_name : clock_port_names) {
clock_ports.push_back(BasicPort(clock_port_name, 1));
}
}
VTR_ASSERT(1 == clock_port_names.size());
return BasicPort(clock_port_names[0], 1);
return clock_ports;
}
/********************************************************************
@ -382,7 +386,7 @@ void print_verilog_testbench_check(std::fstream& fp,
print_verilog_comment(fp, std::string("----- Begin checking output vectors -------"));
BasicPort clock_port = generate_verilog_testbench_clock_port(clock_port_names, default_clock_name);
std::vector<BasicPort> clock_ports = generate_verilog_testbench_clock_port(clock_port_names, default_clock_name);
print_verilog_comment(fp, std::string("----- Skip the first falling edge of clock, it is for initialization -------"));
@ -391,7 +395,14 @@ void print_verilog_testbench_check(std::fstream& fp,
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, sim_start_port) << ";" << std::endl;
fp << std::endl;
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << ") begin" << std::endl;
/* TODO: This is limitation when multiple clock signals exist
* Ideally, all the input signals are generated by different clock edges,
* depending which clock domain the signals belong to
* Currently, as we lack the information, we only use the first clock signal
*/
VTR_ASSERT(1 <= clock_ports.size());
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_ports[0]) << ") begin" << std::endl;
fp << "\t\tif (1'b1 == " << generate_verilog_port(VERILOG_PORT_CONKT, sim_start_port) << ") begin" << std::endl;
fp << "\t\t";
print_verilog_register_connection(fp, sim_start_port, sim_start_port, true);
@ -466,27 +477,29 @@ void print_verilog_testbench_check(std::fstream& fp,
*******************************************************************/
void print_verilog_testbench_clock_stimuli(std::fstream& fp,
const SimulationSetting& simulation_parameters,
const BasicPort& clock_port) {
const std::vector<BasicPort>& clock_ports) {
/* Validate the file stream */
valid_file_stream(fp);
print_verilog_comment(fp, std::string("----- Clock Initialization -------"));
for (const BasicPort& clock_port : clock_ports) {
print_verilog_comment(fp, std::string("----- Clock '") + clock_port.get_name() + std::string("' Initialization -------"));
fp << "\tinitial begin" << std::endl;
/* Create clock stimuli */
fp << "\t\t" << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << " <= 1'b0;" << std::endl;
fp << "\t\twhile(1) begin" << std::endl;
fp << "\t\t\t#" << std::setprecision(10) << ((0.5/simulation_parameters.operating_clock_frequency())/VERILOG_SIM_TIMESCALE) << std::endl;
fp << "\t\t\t" << generate_verilog_port(VERILOG_PORT_CONKT, clock_port);
fp << " <= !";
fp << generate_verilog_port(VERILOG_PORT_CONKT, clock_port);
fp << ";" << std::endl;
fp << "\t\tend" << std::endl;
fp << "\tinitial begin" << std::endl;
/* Create clock stimuli */
fp << "\t\t" << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << " <= 1'b0;" << std::endl;
fp << "\t\twhile(1) begin" << std::endl;
fp << "\t\t\t#" << std::setprecision(10) << ((0.5/simulation_parameters.operating_clock_frequency())/VERILOG_SIM_TIMESCALE) << std::endl;
fp << "\t\t\t" << generate_verilog_port(VERILOG_PORT_CONKT, clock_port);
fp << " <= !";
fp << generate_verilog_port(VERILOG_PORT_CONKT, clock_port);
fp << ";" << std::endl;
fp << "\t\tend" << std::endl;
fp << "\tend" << std::endl;
fp << "\tend" << std::endl;
/* Add an empty line as splitter */
fp << std::endl;
/* Add an empty line as splitter */
fp << std::endl;
}
}
/********************************************************************
@ -498,7 +511,7 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,
const std::string& check_flag_port_postfix,
const BasicPort& clock_port) {
const std::vector<BasicPort>& clock_ports) {
/* Validate the file stream */
valid_file_stream(fp);
@ -557,25 +570,14 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
/* Add an empty line as splitter */
fp << std::endl;
// Not ready yet to determine if input is reset
/*
fprintf(fp, "//----- Reset Stimulis\n");
fprintf(fp, " initial begin\n");
fprintf(fp, " #%.3f\n",(rand() % 10) + 0.001);
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
fprintf(fp, " #%.3f\n",(rand() % 10) + 0.001);
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
fprintf(fp, " while(1) begin\n");
fprintf(fp, " #%.3f\n", (rand() % 15) + 0.5);
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
fprintf(fp, " #%.3f\n", (rand() % 10000) + 200);
fprintf(fp, " %s <= !%s;\n", reset_input_name, reset_input_name);
fprintf(fp, " end\n");
fprintf(fp, " end\n\n");
*/
print_verilog_comment(fp, std::string("----- Input Stimulus -------"));
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_port) << ") begin" << std::endl;
/* TODO: This is limitation when multiple clock signals exist
* Ideally, all the input signals are generated by different clock edges,
* depending which clock domain the signals belong to
* Currently, as we lack the information, we only use the first clock signal
*/
VTR_ASSERT(1 <= clock_ports.size());
fp << "\talways@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, clock_ports[0]) << ") begin" << std::endl;
for (const AtomBlockId& atom_blk : atom_ctx.nlist.blocks()) {
/* Bypass non-I/O atom blocks ! */

