Merge remote-tracking branch 'lnis_origin/dev' into ganesh_dev

This commit is contained in:
Ganesh Gore 2019-09-14 12:11:36 -06:00
commit d90329678a
21 changed files with 1791 additions and 185 deletions

File diff suppressed because it is too large Load Diff

View File

@ -18,6 +18,8 @@ fpga_flow=vpr_blif
# arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/template/k6_N10_sram_chain_HC_DPRAM_template.xml
arch1=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/template/k6_N10_sram_chain_HC_template.xml
arch2=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/template/k8_N10_sram_chain_FC_template.xml
arch3=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/template/k6_N10_sram_chain_HC_local_encoder_template.xml
arch4=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/template/k6_N10_sram_chain_HC_behavioral_verilog_template.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/Test_Modes/test_modes.blif
@ -28,7 +30,7 @@ bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/Test_Modes/test_mode
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/Test_Modes/test_modes.v
bench0_chan_width = 300
[SCRIPT_PARAM_1]
[SCRIPT_PARAM_FIX_ROUTE_CHAN_WIDTH]
fix_route_chan_width=300
vpr_fpga_verilog_include_icarus_simulator=
vpr_fpga_verilog_formal_verification_top_netlist=
@ -44,17 +46,17 @@ vpr_fpga_x2p_compact_routing_hierarchy=
end_flow_with_test=
# [SCRIPT_PARAM_2]
# fix_route_chan_width=200
# vpr_fpga_verilog_include_icarus_simulator=
# vpr_fpga_verilog_formal_verification_top_netlist=
# vpr_fpga_verilog_include_timing=
# vpr_fpga_verilog_include_signal_init=
# vpr_fpga_verilog_print_autocheck_top_testbench=
# vpr_fpga_bitstream_generator=
# vpr_fpga_verilog_print_user_defined_template=
# vpr_fpga_verilog_print_report_timing_tcl=
# vpr_fpga_verilog_print_sdc_pnr=
# vpr_fpga_verilog_print_sdc_analysis=
# vpr_fpga_x2p_compact_routing_hierarchy=
# end_flow_with_test=
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
min_route_chan_width=1.3
vpr_fpga_verilog_include_icarus_simulator=
vpr_fpga_verilog_formal_verification_top_netlist=
vpr_fpga_verilog_include_timing=
vpr_fpga_verilog_include_signal_init=
vpr_fpga_verilog_print_autocheck_top_testbench=
vpr_fpga_bitstream_generator=
vpr_fpga_verilog_print_user_defined_template=
vpr_fpga_verilog_print_report_timing_tcl=
vpr_fpga_verilog_print_sdc_pnr=
vpr_fpga_verilog_print_sdc_analysis=
vpr_fpga_x2p_compact_routing_hierarchy=
end_flow_with_test=

