[FPGA-SPICE] Add support for AND/OR logic gate

This commit is contained in:
tangxifan 2020-09-19 16:20:21 -06:00
parent 482d90018f
commit e102e30d19
7 changed files with 428 additions and 17 deletions

View File

@ -63,15 +63,15 @@ int print_spice_powergated_inverter_pmos_modeling(std::fstream& fp,
if (true == first_enb_pin) { if (true == first_enb_pin) {
fp << output_port_name << "_pmos_pg_" << power_gate_pin << " "; fp << output_port_name << "_pmos_pg_" << power_gate_pin << " ";
fp << generate_spice_port(enb_pin) << " "; fp << generate_spice_port(enb_pin) << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
first_enb_pin = false; first_enb_pin = false;
} else { } else {
VTR_ASSERT_SAFE(false == first_enb_pin); VTR_ASSERT_SAFE(false == first_enb_pin);
fp << output_port_name << "_pmos_pg_" << last_enb_pin << " "; fp << output_port_name << "_pmos_pg_" << last_enb_pin << " ";
fp << generate_spice_port(enb_pin) << " "; fp << generate_spice_port(enb_pin) << " ";
fp << output_port_name << "_pmos_pg_" << power_gate_pin << " "; fp << output_port_name << "_pmos_pg_" << power_gate_pin << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
} }
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
@ -86,7 +86,7 @@ int print_spice_powergated_inverter_pmos_modeling(std::fstream& fp,
fp << output_port_name << " "; fp << output_port_name << " ";
fp << input_port_name << " "; fp << input_port_name << " ";
fp << output_port_name << "_pmos_pg_" << circuit_lib.pins(enb_port).back() << " "; fp << output_port_name << "_pmos_pg_" << circuit_lib.pins(enb_port).back() << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";
@ -129,15 +129,15 @@ int print_spice_powergated_inverter_nmos_modeling(std::fstream& fp,
if (true == first_en_pin) { if (true == first_en_pin) {
fp << output_port_name << "_nmos_pg_" << power_gate_pin << " "; fp << output_port_name << "_nmos_pg_" << power_gate_pin << " ";
fp << generate_spice_port(en_pin) << " "; fp << generate_spice_port(en_pin) << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
first_en_pin = false; first_en_pin = false;
} else { } else {
VTR_ASSERT_SAFE(false == first_en_pin); VTR_ASSERT_SAFE(false == first_en_pin);
fp << output_port_name << "_nmos_pg_" << last_en_pin << " "; fp << output_port_name << "_nmos_pg_" << last_en_pin << " ";
fp << circuit_lib.port_prefix(en_port) << " "; fp << circuit_lib.port_prefix(en_port) << " ";
fp << output_port_name << "_nmos_pg_" << power_gate_pin << " "; fp << output_port_name << "_nmos_pg_" << power_gate_pin << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
} }
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
@ -151,7 +151,7 @@ int print_spice_powergated_inverter_nmos_modeling(std::fstream& fp,
fp << output_port_name << " "; fp << output_port_name << " ";
fp << input_port_name << " "; fp << input_port_name << " ";
fp << output_port_name << " _nmos_pg_" << circuit_lib.pins(en_port).back() << " "; fp << output_port_name << " _nmos_pg_" << circuit_lib.pins(en_port).back() << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";
@ -338,8 +338,8 @@ int print_spice_regular_inverter_pmos_modeling(std::fstream& fp,
fp << "Xpmos_" << trans_name_postfix << " "; fp << "Xpmos_" << trans_name_postfix << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
fp << input_port_name << " "; fp << input_port_name << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";
@ -374,8 +374,8 @@ int print_spice_regular_inverter_nmos_modeling(std::fstream& fp,
fp << "Xnmos_" << trans_name_postfix << " "; fp << "Xnmos_" << trans_name_postfix << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
fp << input_port_name << " "; fp << input_port_name << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";

View File

@ -10,4 +10,7 @@ constexpr char* TRANSISTOR_WRAPPER_POSTFIX = "_wrapper";
constexpr char* TRANSISTORS_SPICE_FILE_NAME = "transistor.sp"; constexpr char* TRANSISTORS_SPICE_FILE_NAME = "transistor.sp";
constexpr char* ESSENTIALS_SPICE_FILE_NAME = "inv_buf_passgate.sp"; constexpr char* ESSENTIALS_SPICE_FILE_NAME = "inv_buf_passgate.sp";
constexpr char* SPICE_SUBCKT_VDD_PORT_NAME = "VDD";
constexpr char* SPICE_SUBCKT_GND_PORT_NAME = "VSS";
#endif #endif

