Merge pull request #112 from LNIS-Projects/dev

Multi-region Memory Bank Configuration Protocol Support
This commit is contained in:
Laboratory for Nano Integrated Systems (LNIS) 2020-10-29 18:39:44 -06:00 committed by GitHub
commit cd0d3dd798
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1073 additions and 293 deletions

View File

@ -45,9 +45,11 @@ python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_setb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_set_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/multi_region_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_memory_bank_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/smart_fast_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/smart_fast_multi_region_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/preconfig_testbench/memory_bank --debug --show_thread_logs
echo -e "Testing standalone (flatten memory) configuration protocol of a K4N4 FPGA";
@ -95,3 +97,4 @@ echo -e "Testing K4N5 with pattern based local routing";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n5_pattern_local_routing --debug --show_thread_logs
end_section "OpenFPGA.TaskTun"
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/multi_region_memory_bank --debug --show_thread_logs

View File

@ -115,8 +115,9 @@ When the decoder of sub block, e.g., the LUT, is enabled, each memory cells can
Memory bank Example
~~~~~~~~~~~~~~~~~~~
The following XML code describes a memory-bank circuitry to configure the core logic of FPGA, as illustrated in :numref:`fig_sram`.
The following XML code describes a memory-bank circuitry to configure the core logic of FPGA, as illustrated in :numref:`fig_memory_bank`.
It will use the circuit model defined in :numref:`fig_sram_blwl`.
Users can customized the number of memory banks to be used across the fabrics. By default, it will be only 1 memory bank. :numref:`fig_memory_bank` shows an example where 4 memory banks are defined. The more memory bank to be used, the fast configuration runtime will be, but at the cost of more I/Os in the FPGA fabrics. The organization of each configurable region can be customized through the fabric key (see details in :ref:`fabric_key`).
.. code-block:: xml
@ -124,13 +125,13 @@ It will use the circuit model defined in :numref:`fig_sram_blwl`.
<organization type="memory_bank" circuit_model_name="sram_blwl"/>
</configuration_protocol>
.. _fig_sram:
.. _fig_memory_bank:
.. figure:: figures/sram.png
:scale: 60%
.. figure:: figures/memory_bank.png
:scale: 30%
:alt: map to buried treasure
Example of a memory organization using memory decoders
Example of (a) a memory organization using memory decoders; (b) single memory bank across the fabric; and (c) multiple memory banks across the fabric.
.. note:: Memory-bank decoders does require a memory cell to have

Binary file not shown.

After

Width:  |  Height:  |  Size: 387 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

View File

@ -402,6 +402,16 @@ int build_top_module(ModuleManager& module_manager,
compact_routing_hierarchy);
} else {
VTR_ASSERT_SAFE(false == fabric_key.empty());
/* Give a warning message that the fabric key may overwrite existing region organization.
* Only applicable when number of regions defined in configuration protocol is different
* than the number of regions defined in the fabric key
*/
if (size_t(config_protocol.num_regions()) != fabric_key.regions().size()) {
VTR_LOG_WARN("Fabric key will overwrite the region organization (='%ld') than architecture definition (=%d)!\n",
fabric_key.regions().size(),
config_protocol.num_regions());
}
status = load_top_module_memory_modules_from_fabric_key(module_manager, top_module,
fabric_key);
if (CMD_EXEC_FATAL_ERROR == status) {
@ -427,11 +437,13 @@ int build_top_module(ModuleManager& module_manager,
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, top_module, circuit_lib, sram_model, config_protocol.type());
if (0 < module_num_config_bits) {
vtr::vector<ConfigRegionId, size_t> top_module_num_config_bits = find_top_module_regional_num_config_bit(module_manager, top_module, circuit_lib, sram_model, config_protocol.type());
if (!top_module_num_config_bits.empty()) {
add_top_module_sram_ports(module_manager, top_module,
circuit_lib, sram_model,
config_protocol, module_num_config_bits);
config_protocol,
top_module_num_config_bits);
}
/* Add module nets to connect memory cells inside
@ -441,7 +453,7 @@ int build_top_module(ModuleManager& module_manager,
add_top_module_nets_memory_config_bus(module_manager, decoder_lib,
top_module,
config_protocol, circuit_lib.design_tech_type(sram_model),
module_num_config_bits);
top_module_num_config_bits);
}
return status;

View File

@ -590,6 +590,68 @@ int load_top_module_memory_modules_from_fabric_key(ModuleManager& module_manager
return CMD_EXEC_SUCCESS;
}
/********************************************************************
* Find the number of configuration bits in each region of
* the top-level module.