View File

@ -67,6 +67,18 @@ size_t MuxGraph::num_inputs() const {
return num_inputs;
}
/* Return the node ids of all the inputs of the multiplexer */
std::vector<MuxNodeId> MuxGraph::inputs() const {
std::vector<MuxNodeId> input_nodes;
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Add the input nodes in each level */
for (auto node_per_level : node_lookup_) {
input_nodes.insert(input_nodes.end(), node_per_level[MUX_INPUT_NODE].begin(), node_per_level[MUX_INPUT_NODE].end());
}
return input_nodes;
}
/* Find the number of outputs in the MUX graph */
size_t MuxGraph::num_outputs() const {
/* need to check if the graph is valid or not */
@ -79,6 +91,36 @@ size_t MuxGraph::num_outputs() const {
return num_outputs;
}
/* Return the node ids of all the outputs of the multiplexer */
std::vector<MuxNodeId> MuxGraph::outputs() const {
std::vector<MuxNodeId> output_nodes;
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Add the output nodes in each level */
for (auto node_per_level : node_lookup_) {
output_nodes.insert(output_nodes.end(), node_per_level[MUX_OUTPUT_NODE].begin(), node_per_level[MUX_OUTPUT_NODE].end());
}
return output_nodes;
}
/* Find the edge between two MUX nodes */
std::vector<MuxEdgeId> MuxGraph::find_edges(const MuxNodeId& from_node, const MuxNodeId& to_node) const {
std::vector<MuxEdgeId> edges;
VTR_ASSERT(valid_node_id(from_node));
VTR_ASSERT(valid_node_id(to_node));
for (const auto& edge : node_out_edges_[from_node]) {
for (const auto& cand : edge_sink_nodes_[edge]) {
if (cand == to_node) {
/* This is the wanted edge, add to list */
edges.push_back(edge);
}
}
}
return edges;
}
/* Find the number of levels in the MUX graph */
size_t MuxGraph::num_levels() const {
@ -95,6 +137,20 @@ size_t MuxGraph::num_memory_bits() const {
return mem_ids_.size();
}
/* Find the mem that control the edge */
MuxMemId MuxGraph::find_edge_mem(const MuxEdgeId& edge) const {
/* validate the edge */
VTR_ASSERT(valid_edge_id(edge));
return edge_mem_ids_[edge];
}
/* Identify if the edge is controlled by the inverted output of a mem */
bool MuxGraph::is_edge_use_inv_mem(const MuxEdgeId& edge) const {
/* validate the edge */
VTR_ASSERT(valid_edge_id(edge));
return edge_inv_mem_[edge];
}
/* Find the sizes of each branch of a MUX */
std::vector<size_t> MuxGraph::branch_sizes() const {
std::vector<size_t> branch;
@ -147,6 +203,7 @@ MuxGraph MuxGraph::subgraph(const MuxNodeId& root_node) const {
/* Add output nodes to subgraph */
MuxNodeId to_node_subgraph = mux_graph.add_node(MUX_OUTPUT_NODE);
mux_graph.node_levels_[to_node_subgraph] = 1;
mux_graph.node_output_ids_[to_node_subgraph] = MuxOutputId(0);
/* Update the node-to-node map */
node2node_map[root_node] = to_node_subgraph;
@ -190,6 +247,8 @@ MuxGraph MuxGraph::subgraph(const MuxNodeId& root_node) const {
/* Not found, we add a memory bit and record in the mem-to-mem map */
MuxMemId mem_subgraph = mux_graph.add_mem();
mem2mem_map[mem_origin] = mem_subgraph;
/* configure the edge */
mux_graph.edge_mem_ids_[edge2edge_map[edge_origin]] = mem_subgraph;
}
/* Since the graph is finalized, it is time to build the fast look-up */
@ -241,6 +300,24 @@ std::vector<MuxGraph> MuxGraph::build_mux_branch_graphs() const {
return branch_graphs;
}
/* Get the input id of a given node */
MuxInputId MuxGraph::input_id(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(valid_node_id(node_id));
/* Must be an input */
VTR_ASSERT(MUX_INPUT_NODE == node_types_[node_id]);
return node_input_ids_[node_id];
}
/* Get the input id of a given node */
MuxOutputId MuxGraph::output_id(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(valid_node_id(node_id));
/* Must be an input */
VTR_ASSERT(MUX_OUTPUT_NODE == node_types_[node_id]);
return node_output_ids_[node_id];
}
/* Get the node id of a given input */
MuxNodeId MuxGraph::node_id(const MuxInputId& input_id) const {
/* Use the node_lookup to accelerate the search */
@ -287,7 +364,10 @@ std::vector<size_t> MuxGraph::decode_memory_bits(const MuxInputId& input_id) con
/* Visit the next node */
next_node = edge_sink_nodes_[edge][0];
}
/* valid the output */
VTR_ASSERT_SAFE(MUX_OUTPUT_NODE == node_types_[next_node]);
VTR_ASSERT_SAFE(valid_output_id(node_output_ids_[next_node]));
return mem_bits;
}
@ -303,6 +383,7 @@ MuxNodeId MuxGraph::add_node(const enum e_mux_graph_node_type& node_type) {
/* Resize the other node-related vectors */
node_types_.push_back(node_type);
node_input_ids_.push_back(MuxInputId::INVALID());
node_output_ids_.push_back(MuxOutputId::INVALID());
node_levels_.push_back(-1);
node_in_edges_.emplace_back();
node_out_edges_.emplace_back();
@ -427,6 +508,7 @@ void MuxGraph::build_multilevel_mux_graph(const size_t& mux_size,
/* Number of outputs is definite, add and configure */
MuxNodeId output_node = add_node(MUX_OUTPUT_NODE);
node_levels_[output_node] = num_levels;
node_output_ids_[output_node] = MuxOutputId(0);
/* Update node lookup */
node_lookup[num_levels].push_back(output_node);
@ -542,6 +624,7 @@ void MuxGraph::build_onelevel_mux_graph(const size_t& mux_size,
*/
MuxNodeId output_node = add_node(MUX_OUTPUT_NODE);
node_levels_[output_node] = 1;
node_output_ids_[output_node] = MuxOutputId(0);
for (size_t i = 0; i < mux_size; ++i) {
MuxNodeId input_node = add_node(MUX_INPUT_NODE);
@ -664,7 +747,7 @@ bool MuxGraph::valid_mem_id(const MuxMemId& mem) const {
return size_t(mem) < mem_ids_.size() && mem_ids_[mem] == mem;
}
/* validate an input id (from which data path signal will be progagated to the output */
/* validate an input id (from which data path signal will be progagated to the output) */
bool MuxGraph::valid_input_id(const MuxInputId& input_id) const {
for (const auto& lvl : node_lookup_) {
for (const auto& node : lvl[MUX_INPUT_NODE]) {
@ -677,6 +760,19 @@ bool MuxGraph::valid_input_id(const MuxInputId& input_id) const {
return true;
}
/* validate an output id */
bool MuxGraph::valid_output_id(const MuxOutputId& output_id) const {
for (const auto& lvl : node_lookup_) {
for (const auto& node : lvl[MUX_OUTPUT_NODE]) {
if (size_t(output_id) > size_t(node_output_ids_[node])) {
return false;
}
}
}
return true;
}
bool MuxGraph::valid_node_lookup() const {
return node_lookup_.empty();
}