View File

@ -24,6 +24,7 @@
#include "spice_writer_utils.h" #include "spice_writer_utils.h"
#include "spice_buffer.h" #include "spice_buffer.h"
#include "spice_passgate.h" #include "spice_passgate.h"
#include "spice_logic_gate.h"
#include "spice_essential_gates.h" #include "spice_essential_gates.h"
/* begin namespace openfpga */ /* begin namespace openfpga */
@ -112,7 +113,7 @@ int print_spice_essential_gates(NetlistManager& netlist_manager,
continue; continue;
} }
/* Now branch on netlist writing: for inverter/buffers */ /* Now branch on netlist writing: for pass-gate logic */
if (CIRCUIT_MODEL_PASSGATE == circuit_lib.model_type(circuit_model)) { if (CIRCUIT_MODEL_PASSGATE == circuit_lib.model_type(circuit_model)) {
status = print_spice_passgate_subckt(fp, status = print_spice_passgate_subckt(fp,
module_manager, module_id, module_manager, module_id,
@ -126,6 +127,29 @@ int print_spice_essential_gates(NetlistManager& netlist_manager,
/* Finish, go to the next */ /* Finish, go to the next */
continue; continue;
} }
/* Now branch on netlist writing: for logic gate */
if (CIRCUIT_MODEL_GATE == circuit_lib.model_type(circuit_model)) {
if (CIRCUIT_MODEL_GATE_AND == circuit_lib.gate_type(circuit_model)) {
status = print_spice_and_gate_subckt(fp,
module_manager, module_id,
circuit_lib, circuit_model,
tech_lib, tech_model);
} else if (CIRCUIT_MODEL_GATE_OR == circuit_lib.gate_type(circuit_model)) {
status = print_spice_or_gate_subckt(fp,
module_manager, module_id,
circuit_lib, circuit_model,
tech_lib, tech_model);
}
if (CMD_EXEC_FATAL_ERROR == status) {
break;
}
/* Finish, go to the next */
continue;
}
} }
/* Close file handler*/ /* Close file handler*/