*
* Note:
* - This function should be called after the configurable children
* is loaded to the top-level module!
********************************************************************/
vtr::vector<ConfigRegionId, size_t> find_top_module_regional_num_config_bit(const ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const e_config_protocol_type& config_protocol_type) {
/* Initialize the number of configuration bits for each region */
vtr::vector<ConfigRegionId, size_t> num_config_bits(module_manager.regions(top_module).size(), 0);
switch (config_protocol_type) {
case CONFIG_MEM_STANDALONE:
case CONFIG_MEM_SCAN_CHAIN:
case CONFIG_MEM_MEMORY_BANK: {
/* For flatten, chain and memory bank configuration protocol
* The number of configuration bits is the sum of configuration bits
* per configurable children in each region
*/
for (const ConfigRegionId& config_region : module_manager.regions(top_module)) {
for (const ModuleId& child_module : module_manager.region_configurable_children(top_module, config_region)) {
num_config_bits[config_region] += find_module_num_config_bits(module_manager, child_module, circuit_lib, sram_model, config_protocol_type);
}
}
break;
}
case CONFIG_MEM_FRAME_BASED: {
/* For frame-based configuration protocol
* The number of configuration bits is the sum of
* - the maximum of configuration bits among configurable children
* - and the number of configurable children
*/
for (const ConfigRegionId& config_region : module_manager.regions(top_module)) {
for (const ModuleId& child_module : module_manager.region_configurable_children(top_module, config_region)) {
size_t temp_num_config_bits = find_module_num_config_bits(module_manager, child_module, circuit_lib, sram_model, config_protocol_type);
num_config_bits[config_region] = std::max((int)temp_num_config_bits, (int)num_config_bits[config_region]);
}
/* If there are more than 2 configurable children, we need a decoder
* Otherwise, we can just short wire the address port to the children
*/
if (1 < module_manager.region_configurable_children(top_module, config_region).size()) {
num_config_bits[config_region] += find_mux_local_decoder_addr_size(module_manager.region_configurable_children(top_module, config_region).size());
}
}
break;
}
default:
VTR_LOG_ERROR("Invalid type of SRAM organization !\n");
exit(1);
}
return num_config_bits;
}
/********************************************************************
* Generate a list of ports that are used for SRAM configuration
* to the top-level module
@ -609,12 +671,10 @@ size_t generate_top_module_sram_port_size(const ConfigProtocol& config_protocol,
case CONFIG_MEM_STANDALONE:
break;
case CONFIG_MEM_SCAN_CHAIN:
/* CCFF head/tail are single-bit ports */
sram_port_size = config_protocol.num_regions();
break;
case CONFIG_MEM_MEMORY_BANK:
break;
case CONFIG_MEM_FRAME_BASED:
/* CCFF head/tail, data input could be multi-bit ports */
sram_port_size = config_protocol.num_regions();
break;
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
@ -653,9 +713,13 @@ void add_top_module_sram_ports(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const ConfigProtocol& config_protocol,
const size_t& num_config_bits) {
const vtr::vector<ConfigRegionId, size_t>& num_config_bits) {
std::vector<std::string> sram_port_names = generate_sram_port_names(circuit_lib, sram_model, config_protocol.type());
size_t sram_port_size = generate_top_module_sram_port_size(config_protocol, num_config_bits);
size_t total_num_config_bits = 0;
for (const size_t& curr_num_config_bits : num_config_bits) {
total_num_config_bits += curr_num_config_bits;
}
size_t sram_port_size = generate_top_module_sram_port_size(config_protocol, total_num_config_bits);