View File

@ -63,12 +63,20 @@ class MuxGraph {
public: /* Public accessors: Data query */
/* Find the number of inputs in the MUX graph */
size_t num_inputs() const;
std::vector<MuxNodeId> inputs() const;
/* Find the number of outputs in the MUX graph */
size_t num_outputs() const;
std::vector<MuxNodeId> outputs() const;
/* Find the edge between two MUX nodes */
std::vector<MuxEdgeId> find_edges(const MuxNodeId& from_node, const MuxNodeId& to_node) const;
/* Find the number of levels in the MUX graph */
size_t num_levels() const;
/* Find the number of SRAMs in the MUX graph */
size_t num_memory_bits() const;
/* Find the mem that control the edge */
MuxMemId find_edge_mem(const MuxEdgeId& edge) const;
/* Identify if the edge is controlled by the inverted output of a mem */
bool is_edge_use_inv_mem(const MuxEdgeId& edge) const;
/* Find the sizes of each branch of a MUX */
std::vector<size_t> branch_sizes() const;
/* Generate MUX graphs for its branches */
@ -76,6 +84,10 @@ class MuxGraph {
std::vector<MuxGraph> build_mux_branch_graphs() const;
/* Get the node id of a given input */
MuxNodeId node_id(const MuxInputId& input_id) const;
/* Get the input id of a given node */
MuxInputId input_id(const MuxNodeId& node_id) const;
/* Get the output id of a given node */
MuxOutputId output_id(const MuxNodeId& node_id) const;
/* Decode memory bits based on an input id */
std::vector<size_t> decode_memory_bits(const MuxInputId& input_id) const;
private: /* Private mutators : basic operations */
@ -106,6 +118,7 @@ class MuxGraph {
bool valid_edge_id(const MuxEdgeId& edge) const;
bool valid_mem_id(const MuxMemId& mem) const;
bool valid_input_id(const MuxInputId& input_id) const;
bool valid_output_id(const MuxOutputId& output_id) const;
/* validate/invalidate node lookup */
bool valid_node_lookup() const;
void invalidate_node_lookup();
@ -115,6 +128,7 @@ class MuxGraph {
vtr::vector<MuxNodeId, MuxNodeId> node_ids_; /* Unique ids for each node */
vtr::vector<MuxNodeId, enum e_mux_graph_node_type> node_types_; /* type of each node, input/output/internal */
vtr::vector<MuxNodeId, MuxInputId> node_input_ids_; /* Unique ids for each node as an input of the MUX */
vtr::vector<MuxNodeId, MuxOutputId> node_output_ids_; /* Unique ids for each node as an input of the MUX */
vtr::vector<MuxNodeId, size_t> node_levels_; /* at which level, each node belongs to */
vtr::vector<MuxNodeId, std::vector<MuxEdgeId>> node_in_edges_; /* ids of incoming edges to each node */
vtr::vector<MuxNodeId, std::vector<MuxEdgeId>> node_out_edges_; /* ids of outgoing edges from each node */

View File

@ -13,11 +13,13 @@ struct mux_node_id_tag;
struct mux_edge_id_tag;
struct mux_mem_id_tag;
struct mux_input_id_tag;
struct mux_output_id_tag;
typedef vtr::StrongId<mux_node_id_tag> MuxNodeId;
typedef vtr::StrongId<mux_edge_id_tag> MuxEdgeId;
typedef vtr::StrongId<mux_mem_id_tag> MuxMemId;
typedef vtr::StrongId<mux_input_id_tag> MuxInputId;
typedef vtr::StrongId<mux_output_id_tag> MuxOutputId;
class MuxGraph;

View File

@ -43,6 +43,16 @@ CircuitModelId MuxLibrary::mux_circuit_model(const MuxId& mux_id) const {
return mux_circuit_models_[mux_id];
}
/* Find the maximum mux size among the mux graphs */
size_t MuxLibrary::max_mux_size() const {
/* Iterate over all the mux graphs and find their sizes */
size_t max_mux_size = 0;
for (const auto& mux : mux_ids_) {
max_mux_size = std::max(max_mux_size, mux_graphs_[mux].num_inputs());
}
return max_mux_size;
}
/**************************************************
* Private mutators:
*************************************************/

View File

@ -27,6 +27,8 @@ class MuxLibrary {
const MuxGraph& mux_graph(const MuxId& mux_id) const;
/* Get a mux circuit model id */
CircuitModelId mux_circuit_model(const MuxId& mux_id) const;
/* Find the maximum mux size */
size_t max_mux_size() const;
public: /* Public mutators */
/* Add a mux to the library */
void add_mux(const CircuitLibrary& circuit_lib, const CircuitModelId& circuit_model, const size_t& mux_size);