View File

@ -0,0 +1,346 @@
/************************************************
* This file includes functions on
* outputting SPICE netlists for logic gates:
* - N-input AND gate
* - N-input OR gate
***********************************************/
#include <fstream>
#include <cmath>
#include <iomanip>
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
/* Headers from openfpgashell library */
#include "command_exit_codes.h"
/* Headers from openfpgautil library */
#include "openfpga_digest.h"
#include "circuit_library_utils.h"
#include "spice_constants.h"
#include "spice_writer_utils.h"
#include "spice_transistor_wrapper.h"
#include "spice_logic_gate.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Generate the SPICE subckt for a N-input AND gate
*
* Schematic
*
* VDD VDD VDD
* | | |
* - - -
* in0 -o|| in1 -o|| ... in[N-1] -o||
* - - -
* | | |
* +----+-----+- ... -------------+
* |
* -
* in0 -||
* -
* |
* -
* in1 -||
* -
* |
* ...
* |
* -
* in[N-1] -||
* -
* |
* GND
*******************************************************************/
int print_spice_and_gate_subckt(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model) {
if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR;
}
/* Find the input and output ports:
* we do NOT support global ports here,
* it should be handled in another type of inverter subckt (power-gated)
*/
std::vector<CircuitPortId> input_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> output_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Make sure:
* There are at least 2 input ports and 1 output port,
* each size of which is 1
*/
VTR_ASSERT(2 <= input_ports.size());
for (const auto& input_port : input_ports) {
VTR_ASSERT(1 == circuit_lib.port_size(input_port));
}
VTR_ASSERT( (1 == output_ports.size()) && (1 == circuit_lib.port_size(output_ports[0])) );
int status = CMD_EXEC_SUCCESS;
/* Print the inverter subckt definition */
print_spice_subckt_definition(fp, module_manager, module_id);
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
float regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
float total_pmos_width = 1. /* TODO: allow users to define gate strength */
* tech_lib.model_pn_ratio(tech_model)
* tech_lib.transistor_model_min_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = std::fmod(total_pmos_width, regular_pmos_bin_width);
/* Output the PMOS network */
for (const auto& input_port : input_ports) {
for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
float curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if ((ibin == num_pmos_bins - 1)
&& (0. != last_pmos_bin_width)) {
curr_bin_width = last_pmos_bin_width;
}
status = print_spice_generic_pmos_modeling(fp,
std::to_string(ibin),
std::string(SPICE_SUBCKT_VDD_PORT_NAME),
circuit_lib.port_prefix(input_port),
circuit_lib.port_prefix(output_ports[0]),
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
float regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
float total_nmos_width = 1. /* TODO: allow users to define gate strength */
* tech_lib.transistor_model_min_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = std::fmod(total_nmos_width, regular_nmos_bin_width);
/* Output the NMOS network */
for (size_t input_id = 0; input_id < input_ports.size(); ++input_id) {
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
float curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if ((ibin == num_nmos_bins - 1)
&& (0. != last_nmos_bin_width)) {
curr_bin_width = last_nmos_bin_width;
}
/* Depending on the input id, we assign different port names to source/drain */
std::string source_port_name;
std::string drain_port_name;
if (0 == input_id) {
/* First transistor should connect to the output port and an internal node */
source_port_name = circuit_lib.port_prefix(output_ports[0]);
drain_port_name = std::string("internal_node") + std::to_string(input_id);
} else if (input_id == input_ports.size() - 1) {
/* Last transistor should connect to an internal node and GND */
source_port_name = std::string("internal_node") + std::to_string(input_id - 1);
drain_port_name = std::string(SPICE_SUBCKT_GND_PORT_NAME);
} else {
/* Other transistors should connect to two internal nodes */
source_port_name = std::string("internal_node") + std::to_string(input_id - 1);
drain_port_name = std::string("internal_node") + std::to_string(input_id);
}
status = print_spice_generic_nmos_modeling(fp,
std::to_string(ibin),
source_port_name,
circuit_lib.port_prefix(input_ports[input_id]),
drain_port_name,
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
print_spice_subckt_end(fp, module_manager.module_name(module_id));
return status;
}
/********************************************************************
* Generate the SPICE subckt for a N-input OR gate
*
* Schematic
*
*
* VDD
* |
* -
* in0 -o||
* -
* |
* -
* in1 -o||
* -
* |
* ...
* |
* -
* in[N-1] -o||
* -
* |
* +----+-----+- ... -------------+
* | | |
* - - -
* in0 -|| in1 -|| ... in[N-1] -||
* - - -
* | | |
* GND GND GND
*******************************************************************/
int print_spice_or_gate_subckt(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model) {
if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR;
}
/* Find the input and output ports:
* we do NOT support global ports here,
* it should be handled in another type of inverter subckt (power-gated)
*/
std::vector<CircuitPortId> input_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> output_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Make sure:
* There are at least 2 input ports and 1 output port,
* each size of which is 1
*/
VTR_ASSERT(2 <= input_ports.size());
for (const auto& input_port : input_ports) {
VTR_ASSERT(1 == circuit_lib.port_size(input_port));
}
VTR_ASSERT( (1 == output_ports.size()) && (1 == circuit_lib.port_size(output_ports[0])) );
int status = CMD_EXEC_SUCCESS;
/* Print the inverter subckt definition */
print_spice_subckt_definition(fp, module_manager, module_id);
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
float regular_pmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
float total_pmos_width = 1. /* TODO: allow users to define gate strength */
* tech_lib.model_pn_ratio(tech_model)
* tech_lib.transistor_model_min_width(tech_model, TECH_LIB_TRANSISTOR_PMOS);
int num_pmos_bins = std::ceil(total_pmos_width / regular_pmos_bin_width);
float last_pmos_bin_width = std::fmod(total_pmos_width, regular_pmos_bin_width);
/* Output the PMOS network */
for (size_t input_id = 0; input_id < input_ports.size(); ++input_id) {
for (int ibin = 0; ibin < num_pmos_bins; ++ibin) {
float curr_bin_width = regular_pmos_bin_width;
/* For last bin, we need an irregular width */
if ((ibin == num_pmos_bins - 1)
&& (0. != last_pmos_bin_width)) {
curr_bin_width = last_pmos_bin_width;
}
/* Depending on the input id, we assign different port names to source/drain */
std::string source_port_name;
std::string drain_port_name;
if (0 == input_id) {
/* First transistor should connect to the output port and an internal node */
source_port_name = circuit_lib.port_prefix(output_ports[0]);
drain_port_name = std::string("internal_node") + std::to_string(input_id);
} else if (input_id == input_ports.size() - 1) {
/* Last transistor should connect to an internal node and GND */
source_port_name = std::string("internal_node") + std::to_string(input_id - 1);
drain_port_name = std::string(SPICE_SUBCKT_VDD_PORT_NAME);
} else {
/* Other transistors should connect to two internal nodes */
source_port_name = std::string("internal_node") + std::to_string(input_id - 1);
drain_port_name = std::string("internal_node") + std::to_string(input_id);
}
status = print_spice_generic_pmos_modeling(fp,
std::to_string(ibin),
source_port_name,
circuit_lib.port_prefix(input_ports[input_id]),
drain_port_name,
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
/* Consider use size/bin to compact layout:
* Try to size transistors to the max width for each bin
* The last bin may not reach the max width
*/
float regular_nmos_bin_width = tech_lib.transistor_model_max_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
float total_nmos_width = 1. /* TODO: allow users to define gate strength */
* tech_lib.transistor_model_min_width(tech_model, TECH_LIB_TRANSISTOR_NMOS);
int num_nmos_bins = std::ceil(total_nmos_width / regular_nmos_bin_width);
float last_nmos_bin_width = std::fmod(total_nmos_width, regular_nmos_bin_width);
/* Output the NMOS network */
for (const auto& input_port : input_ports) {
for (int ibin = 0; ibin < num_nmos_bins; ++ibin) {
float curr_bin_width = regular_nmos_bin_width;
/* For last bin, we need an irregular width */
if ((ibin == num_nmos_bins - 1)
&& (0. != last_nmos_bin_width)) {
curr_bin_width = last_nmos_bin_width;
}
status = print_spice_generic_nmos_modeling(fp,
std::to_string(ibin),
circuit_lib.port_prefix(output_ports[0]),
circuit_lib.port_prefix(input_port),
std::string(SPICE_SUBCKT_GND_PORT_NAME),
tech_lib,
tech_model,
curr_bin_width);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
print_spice_subckt_end(fp, module_manager.module_name(module_id));
return status;
}
} /* end namespace openfpga */