/* Add ports to the module manager */
switch (config_protocol.type()) {
@ -671,15 +735,24 @@ void add_top_module_sram_ports(ModuleManager& module_manager,
BasicPort en_port(std::string(DECODER_ENABLE_PORT_NAME), 1);
module_manager.add_port(module_id, en_port, ModuleManager::MODULE_INPUT_PORT);
size_t bl_addr_size = find_memory_decoder_addr_size(num_config_bits);
/* BL address size is the largest among all the regions */
size_t bl_addr_size = 0;
for (const ConfigRegionId& config_region : module_manager.regions(module_id)) {
bl_addr_size = std::max(bl_addr_size, find_memory_decoder_addr_size(num_config_bits[config_region]));
}
BasicPort bl_addr_port(std::string(DECODER_BL_ADDRESS_PORT_NAME), bl_addr_size);
module_manager.add_port(module_id, bl_addr_port, ModuleManager::MODULE_INPUT_PORT);
size_t wl_addr_size = find_memory_decoder_addr_size(num_config_bits);
/* WL address size is the largest among all the regions */
size_t wl_addr_size = 0;
for (const ConfigRegionId& config_region : module_manager.regions(module_id)) {
wl_addr_size = std::max(wl_addr_size, find_memory_decoder_addr_size(num_config_bits[config_region]));
}
BasicPort wl_addr_port(std::string(DECODER_WL_ADDRESS_PORT_NAME), wl_addr_size);
module_manager.add_port(module_id, wl_addr_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort din_port(std::string(DECODER_DATA_IN_PORT_NAME), 1);
/* Data input should be dependent on the number of configuration regions*/
BasicPort din_port(std::string(DECODER_DATA_IN_PORT_NAME), config_protocol.num_regions());
module_manager.add_port(module_id, din_port, ModuleManager::MODULE_INPUT_PORT);
break;
@ -708,10 +781,10 @@ void add_top_module_sram_ports(ModuleManager& module_manager,
BasicPort en_port(std::string(DECODER_ENABLE_PORT_NAME), 1);
module_manager.add_port(module_id, en_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort addr_port(std::string(DECODER_ADDRESS_PORT_NAME), num_config_bits);
BasicPort addr_port(std::string(DECODER_ADDRESS_PORT_NAME), total_num_config_bits);
module_manager.add_port(module_id, addr_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort din_port(std::string(DECODER_DATA_IN_PORT_NAME), 1);
BasicPort din_port(std::string(DECODER_DATA_IN_PORT_NAME), sram_port_size);
module_manager.add_port(module_id, din_port, ModuleManager::MODULE_INPUT_PORT);
break;
@ -725,11 +798,55 @@ void add_top_module_sram_ports(ModuleManager& module_manager,
/*********************************************************************
* Top-level function to add nets for memory banks
* - Find the number of BLs and WLs required
* Each configuration region has independent memory bank circuitry
* - Find the number of BLs and WLs required for each region
* - Create BL and WL decoders, and add them to decoder library
* - Create nets to connect from top-level module inputs to inputs of decoders
* - Create nets to connect from outputs of decoders to BL/WL of configurable children
*
* Detailed schematic of how memory banks are connected in the top-level:
* Consider a random Region X, local BL address lines are aligned to the LSB of the
* top-level BL address lines
*
* top_bl_addr[N-1:0]
* ^
* | local_bl_addr[N-1:0]
* |
* +-----+------------------+
* | | |
* | +-------------------+ |
* | | Word Line Decoder | |
* | +-------------------+ |
* | |
*
* The BL/WL decoders should have the same circuit designs no matter what region
* they are placed even when the number of configuration bits are different
* from one region to another!
* This is designed to avoid any address collision between memory banks
* since they are programmed in the same clock cycle
* For example:
* - Memory Bank A has 36 memory cells.