View File

@ -0,0 +1,186 @@
/********************************************************************
* This file includes the functions of builders for MuxLibrary.
*******************************************************************/
#include <cmath>
#include <stdio.h>
#include "vtr_assert.h"
/* Device-level header files */
#include "util.h"
#include "vpr_types.h"
#include "globals.h"
/* FPGA-X2P context header files */
#include "fpga_x2p_utils.h"
#include "spice_types.h"
#include "circuit_library.h"
#include "mux_library.h"
#include "mux_library_builder.h"
/********************************************************************
* Update MuxLibrary with the unique multiplexer structures
* found in the global routing architecture
*******************************************************************/
static
void build_routing_arch_mux_library(MuxLibrary& mux_lib,
int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch) {
/* Current Version: Support Uni-directional routing architecture only*/
if (UNI_DIRECTIONAL != routing_arch->directionality) {
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s, LINE[%d]) FPGA X2P Only supports uni-directional routing architecture.\n",
__FILE__, __LINE__);
exit(1);
}
/* The routing path is.
* OPIN ----> CHAN ----> ... ----> CHAN ----> IPIN
* Each edge is a switch, for IPIN, the switch is a connection block,
* for the rest is a switch box
*/
/* Count the sizes of muliplexers in routing architecture */
for (int inode = 0; inode < LL_num_rr_nodes; inode++) {
t_rr_node& node = LL_rr_node[inode];
switch (node.type) {
case IPIN: {
/* Have to consider the fan_in only, it is a connection block (multiplexer)*/
VTR_ASSERT((node.fan_in > 0) || (0 == node.fan_in));
if ( (0 == node.fan_in) || (1 == node.fan_in)) {
break;
}
/* Find the circuit_model for multiplexers in connection blocks */
const CircuitModelId& cb_switch_circuit_model = switches[node.driver_switch].circuit_model;
/* we should select a circuit model for the connection box*/
VTR_ASSERT(CircuitModelId::INVALID() != cb_switch_circuit_model);
/* Add the mux to mux_library */
mux_lib.add_mux(circuit_lib, cb_switch_circuit_model, node.fan_in);
break;
}
case CHANX:
case CHANY: {
/* Channels are the same, have to consider the fan_in as well,
* it could be a switch box if previous rr_node is a channel
* or it could be a connection box if previous rr_node is a IPIN or OPIN
*/
VTR_ASSERT((node.fan_in > 0) || (0 == node.fan_in));
if ((0 == node.fan_in) || (1 == node.fan_in)) {
break;
}
/* Find the spice_model for multiplexers in switch blocks*/
const CircuitModelId& sb_switch_circuit_model = switches[node.driver_switch].circuit_model;
/* we should select a circuit model for the Switch box*/
VTR_ASSERT(CircuitModelId::INVALID() != sb_switch_circuit_model);
/* Add the mux to mux_library */
mux_lib.add_mux(circuit_lib, sb_switch_circuit_model, node.fan_in);
break;
}
default:
/* We do not care other types of rr_node */
break;
}
}
}
/********************************************************************
* Update MuxLibrary with the unique multiplexer structures
* found in programmable logic blocks
********************************************************************/
static
void build_pb_type_mux_library_rec(MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_pb_type* cur_pb_type) {
VTR_ASSERT(nullptr != cur_pb_type);
/* If there is spice_model_name, this is a leaf node!*/
if (TRUE == is_primitive_pb_type(cur_pb_type)) {
/* What annoys me is VPR create a sub pb_type for each lut which suppose to be a leaf node
* This may bring software convience but ruins circuit modeling
*/
VTR_ASSERT(CircuitModelId::INVALID() != cur_pb_type->phy_pb_type->circuit_model);
return;
}
/* Traversal the hierarchy, find all the multiplexer from the interconnection part */
for (int imode = 0; imode < cur_pb_type->num_modes; imode++) {
/* Then we have to statisitic the interconnections*/
for (int jinterc = 0; jinterc < cur_pb_type->modes[imode].num_interconnect; jinterc++) {
/* Check the num_mux and fan_in of an interconnection */
VTR_ASSERT ((0 == cur_pb_type->modes[imode].interconnect[jinterc].num_mux)
|| (0 < cur_pb_type->modes[imode].interconnect[jinterc].num_mux));
if (0 == cur_pb_type->modes[imode].interconnect[jinterc].num_mux) {
continue;
}
CircuitModelId& interc_circuit_model = cur_pb_type->modes[imode].interconnect[jinterc].circuit_model;
VTR_ASSERT(CircuitModelId::INVALID() != interc_circuit_model);
/* Add the mux model to library */
mux_lib.add_mux(circuit_lib, interc_circuit_model, cur_pb_type->modes[imode].interconnect[jinterc].fan_in);
}
}
/* Go recursively to the lower level */
for (int imode = 0; imode < cur_pb_type->num_modes; imode++) {
for (int ichild = 0; ichild < cur_pb_type->modes[imode].num_pb_type_children; ichild++) {
build_pb_type_mux_library_rec(mux_lib, circuit_lib,
&cur_pb_type->modes[imode].pb_type_children[ichild]);
}
}
}
/********************************************************************
* Update MuxLibrary with the unique multiplexers required by
* LUTs in the circuit library
********************************************************************/
static
void build_lut_mux_library(MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib) {
/* Find all the circuit models which are LUTs in the circuit library */
for (const auto& circuit_model : circuit_lib.models()) {
/* Bypass non-LUT circuit models */
if (SPICE_MODEL_LUT != circuit_lib.model_type(circuit_model)) {
continue;
}
/* Find the MUX size required by the LUT */
/* Get input ports which are not global ports! */
std::vector<CircuitPortId> input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(1 == input_ports.size());
/* MUX size = 2^lut_size */
size_t lut_mux_size = (size_t)pow(2., (double)(circuit_lib.port_size(input_ports[0])));
/* Add mux to the mux library */
mux_lib.add_mux(circuit_lib, circuit_model, lut_mux_size);
}
}
/* Statistic for all the multiplexers in FPGA
* We determine the sizes and its structure (according to spice_model) for each type of multiplexers
* We search multiplexers in Switch Blocks, Connection blocks and Configurable Logic Blocks
* In additional to multiplexers, this function also consider crossbars.
* All the statistics are stored in a linked list, as a return value
*/
MuxLibrary build_device_mux_library(int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch) {
/* MuxLibrary to store the information of Multiplexers*/
MuxLibrary mux_lib;
/* Step 1: We should check the multiplexer spice models defined in routing architecture.*/
build_routing_arch_mux_library(mux_lib, LL_num_rr_nodes, LL_rr_node, switches, circuit_lib, routing_arch);
/* Step 2: Count the sizes of multiplexers in complex logic blocks */
for (int itype = 0; itype < num_types; itype++) {
if (NULL != type_descriptors[itype].pb_type) {
build_pb_type_mux_library_rec(mux_lib, circuit_lib, type_descriptors[itype].pb_type);
}
}
/* Step 3: count the size of multiplexer that will be used in LUTs*/
build_lut_mux_library(mux_lib, circuit_lib);
return mux_lib;
}

View File

@ -0,0 +1,14 @@
/********************************************************************
* This file includes the function declaration of builders
* for MuxLibrary.
* See details in mux_library_builder.cpp
*******************************************************************/
#ifndef MUX_LIBRARY_BUILDER_H
#define MUX_LIBRARY_BUILDER_H
MuxLibrary build_device_mux_library(int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch);
#endif