View File

@ -0,0 +1,38 @@
#ifndef SPICE_LOGIC_GATE_H
#define SPICE_LOGIC_GATE_H
/********************************************************************
* Include header files that are required by function declaration
*******************************************************************/
#include <string>
#include <map>
#include "module_manager.h"
#include "circuit_library.h"
#include "technology_library.h"
/********************************************************************
* Function declaration
*******************************************************************/
/* begin namespace openfpga */
namespace openfpga {
int print_spice_and_gate_subckt(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model);
int print_spice_or_gate_subckt(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model);
} /* end namespace openfpga */
#endif

View File

@ -248,7 +248,7 @@ int print_spice_passgate_subckt(std::fstream& fp,
module_manager, module_id, module_manager, module_id,
circuit_lib, circuit_model, circuit_lib, circuit_model,
tech_lib, tech_model); tech_lib, tech_model);
} else if (CIRCUIT_MODEL_PASS_GATE_TRANSMISSION == circuit_lib.is_power_gated(circuit_model)) { } else if (CIRCUIT_MODEL_PASS_GATE_TRANSMISSION == circuit_lib.pass_gate_logic_type(circuit_model)) {
status = print_spice_transmission_gate_subckt(fp, status = print_spice_transmission_gate_subckt(fp,
module_manager, module_id, module_manager, module_id,
circuit_lib, circuit_model, circuit_lib, circuit_model,

View File

@ -96,7 +96,7 @@ int print_spice_transistor_wrapper(NetlistManager& netlist_manager,
continue; continue;
} }
/* Write a wrapper for the transistor model */ /* Write a wrapper for the transistor model */
if (CMD_EXEC_SUCCESS == print_spice_transistor_model_wrapper(fp, tech_lib, model)) { if (CMD_EXEC_SUCCESS != print_spice_transistor_model_wrapper(fp, tech_lib, model)) {
return CMD_EXEC_FATAL_ERROR; return CMD_EXEC_FATAL_ERROR;
} }
} }
@ -144,7 +144,7 @@ int print_spice_generic_pmos_modeling(std::fstream& fp,
fp << input_port_name << " "; fp << input_port_name << " ";
fp << gate_port_name << " "; fp << gate_port_name << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
fp << "LVDD "; fp << SPICE_SUBCKT_VDD_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";
@ -178,7 +178,7 @@ int print_spice_generic_nmos_modeling(std::fstream& fp,
fp << input_port_name << " "; fp << input_port_name << " ";
fp << gate_port_name << " "; fp << gate_port_name << " ";
fp << output_port_name << " "; fp << output_port_name << " ";
fp << "LGND "; fp << SPICE_SUBCKT_GND_PORT_NAME << " ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX; fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << " W=" << std::setprecision(10) << trans_width; fp << " W=" << std::setprecision(10) << trans_width;
fp << "\n"; fp << "\n";