View File

@ -60,8 +60,8 @@ void print_verilog_timeout_and_vcd(std::fstream& fp,
const std::string& error_counter_name,
const float& simulation_time);
BasicPort generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
const std::string& default_clock_name);
std::vector<BasicPort> generate_verilog_testbench_clock_port(const std::vector<std::string>& clock_port_names,
const std::string& default_clock_name);
void print_verilog_testbench_check(std::fstream& fp,
const std::string& autochecked_preprocessing_flag,
@ -77,14 +77,14 @@ void print_verilog_testbench_check(std::fstream& fp,
void print_verilog_testbench_clock_stimuli(std::fstream& fp,
const SimulationSetting& simulation_parameters,
const BasicPort& clock_port);
const std::vector<BasicPort>& clock_ports);
void print_verilog_testbench_random_stimuli(std::fstream& fp,
const AtomContext& atom_ctx,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,
const std::string& check_flag_port_postfix,
const BasicPort& clock_port);
const std::vector<BasicPort>& clock_ports);
void print_verilog_testbench_shared_ports(std::fstream& fp,
const AtomContext& atom_ctx,

View File

@ -288,9 +288,16 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
* The wiring will be inverted if the default value of the global port is 1
* Otherwise, the wiring will not be inverted!
*/
print_verilog_wire_connection(fp, module_manager.module_port(top_module, module_global_port),
stimuli_clock_port,
1 == fabric_global_port_info.global_port_default_value(fabric_global_port));
for (const size_t& pin : module_manager.module_port(top_module, module_global_port).pins()) {
BasicPort global_port_to_connect(module_manager.module_port(top_module, module_global_port).get_name(), pin, pin);
/* TODO: This is a temporary fix to make the testbench generator run in multi-clock scenario
* Need to consider multiple clock sources to connect
* each of which may operate in different ferquency!!!
*/
print_verilog_wire_connection(fp, global_port_to_connect,
stimuli_clock_port,
1 == fabric_global_port_info.global_port_default_value(fabric_global_port));
}
}
/* Connect global configuration done ports to configuration done signal */
@ -1935,7 +1942,7 @@ void print_verilog_top_testbench(const ModuleManager& module_manager,
netlist_annotation,
clock_port_names,
std::string(TOP_TESTBENCH_CHECKFLAG_PORT_POSTFIX),
BasicPort(std::string(TOP_TB_OP_CLOCK_PORT_NAME), 1));
std::vector<BasicPort>(1, BasicPort(std::string(TOP_TB_OP_CLOCK_PORT_NAME), 1)));
/* Add output autocheck */
print_verilog_testbench_check(fp,

View File

@ -0,0 +1,22 @@
clk0 0.505000 0.204400
rst0 0.491000 0.206000
clk1 0.472000 0.204400
rst1 0.501400 0.204600
q1[0] 0.278800 0.557400
q1[1] 0.240600 0.268800
q1[2] 0.178200 0.120000
q1[3] 0.098400 0.041600
q0[0] 0.283400 0.566600
q0[1] 0.246800 0.272000
q0[2] 0.181000 0.122200
q0[3] 0.093200 0.048800
n34 0.178200 0.068356
n38 0.098400 0.002698
$abc$226$new_n22_ 0.880800 0.004943
n42 0.283400 0.129291
n46 0.246800 0.084119
n50 0.181000 0.067113
n54 0.093200 0.002644
$abc$226$new_n27_ 0.883200 0.005398
n26 0.278800 0.038636
n30 0.240600 0.082416