View File

@ -29,6 +29,7 @@ std::string generate_verilog_mux_subckt_name(const CircuitLibrary& circuit_lib,
std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const size_t& branch_mux_size,
const std::string& postfix) {
/* If the tgate spice model of this MUX is a MUX2 standard cell,
* the mux_subckt name will be the name of the standard cell
@ -38,6 +39,7 @@ std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circui
VTR_ASSERT (SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(subckt_model));
return circuit_lib.model_name(subckt_model);
}
std::string branch_postfix = postfix + "_size" + std::to_string(branch_mux_size);
return generate_verilog_mux_subckt_name(circuit_lib, circuit_model, mux_size, postfix);
return generate_verilog_mux_subckt_name(circuit_lib, circuit_model, mux_size, branch_postfix);
}

View File

@ -19,6 +19,7 @@ std::string generate_verilog_mux_subckt_name(const CircuitLibrary& circuit_lib,
std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const size_t& branch_mux_size,
const std::string& posfix);
#endif

View File

@ -50,6 +50,32 @@ std::vector<BasicPort> ModuleManager::module_ports_by_type(const ModuleId& modul
return ports;
}
/* Find the module id by a given name, return invalid if not found */
ModuleId ModuleManager::find_module(const std::string& name) const {
if (name_id_map_.find(name) != name_id_map_.end()) {
/* Find it, return the id */
return name_id_map_.at(name);
}
/* Not found, return an invalid id */
return ModuleId::INVALID();
}
/* Find the number of instances of a child module in the parent module */
size_t ModuleManager::num_instance(const ModuleId& parent_module, const ModuleId& child_module) const {
/* validate both module ids */
VTR_ASSERT(valid_module_id(parent_module));
VTR_ASSERT(valid_module_id(child_module));
/* Try to find the child_module in the children list of parent_module*/
for (size_t i = 0; i < children_[parent_module].size(); ++i) {
if (child_module == children_[parent_module][i]) {
/* Found, return the number of instances */
return num_child_instances_[parent_module][i];
}
}
/* Not found, return a zero */
return 0;
}
/******************************************************************************
* Public Mutators
******************************************************************************/
@ -69,6 +95,7 @@ ModuleId ModuleManager::add_module(const std::string& name) {
names_.push_back(name);
parents_.emplace_back();
children_.emplace_back();
num_child_instances_.emplace_back();
port_ids_.emplace_back();
ports_.emplace_back();
@ -116,10 +143,14 @@ void ModuleManager::add_child_module(const ModuleId& parent_module, const Module
parents_[child_module].push_back(parent_module);
}
std::vector<ModuleId>::iterator child_it = std::find(children_[child_module].begin(), children_[child_module].end(), child_module);
std::vector<ModuleId>::iterator child_it = std::find(children_[parent_module].begin(), children_[parent_module].end(), child_module);
if (child_it == children_[parent_module].end()) {
/* Update the child module of parent module */
children_[parent_module].push_back(child_module);
num_child_instances_[parent_module].push_back(1); /* By default give one */
} else {
/* Increase the counter of instances */
num_child_instances_[parent_module][child_it - children_[parent_module].begin()]++;
}
}

View File

@ -37,6 +37,9 @@ class ModuleManager {
std::string module_name(const ModuleId& module_id) const;
std::string module_port_type_str(const enum e_module_port_type& port_type) const;
std::vector<BasicPort> module_ports_by_type(const ModuleId& module_id, const enum e_module_port_type& port_type) const;
ModuleId find_module(const std::string& name) const;
/* Find the number of instances of a child module in the parent module */
size_t num_instance(const ModuleId& parent_module, const ModuleId& child_module) const;
public: /* Public mutators */
/* Add a module */
ModuleId add_module(const std::string& name);
@ -55,6 +58,7 @@ class ModuleManager {
vtr::vector<ModuleId, std::string> names_; /* Unique identifier for each Module */
vtr::vector<ModuleId, std::vector<ModuleId>> parents_; /* Parent modules that include the module */
vtr::vector<ModuleId, std::vector<ModuleId>> children_; /* Child modules that this module contain */
vtr::vector<ModuleId, std::vector<size_t>> num_child_instances_; /* Number of children instance in each child module */
vtr::vector<ModuleId, vtr::vector<ModulePortId, ModulePortId>> port_ids_; /* List of ports for each Module */
vtr::vector<ModuleId, vtr::vector<ModulePortId, BasicPort>> ports_; /* List of ports for each Module */

View File

@ -33,6 +33,8 @@
#include "fpga_bitstream.h"
#include "module_manager.h"
#include "mux_library.h"
#include "mux_library_builder.h"
/* Include SynVerilog headers */
#include "verilog_global.h"
@ -153,6 +155,10 @@ void vpr_fpga_verilog(t_vpr_setup vpr_setup,
/* Module manager for the Verilog modules created */
ModuleManager module_manager;
/* Build Multiplexer library */
MuxLibrary mux_lib = build_device_mux_library(num_rr_nodes, rr_node, switch_inf, Arch.spice->circuit_lib, &vpr_setup.RoutingArch);
/* 0. basic units: inverter, buffers and pass-gate logics, */
/* Check if the routing architecture we support*/
if (UNI_DIRECTIONAL != vpr_setup.RoutingArch.directionality) {
vpr_printf(TIO_MESSAGE_ERROR, "FPGA synthesizable Verilog dumping only support uni-directional routing architecture!\n");
@ -274,7 +280,7 @@ void vpr_fpga_verilog(t_vpr_setup vpr_setup,
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.dump_explicit_verilog);
/* Dump internal structures of submodules */
dump_verilog_submodules(module_manager, sram_verilog_orgz_info, src_dir_path, submodule_dir_path,
dump_verilog_submodules(module_manager, mux_lib, sram_verilog_orgz_info, src_dir_path, submodule_dir_path,
Arch, &vpr_setup.RoutingArch,
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts);