* Its BL decoder has 3 address bit and 6 data output bit
* Its WL decoder has 3 address bit and 6 data output bit
* - Memory Bank B has 16 memory cells.
* Its BL decoder has 2 address bit and 4 data output bit
* Its WL decoder has 2 address bit and 4 data output bit
* - If we try to program the 36th memory cell in bank A
* the BL address will be 3'b110
* the WL address will be 3'b110
* the data input will be 1'b0
* - If we try to program the 4th memory cell in bank A
* the BL address will be 3'b010
* the WL address will be 3'b010
* the data input will be 1'b1
* However, in both cases, this will trigger a parasitic programming in bank B
* the BL address will be 2'b10
* the WL address will be 2'b10
* Assume the data input is expected to be 1'b1 for bank B
* but it will be overwritten to 1'b0 when programming the 36th cell in bank A!
*
* Detailed schematic of each memory bank:
*
* WL_enable WL address
* | |
* v v
@ -772,7 +889,7 @@ static
void add_top_module_nets_cmos_memory_bank_config_bus(ModuleManager& module_manager,
DecoderLibrary& decoder_lib,
const ModuleId& top_module,
const size_t& num_config_bits) {
const vtr::vector<ConfigRegionId, size_t>& num_config_bits) {
/* Find Enable port from the top-level module */
ModulePortId en_port = module_manager.find_module_port(top_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort en_port_info = module_manager.module_port(top_module, en_port);
@ -781,6 +898,9 @@ void add_top_module_nets_cmos_memory_bank_config_bus(ModuleManager& module_manag
ModulePortId din_port = module_manager.find_module_port(top_module, std::string(DECODER_DATA_IN_PORT_NAME));
BasicPort din_port_info = module_manager.module_port(top_module, din_port);
/* Data in port should match the number of configuration regions */
VTR_ASSERT(din_port_info.get_width() == module_manager.regions(top_module).size());
/* Find BL and WL address port from the top-level module */
ModulePortId bl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_BL_ADDRESS_PORT_NAME));
BasicPort bl_addr_port_info = module_manager.module_port(top_module, bl_addr_port);
@ -788,190 +908,236 @@ void add_top_module_nets_cmos_memory_bank_config_bus(ModuleManager& module_manag
ModulePortId wl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_WL_ADDRESS_PORT_NAME));
BasicPort wl_addr_port_info = module_manager.module_port(top_module, wl_addr_port);
/* Find the number of BLs and WLs required to access each memory bit */
/* Find the top-level number of BLs and WLs required to access each memory bit */
size_t bl_addr_size = bl_addr_port_info.get_width();
size_t wl_addr_size = wl_addr_port_info.get_width();
size_t num_bls = find_memory_decoder_data_size(num_config_bits);
size_t num_wls = find_memory_decoder_data_size(num_config_bits);
/* Add the BL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
DecoderId bl_decoder_id = decoder_lib.find_decoder(bl_addr_size, num_bls,
true, true, false);
if (DecoderId::INVALID() == bl_decoder_id) {
bl_decoder_id = decoder_lib.add_decoder(bl_addr_size, num_bls, true, true, false);
}
VTR_ASSERT(DecoderId::INVALID() != bl_decoder_id);
/* Create a module if not existed yet */
std::string bl_decoder_module_name = generate_memory_decoder_with_data_in_subckt_name(bl_addr_size, num_bls);
ModuleId bl_decoder_module = module_manager.find_module(bl_decoder_module_name);
if (ModuleId::INVALID() == bl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
/* Each memory bank has a unified number of BL/WLs */
size_t num_bls = 0;
for (const size_t& curr_config_bits : num_config_bits) {
num_bls = std::max(num_bls, find_memory_decoder_data_size(curr_config_bits));
}
size_t num_wls = 0;
for (const size_t& curr_config_bits : num_config_bits) {
num_wls = std::max(num_wls, find_memory_decoder_data_size(curr_config_bits));
}
/* Create separated memory bank circuitry, i.e., BL/WL decoders for each region */
for (const ConfigRegionId& config_region : module_manager.regions(top_module)) {
/**************************************************************
* Add the BL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
bl_decoder_module = build_bl_memory_decoder_module(module_manager,
decoder_lib,
bl_decoder_id);
}
VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module);
VTR_ASSERT(0 == module_manager.num_instance(top_module, bl_decoder_module));
module_manager.add_child_module(top_module, bl_decoder_module);
DecoderId bl_decoder_id = decoder_lib.find_decoder(bl_addr_size, num_bls,