View File

@ -0,0 +1,48 @@
# Benchmark "counter4bit_2clock" written by ABC on Wed Jan 13 13:27:00 2021
.model counter4bit_2clock
.inputs clk0 rst0 clk1 rst1
.outputs q0[0] q0[1] q0[2] q0[3] q1[0] q1[1] \
q1[2] q1[3]
.latch n26 q1[0] re clk1 2
.latch n30 q1[1] re clk1 2
.latch n34 q1[2] re clk1 2
.latch n38 q1[3] re clk1 2
.latch n42 q0[0] re clk0 2
.latch n46 q0[1] re clk0 2
.latch n50 q0[2] re clk0 2
.latch n54 q0[3] re clk0 2
.names q1[0] q1[1] rst1 q1[2] n34
-001 1
0-01 1
1100 1
.names rst1 $abc$226$new_n22_ n38
00 1
.names q1[2] q1[0] q1[1] q1[3] $abc$226$new_n22_
--00 1
-0-0 1
0--0 1
1111 1
.names rst0 q0[0] n42
00 1
.names rst0 q0[1] q0[0] n46
001 1
010 1
.names q0[1] q0[0] rst0 q0[2] n50
-001 1
0-01 1
1100 1
.names rst0 $abc$226$new_n27_ n54
00 1
.names q0[2] q0[1] q0[0] q0[3] $abc$226$new_n27_
--00 1
-0-0 1
0--0 1
1111 1
.names q1[0] rst1 n26
00 1
.names rst1 q1[0] q1[1] n30
001 1
010 1
.end

View File

@ -0,0 +1,29 @@
module counter4bit_2clock(clk0, rst0, clk1, rst1, q0, q1);
input clk0;
input rst0;
output [3:0] q0;
reg [3:0] q0;
input clk1;
input rst1;
output [3:0] q1;
reg [3:0] q1;
always @ (posedge clk0)
begin
if(rst0)
q0 <= 4'b0000;
else
q0 <= q0 + 1;
end
always @ (posedge clk1)
begin
if(rst1)
q1 <= 4'b0000;
else
q1 <= q1 + 1;
end
endmodule

View File

@ -0,0 +1,60 @@
/* Generated by Yosys 0.9+2406 (git sha1 a0606e09, gcc 8.4.0 -fPIC -Os) */
module counter4bit_2clock(clk0, rst0, clk1, rst1, \q0[0] , \q0[1] , \q0[2] , \q0[3] , \q1[0] , \q1[1] , \q1[2] , \q1[3] );
wire _00_;
wire _01_;
input clk0;
input clk1;
wire n26;
wire n30;
wire n34;
wire n38;
wire n42;
wire n46;
wire n50;
wire n54;
output \q0[0] ;
reg \q0[0] ;
output \q0[1] ;
reg \q0[1] ;
output \q0[2] ;
reg \q0[2] ;
output \q0[3] ;
reg \q0[3] ;
output \q1[0] ;
reg \q1[0] ;
output \q1[1] ;
reg \q1[1] ;
output \q1[2] ;
reg \q1[2] ;
output \q1[3] ;
reg \q1[3] ;
input rst0;
input rst1;
always @(posedge clk1)
\q1[0] <= n26;
always @(posedge clk1)
\q1[1] <= n30;
always @(posedge clk1)
\q1[2] <= n34;
always @(posedge clk1)
\q1[3] <= n38;
always @(posedge clk1)
\q0[0] <= n42;
always @(posedge clk1)
\q0[1] <= n46;
always @(posedge clk1)
\q0[2] <= n50;
always @(posedge clk1)
\q0[3] <= n54;
assign n38 = 4'h1 >> { _00_, rst1 };
assign _00_ = 16'h807f >> { \q1[3] , \q1[1] , \q1[0] , \q1[2] };
assign n42 = 4'h1 >> { \q0[0] , rst0 };
assign n46 = 8'h14 >> { \q0[0] , \q0[1] , rst0 };
assign n50 = 16'h0708 >> { \q0[2] , rst0, \q0[0] , \q0[1] };
assign n54 = 4'h1 >> { _01_, rst0 };
assign _01_ = 16'h807f >> { \q0[3] , \q0[0] , \q0[1] , \q0[2] };
assign n26 = 4'h1 >> { rst1, \q1[0] };
assign n30 = 8'h14 >> { \q1[1] , \q1[0] , rst1 };
assign n34 = 16'h0708 >> { \q1[2] , rst1, \q1[1] , \q1[0] };
endmodule