View File

@ -507,7 +507,7 @@ void print_verilog_submodule_essentials(ModuleManager& module_manager,
/* Create file */
vpr_printf(TIO_MESSAGE_INFO,
"Generating Verilog netlist (%s) for essential gates...\n",
__FILE__, __LINE__, essentials_verilog_file_name);
__FILE__, __LINE__, verilog_fname.c_str());
print_verilog_file_header(fp, "Essential gates");

View File

@ -12,6 +12,7 @@
/* Device-level header files */
#include "mux_graph.h"
#include "module_manager.h"
#include "physical_types.h"
#include "vpr_types.h"
@ -25,16 +26,169 @@
#include "verilog_writer_utils.h"
#include "verilog_mux.h"
/***********************************************
* Generate Verilog codes modeling an branch circuit
/*********************************************************************
* Generate structural Verilog codes (consist of transmission-gates or
* pass-transistor) modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph) {
void generate_verilog_cmos_mux_branch_body_structural(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& tgate_model,
const ModuleId& module_id,
const BasicPort& input_port,
const BasicPort& output_port,
const BasicPort& mem_port,
const BasicPort& mem_inv_port,
const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Get the module id of tgate in Module manager */
ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model));
VTR_ASSERT(ModuleId::INVALID() != tgate_module_id);
/* TODO: move to check_circuit_library? Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
VTR_ASSERT(3 == tgate_input_ports.size());
VTR_ASSERT(1 == tgate_output_ports.size());
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
/* Output the netlist following the connections in mux_graph */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be outputted */
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* TODO: Output a tgate use a module manager */
/* Create a port-to-port name map */
std::map<std::string, BasicPort> port2port_name_map;
/* input port */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[0])] = cur_input_port;
/* output port */
port2port_name_map[circuit_lib.port_lib_name(tgate_output_ports[0])] = cur_output_port;
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
BasicPort cur_mem_port(mem_port.get_name(), size_t(mux_mem), size_t(mux_mem));
BasicPort cur_mem_inv_port(mem_inv_port.get_name(), size_t(mux_mem), size_t(mux_mem));
/* mem port */
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_port;
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_inv_port;
} else {
/* wire mem_inv to mem of module, wire mem to mem_inv of module */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_inv_port;
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_port;
}
/* Output an instance of the module */
print_verilog_module_instance(fp, module_manager, module_id, tgate_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(tgate_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and child modules
*/
module_manager.add_child_module(module_id, tgate_module_id);
}
}
}
/*********************************************************************
* Generate behavior-level Verilog codes modeling an branch circuit
* for a multiplexer with the given size
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp,
const BasicPort& input_port,
const BasicPort& output_port,
const BasicPort& mem_port,
const MuxGraph& mux_graph,
const size_t& default_mem_val) {
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Behavioral-level description -----"));
/* Add an internal register for the output */
BasicPort outreg_port("out_reg", mux_graph.num_outputs());
/* Print the port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl;
/* Generate the case-switch table */
fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
/* Output the netlist following the connections in mux_graph */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be outputted */
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* For each case, generate the logic levels for all the inputs */
/* In each case, only one mem is enabled */
fp << "\t\t" << mem_port.get_width() << "'b";
std::string case_code(mem_port.get_width(), default_mem_val);
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
/* Flip a bit by the mem_id */
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
case_code[size_t(mux_mem)] = '1';
} else {
case_code[size_t(mux_mem)] = '0';
}
fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl;
}
}
/* Default case: outputs are at high-impedance state 'z' */
std::string default_case(mux_graph.num_outputs(), 'z');
fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl;
/* End the case */
fp << "\tendcase" << std::endl;
/* Wire registers to output ports */
fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
* Support structural and behavioral Verilog codes
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph,
const bool& use_structural_verilog) {
/* Get the tgate model */
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
@ -44,12 +198,7 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
return;
}
/* Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(3 == tgate_input_ports.size());
VTR_ASSERT(1 == tgate_output_ports.size());
/* Make sure we have a valid file handler*/
check_file_handler(fp);
@ -68,105 +217,51 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Print Verilog module */
print_verilog_module_definition(fp, module_name);
/* Create port information */
/* Configure each input port */
BasicPort input_port("in", num_inputs);
/* Configure each output port */
BasicPort output_port("out", num_outputs);
/* Configure each memory port */
BasicPort mem_port("mem", num_mems);
BasicPort mem_inv_port("mem_inv", num_mems);
/* TODO: Generate global ports */
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : tgate_global_ports) {
/* Configure each global port */
BasicPort basic_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
/* Print port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, basic_port) << "," << std::endl;
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
BasicPort input_port("in", num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Add each output port */
BasicPort output_port("out", num_outputs);
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
/* Add each memory port */
BasicPort mem_port("mem", num_mems);
module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort mem_inv_port("mem_inv", num_mems);
module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
/* TODO: add a module to the Module Manager */
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Port list */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, input_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_OUTPUT, output_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_inv_port) << std::endl;
fp << ");" << std::endl;
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
/* Special case: only one memory, switch case is simpler
* When mem = 1, propagate input 0;
* when mem = 0, propagate input 1;
*/
/* TODO: we should output the netlist following the connections in mux_graph */
if (1 == num_mems) {
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_0 ";
/* Dump explicit port map if required */
/* TODO: add global port support for tgate model */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[0]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_1 ";
/* Dump explicit port map if required */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[1]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
/* Print the internal logic in either structural or behavioral Verilog codes */
if (true == use_structural_verilog) {
generate_verilog_cmos_mux_branch_body_structural(module_manager, circuit_lib, fp, tgate_model, module_id, input_port, output_port, mem_port, mem_inv_port, mux_graph);
} else {
/* Other cases, we need to follow the rules:
* When mem[k] is enabled, switch on input[k]
* Only one memory bit is enabled!
*/
for (size_t i = 0; i < num_mems; i++) {
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_" << i << " ";
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << "mem[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << "mem_inv[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << "in[" << i << "]";
fp << ", " << "mem[" << i << "]";
fp << ", " << "mem_inv[" << i << "]";
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
VTR_ASSERT_SAFE(false == use_structural_verilog);
/* Get the default value of SRAM ports */
std::vector<CircuitPortId> sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true);
std::vector<CircuitPortId> non_mode_select_sram_ports;
/* We should have only have 1 sram port except those are mode_bits */
for (const auto& port : sram_ports) {
if (true == circuit_lib.port_is_mode_select(port)) {
continue;
}
non_mode_select_sram_ports.push_back(port);
}
VTR_ASSERT(1 == non_mode_select_sram_ports.size());
std::string mem_default_val = std::to_string(circuit_lib.port_default_value(non_mode_select_sram_ports[0]));
/* Mem string must be only 1-bit! */
VTR_ASSERT(1 == mem_default_val.length());
generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]);
}
/* Put an end to the Verilog module */
@ -177,27 +272,20 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
void generate_verilog_mux_branch_module(std::fstream& fp,
static
void generate_verilog_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph) {
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, verilog_mux_basis_posfix);
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix);
/* Multiplexers built with different technology is in different organization */
switch (circuit_lib.design_tech_type(circuit_model)) {
case SPICE_MODEL_DESIGN_CMOS:
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
generate_verilog_cmos_mux_branch_module_structural(fp, circuit_lib, circuit_model, module_name, mux_graph);
} else {
/*
dump_verilog_cmos_mux_one_basis_module(fp, mux_basis_subckt_name,
mux_size,
num_input_basis_subckt,
cur_spice_model,
special_basis);
*/
}
generate_verilog_cmos_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph,
circuit_lib.dump_structural_verilog(circuit_model));
break;
case SPICE_MODEL_DESIGN_RRAM:
/* If requested, we can dump structural verilog for basis module */
@ -222,3 +310,68 @@ void generate_verilog_mux_branch_module(std::fstream& fp,
return;
}
/***********************************************
* Generate Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir) {
/* TODO: Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Multiplexers");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
fp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
*/
/* Determine reserved Bit/Word Lines if a memory bank is specified,
* At least 1 BL/WL should be reserved!
*/
try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info,
mux_lib.max_mux_size(), mux_lib.max_mux_size());
/* TODO: Add fname to the linked list when debugging is finished */
/*
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
*/
}