true, true, false);
if (DecoderId::INVALID() == bl_decoder_id) {
bl_decoder_id = decoder_lib.add_decoder(bl_addr_size, num_bls, true, true, false);
}
VTR_ASSERT(DecoderId::INVALID() != bl_decoder_id);
/* Add the WL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
DecoderId wl_decoder_id = decoder_lib.find_decoder(wl_addr_size, num_wls,
true, false, false);
if (DecoderId::INVALID() == wl_decoder_id) {
wl_decoder_id = decoder_lib.add_decoder(wl_addr_size, num_wls, true, false, false);
}
VTR_ASSERT(DecoderId::INVALID() != wl_decoder_id);
/* Create a module if not existed yet */
std::string bl_decoder_module_name = generate_memory_decoder_with_data_in_subckt_name(bl_addr_size, num_bls);
ModuleId bl_decoder_module = module_manager.find_module(bl_decoder_module_name);
if (ModuleId::INVALID() == bl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
*/
bl_decoder_module = build_bl_memory_decoder_module(module_manager,
decoder_lib,
bl_decoder_id);
}
VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module);
size_t curr_bl_decoder_instance_id = module_manager.num_instance(top_module, bl_decoder_module);
module_manager.add_child_module(top_module, bl_decoder_module);
/* Create a module if not existed yet */
std::string wl_decoder_module_name = generate_memory_decoder_subckt_name(wl_addr_size, num_wls);
ModuleId wl_decoder_module = module_manager.find_module(wl_decoder_module_name);
if (ModuleId::INVALID() == wl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
/**************************************************************
* Add the WL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
wl_decoder_module = build_wl_memory_decoder_module(module_manager,
decoder_lib,
wl_decoder_id);
}
VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module);
VTR_ASSERT(0 == module_manager.num_instance(top_module, wl_decoder_module));
module_manager.add_child_module(top_module, wl_decoder_module);
/* Add module nets from the top module to BL decoder's inputs */
ModulePortId bl_decoder_en_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort bl_decoder_en_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_en_port);
ModulePortId bl_decoder_addr_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort bl_decoder_addr_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_addr_port);
ModulePortId bl_decoder_din_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_IN_PORT_NAME));
BasicPort bl_decoder_din_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_din_port);
/* Top module Enable port -> BL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
bl_decoder_module, 0, bl_decoder_en_port);
/* Top module Address port -> BL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, bl_addr_port,
bl_decoder_module, 0, bl_decoder_addr_port);
/* Top module data_in port -> BL Decoder data_in port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, din_port,
bl_decoder_module, 0, bl_decoder_din_port);
/* Add module nets from the top module to WL decoder's inputs */
ModulePortId wl_decoder_en_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort wl_decoder_en_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_en_port);
ModulePortId wl_decoder_addr_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort wl_decoder_addr_port_info = module_manager.module_port(wl_decoder_module, bl_decoder_addr_port);
/* Top module Enable port -> WL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
wl_decoder_module, 0, wl_decoder_en_port);
/* Top module Address port -> WL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, wl_addr_port,
wl_decoder_module, 0, wl_decoder_addr_port);
/* Add nets from BL data out to each configurable child */
size_t cur_bl_index = 0;
ModulePortId bl_decoder_dout_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort bl_decoder_dout_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.configurable_children(top_module).size(); ++child_id) {
ModuleId child_module = module_manager.configurable_children(top_module)[child_id];
size_t child_instance = module_manager.configurable_child_instances(top_module)[child_id];
/* Find the BL port */
ModulePortId child_bl_port = module_manager.find_module_port(child_module, std::string(MEMORY_BL_PORT_NAME));
BasicPort child_bl_port_info = module_manager.module_port(child_module, child_bl_port);
for (const size_t& sink_bl_pin : child_bl_port_info.pins()) {
/* Find the BL decoder data index:
* It should be the residual when divided by the number of BLs
*/
size_t bl_pin_id = std::floor(cur_bl_index / num_bls);
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
bl_decoder_module, 0,
bl_decoder_dout_port,
bl_decoder_dout_port_info.pins()[bl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_bl_port, sink_bl_pin);
/* Increment the BL index */
cur_bl_index++;
DecoderId wl_decoder_id = decoder_lib.find_decoder(wl_addr_size, num_wls,
true, false, false);
if (DecoderId::INVALID() == wl_decoder_id) {
wl_decoder_id = decoder_lib.add_decoder(wl_addr_size, num_wls, true, false, false);
}
}
VTR_ASSERT(DecoderId::INVALID() != wl_decoder_id);
/* Add nets from WL data out to each configurable child */
size_t cur_wl_index = 0;
ModulePortId wl_decoder_dout_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort wl_decoder_dout_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.configurable_children(top_module).size(); ++child_id) {
ModuleId child_module = module_manager.configurable_children(top_module)[child_id];
size_t child_instance = module_manager.configurable_child_instances(top_module)[child_id];
/* Find the WL port */
ModulePortId child_wl_port = module_manager.find_module_port(child_module, std::string(MEMORY_WL_PORT_NAME));
BasicPort child_wl_port_info = module_manager.module_port(child_module, child_wl_port);
for (const size_t& sink_wl_pin : child_wl_port_info.pins()) {
/* Find the BL decoder data index:
* It should be the residual when divided by the number of BLs
/* Create a module if not existed yet */
std::string wl_decoder_module_name = generate_memory_decoder_subckt_name(wl_addr_size, num_wls);
ModuleId wl_decoder_module = module_manager.find_module(wl_decoder_module_name);
if (ModuleId::INVALID() == wl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
*/
size_t wl_pin_id = cur_wl_index % num_wls;
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
wl_decoder_module, 0,
wl_decoder_dout_port,
wl_decoder_dout_port_info.pins()[wl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_wl_port, sink_wl_pin);
/* Increment the WL index */
cur_wl_index++;
wl_decoder_module = build_wl_memory_decoder_module(module_manager,
decoder_lib,
wl_decoder_id);
}
}
VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module);
size_t curr_wl_decoder_instance_id = module_manager.num_instance(top_module, wl_decoder_module);
module_manager.add_child_module(top_module, wl_decoder_module);
/* Add the BL and WL decoders to the end of configurable children list
* Note: this MUST be done after adding all the module nets to other regular configurable children
*/
module_manager.add_configurable_child(top_module, bl_decoder_module, 0);
module_manager.add_configurable_child(top_module, wl_decoder_module, 0);
/**************************************************************
* Add module nets from the top module to BL decoder's inputs
*/
ModulePortId bl_decoder_en_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort bl_decoder_en_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_en_port);
ModulePortId bl_decoder_addr_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort bl_decoder_addr_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_addr_port);
ModulePortId bl_decoder_din_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_IN_PORT_NAME));
BasicPort bl_decoder_din_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_din_port);
/* Data in port of the local BL decoder should always be 1 */
VTR_ASSERT(1 == bl_decoder_din_port_info.get_width());
/* Top module Enable port -> BL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_en_port);
/* Top module Address port -> BL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, bl_addr_port,
bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_addr_port);
/* Top module data_in port -> BL Decoder data_in port:
* Note that each region has independent data_in connection from the top-level module
* The pin index is the configuration region index
*/
ModuleNetId din_net = create_module_source_pin_net(module_manager, top_module,
top_module, 0,
din_port,
din_port_info.pins()[size_t(config_region)]);
VTR_ASSERT(ModuleNetId::INVALID() != din_net);
/* Configure the net sink */
module_manager.add_module_net_sink(top_module, din_net, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_din_port, bl_decoder_din_port_info.pins()[0]);
/**************************************************************