View File

@ -0,0 +1,42 @@
module counter4bit_2clock_tb;
reg clk0, rst0;
wire [3:0] q0;
reg clk1, rst1;
wire [3:0] q1;
counter_2clock C_1(
clk0,
q0,
rst0);
counter_2clock C_1(
clk1,
q1,
rst1);
initial begin
#0 rst0 = 1'b1; clk0 = 1'b0;
#100 rst0 = 1'b0;
end
always begin
#10 clk0 = ~clk0;
end
initial begin
#0 rst1 = 1'b1; clk1 = 1'b0;
#100 rst1 = 1'b0;
end
always begin
#20 clk1 = ~clk1;
end
initial begin
#5000 $stop;
end
endmodule

View File

@ -26,5 +26,6 @@ Note that an OpenFPGA architecture can be applied to multiple VPR architecture f
- tree\_mux: If routing multiplexers are built with a tree-like structure
- <feature_size>: The technology node which the delay numbers are extracted from.
- powergate : The FPGA has power-gating techniques applied. If not defined, there is no power-gating.
- GlobalTile<Int>Clk: How many clocks are defined through global ports from physical tiles. <Int> is the number of clocks
Other features are used in naming should be listed here.

View File

@ -0,0 +1,198 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
- 4 operating clocks
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="false" default_val="0"/>
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="DFF" prefix="DFF" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="DFF"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<tile_annotations>
<global_port name="clk" is_clock="true" default_val="0">
<!-- MUST explicitly define the number of clock bits
being consistent with physical tile port definition
-->
<tile name="clb" port="clk[0:3]" x="-1" y="-1"/>
</global_port>
</tile_annotations>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -57,7 +57,7 @@ write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --pri
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator --explicit_port_mapping
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator #--explicit_port_mapping
# Write the SDC files for PnR backend
# - Turn on every options here

View File

@ -0,0 +1,44 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
# Due to the limitation in ACE2 which cannot output .blif files
# with correct multi-clock assignments to .latch lines
# We have to use the vpr_blif flow where the .blif is modified
# based on yosys outputs with correct clock assignment!
# TODO: This limitation should be removed and we should use yosys_vpr flow!!!
fpga_flow=vpr_blif
#fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/global_tile_clock_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_GlobalTile4Clk_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_GlobalTile4Clk_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.blif
#bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.v
[SYNTHESIS_PARAM]
bench0_top = counter4bit_2clock
bench0_act=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock.act
bench0_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter4bit_2clock/counter4bit_2clock_post_yosys.v
bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -21,5 +21,6 @@ Please reveal the following architecture features in the names to help quickly s
* Top-left (Tl): the pins of a tile are placed on the top side and left side only
* Top-right (Tr): the pins of a tile are placed on the top side and right side only
* Bottom-right (Br): the pins of a tile are placed on the bottom side and right side only
- GlobalTile<Int>Clk: How many clocks are defined through global ports from physical tiles. <Int> is the number of clocks
Other features are used in naming should be listed here.

View File

@ -0,0 +1,296 @@
<!--
Architecture with no fracturable LUTs
- 40 nm technology
- General purpose logic block:
K = 4, N = 4
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
- 4 operating clocks which can be selected for each logic element
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="10" equivalent="full"/>
<output name="O" num_pins="4" equivalent="none"/>
<clock name="clk" num_pins="4"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
</fc>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="10" equivalent="full"/>
<output name="O" num_pins="4" equivalent="none"/>
<clock name="clk" num_pins="4"/>
<!-- Describe basic logic element.
Each basic logic element has a 4-LUT that can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>