View File

@ -11,11 +11,13 @@
#include "circuit_library.h"
#include "mux_graph.h"
#include "mux_library.h"
#include "module_manager.h"
void generate_verilog_mux_branch_module(std::fstream& fp,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph);
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir);
#endif

View File

@ -29,6 +29,7 @@
#include "fpga_x2p_globals.h"
#include "fpga_x2p_mux_utils.h"
#include "fpga_x2p_bitstream_utils.h"
#include "mux_library.h"
/* Include verilog utils */
#include "verilog_global.h"
@ -2228,11 +2229,13 @@ void dump_verilog_submodule_muxes(t_sram_orgz_info* cur_sram_orgz_info,
/* Alloc the muxes*/
muxes_head = stats_spice_muxes(num_switch, switches, spice, routing_arch);
/* Print the muxes netlist*/
fp = fopen(verilog_name, "w");
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create subckt SPICE netlist %s",__FILE__, __LINE__, verilog_name);
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d])Failure in create subckt SPICE netlist %s",
__FILE__, __LINE__, verilog_name);
exit(1);
}
/* Generate the descriptions*/
@ -2292,41 +2295,6 @@ void dump_verilog_submodule_muxes(t_sram_orgz_info* cur_sram_orgz_info,
temp = temp->next;
}
/* Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream sfp;
sfp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
check_file_handler(sfp);
/* TODO: this conversion is temporary. Will be removed after code reconstruction */
MuxLibrary mux_lib = convert_mux_arch_to_library(spice->circuit_lib, muxes_head);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(sfp, spice->circuit_lib, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
sfp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
@ -3507,6 +3475,7 @@ void dump_verilog_submodule_templates(t_sram_orgz_info* cur_sram_orgz_info,
* 1. MUXes
*/
void dump_verilog_submodules(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir,
@ -3514,7 +3483,6 @@ void dump_verilog_submodules(ModuleManager& module_manager,
t_det_routing_arch* routing_arch,
t_syn_verilog_opts fpga_verilog_opts) {
/* 0. basic units: inverter, buffers and pass-gate logics, */
vpr_printf(TIO_MESSAGE_INFO, "Generating essential modules...\n");
print_verilog_submodule_essentials(module_manager,
std::string(verilog_dir),
@ -3525,6 +3493,10 @@ void dump_verilog_submodules(ModuleManager& module_manager,
vpr_printf(TIO_MESSAGE_INFO, "Generating modules of multiplexers...\n");
dump_verilog_submodule_muxes(cur_sram_orgz_info, verilog_dir, submodule_dir, routing_arch->num_switch,
switch_inf, Arch.spice, routing_arch, fpga_verilog_opts.dump_explicit_verilog);
print_verilog_submodule_muxes(module_manager, mux_lib, Arch.spice->circuit_lib, cur_sram_orgz_info,
verilog_dir, submodule_dir);
vpr_printf(TIO_MESSAGE_INFO, "Generating local encoders for multiplexers...\n");
dump_verilog_submodule_local_encoders(cur_sram_orgz_info, verilog_dir, submodule_dir, routing_arch->num_switch,
switch_inf, Arch.spice, routing_arch, fpga_verilog_opts.dump_explicit_verilog);

View File

@ -2,8 +2,10 @@
#define VERILOG_SUBMODULES_H
#include "module_manager.h"
#include "mux_library.h"
void dump_verilog_submodules(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir,

View File

@ -55,7 +55,7 @@ void print_verilog_include_defines_preproc_file(std::fstream& fp,
fp << "//------ Include defines: preproc flags -----" << std::endl;
fp << "`include \"" << include_file_path << "\"" << std::endl;
fp << "//------ End Include defines: preproc flags -----" << std::endl;
fp << "//------ End Include defines: preproc flags -----" << std::endl << std::endl;
return;
}
@ -77,7 +77,7 @@ void print_verilog_module_definition(std::fstream& fp,
const std::string& module_name) {
check_file_handler(fp);
print_verilog_comment(fp, std::string("//----- Verilog module for " + module_name + " -----"));
print_verilog_comment(fp, std::string("----- Verilog module for " + module_name + " -----"));
fp << "module " << module_name << "(" << std::endl;
}
@ -102,10 +102,11 @@ void print_verilog_module_ports(std::fstream& fp,
for (const auto& port : module_manager.module_ports_by_type(module_id, kv.first)) {
if (0 != port_cnt) {
/* Do not dump a comma for the first port */
fp << ", //----- " << module_manager.module_port_type_str(kv.first) << " -----" << std::endl;
fp << "," << std::endl;
}
/* Print port */
fp << "\t" << generate_verilog_port(kv.second, port) << std::endl;
fp << "\t//----- " << module_manager.module_port_type_str(kv.first) << " -----" << std::endl;
fp << "\t" << generate_verilog_port(kv.second, port);
port_cnt++;
}
}
@ -125,6 +126,64 @@ void print_verilog_module_declaration(std::fstream& fp,
fp << std::endl << ");" << std::endl;
}
/************************************************
* Print an instance for a Verilog module
***********************************************/
void print_verilog_module_instance(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& parent_module_id, const ModuleId& child_module_id,
const std::map<std::string, BasicPort>& port2port_name_map,
const bool& explicit_port_map) {
check_file_handler(fp);
/* Print module name */
fp << "\t" << module_manager.module_name(child_module_id) << " ";
/* Print instance name, <name>_<num_instance_in_parent_module> */
fp << module_manager.module_name(child_module_id) << "_" << module_manager.num_instance(parent_module_id, child_module_id) << "_" << " (" << std::endl;
/* Print each port with/without explicit port map */
/* port type2type mapping */
std::map<ModuleManager::e_module_port_type, enum e_dump_verilog_port_type> port_type2type_map;
port_type2type_map[ModuleManager::MODULE_GLOBAL_PORT] = VERILOG_PORT_CONKT;
port_type2type_map[ModuleManager::MODULE_INOUT_PORT] = VERILOG_PORT_CONKT;
port_type2type_map[ModuleManager::MODULE_INPUT_PORT] = VERILOG_PORT_CONKT;
port_type2type_map[ModuleManager::MODULE_OUTPUT_PORT] = VERILOG_PORT_CONKT;
port_type2type_map[ModuleManager::MODULE_CLOCK_PORT] = VERILOG_PORT_CONKT;
/* Port sequence: global, inout, input, output and clock ports, */
size_t port_cnt = 0;
for (const auto& kv : port_type2type_map) {
for (const auto& port : module_manager.module_ports_by_type(child_module_id, kv.first)) {
if (0 != port_cnt) {
/* Do not dump a comma for the first port */
fp << "," << std::endl;
}
/* Print port */
fp << "\t\t";
/* if explicit port map is required, output the port name */
if (true == explicit_port_map) {
fp << "." << port.get_name() << "(";
}
/* Try to find the instanced port name in the name map */
if (port2port_name_map.find(port.get_name()) != port2port_name_map.end()) {
/* Found it, we assign the port name */
fp << generate_verilog_port(kv.second, port2port_name_map.at(port.get_name()));
} else {
/* Not found, we give the default port name */
fp << generate_verilog_port(kv.second, port);
}
/* if explicit port map is required, output the pair of branket */
if (true == explicit_port_map) {
fp << ")";
}
port_cnt++;
}
}
/* Print an end to the instance */
fp << "\t" << ");" << std::endl;
}
/************************************************
* Print an end line for a Verilog module
@ -134,7 +193,7 @@ void print_verilog_module_end(std::fstream& fp,
check_file_handler(fp);
fp << "endmodule" << std::endl;
print_verilog_comment(fp, std::string("//----- END Verilog module for " + module_name + " -----"));
print_verilog_comment(fp, std::string("----- END Verilog module for " + module_name + " -----"));
fp << std::endl;
}

View File

@ -28,6 +28,12 @@ void print_verilog_module_ports(std::fstream& fp,
void print_verilog_module_declaration(std::fstream& fp,
const ModuleManager& module_manager, const ModuleId& module_id);
void print_verilog_module_instance(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& parent_module_id, const ModuleId& child_module_id,
const std::map<std::string, BasicPort>& port2port_name_map,
const bool& explicit_port_map);
void print_verilog_module_end(std::fstream& fp,
const std::string& module_name);