* Add module nets from the top module to WL decoder's inputs
*/
ModulePortId wl_decoder_en_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort wl_decoder_en_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_en_port);
ModulePortId wl_decoder_addr_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort wl_decoder_addr_port_info = module_manager.module_port(wl_decoder_module, bl_decoder_addr_port);
/* Top module Enable port -> WL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_en_port);
/* Top module Address port -> WL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, wl_addr_port,
wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_addr_port);
/**************************************************************
* Add nets from BL data out to each configurable child
*/
size_t cur_bl_index = 0;
ModulePortId bl_decoder_dout_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort bl_decoder_dout_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) {
ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id];
/* Find the BL port */
ModulePortId child_bl_port = module_manager.find_module_port(child_module, std::string(MEMORY_BL_PORT_NAME));
BasicPort child_bl_port_info = module_manager.module_port(child_module, child_bl_port);
for (const size_t& sink_bl_pin : child_bl_port_info.pins()) {
/* Find the BL decoder data index:
* It should be the residual when divided by the number of BLs
*/
size_t bl_pin_id = std::floor(cur_bl_index / num_bls);
if (!(bl_pin_id < bl_decoder_dout_port_info.pins().size()))
VTR_ASSERT(bl_pin_id < bl_decoder_dout_port_info.pins().size());
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
bl_decoder_module, curr_bl_decoder_instance_id,
bl_decoder_dout_port,
bl_decoder_dout_port_info.pins()[bl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_bl_port, sink_bl_pin);
/* Increment the BL index */
cur_bl_index++;
}
}
/**************************************************************
* Add nets from WL data out to each configurable child
*/
size_t cur_wl_index = 0;
ModulePortId wl_decoder_dout_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort wl_decoder_dout_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) {
ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id];
/* Find the WL port */
ModulePortId child_wl_port = module_manager.find_module_port(child_module, std::string(MEMORY_WL_PORT_NAME));
BasicPort child_wl_port_info = module_manager.module_port(child_module, child_wl_port);
for (const size_t& sink_wl_pin : child_wl_port_info.pins()) {
/* Find the BL decoder data index:
* It should be the residual when divided by the number of BLs
*/
size_t wl_pin_id = cur_wl_index % num_wls;
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
wl_decoder_module, curr_wl_decoder_instance_id,
wl_decoder_dout_port,
wl_decoder_dout_port_info.pins()[wl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_wl_port, sink_wl_pin);
/* Increment the WL index */
cur_wl_index++;
}
}
/**************************************************************
* Add the BL and WL decoders to the end of configurable children list
* Note: this MUST be done after adding all the module nets to other regular configurable children
*/
module_manager.add_configurable_child(top_module, bl_decoder_module, curr_bl_decoder_instance_id);
module_manager.add_configurable_child_to_region(top_module,
config_region,
bl_decoder_module,
curr_bl_decoder_instance_id,
module_manager.configurable_children(top_module).size() - 1);
module_manager.add_configurable_child(top_module, wl_decoder_module, curr_wl_decoder_instance_id);
module_manager.add_configurable_child_to_region(top_module,
config_region,
wl_decoder_module,
curr_wl_decoder_instance_id,
module_manager.configurable_children(top_module).size() - 1);
}
}
/********************************************************************
@ -1141,7 +1307,7 @@ void add_top_module_nets_cmos_memory_config_bus(ModuleManager& module_manager,
DecoderLibrary& decoder_lib,
const ModuleId& parent_module,
const ConfigProtocol& config_protocol,
const size_t& num_config_bits) {
const vtr::vector<ConfigRegionId, size_t>& num_config_bits) {
switch (config_protocol.type()) {
case CONFIG_MEM_STANDALONE:
add_module_nets_cmos_flatten_memory_config_bus(module_manager, parent_module,
@ -1203,7 +1369,7 @@ void add_top_module_nets_memory_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const ConfigProtocol& config_protocol,
const e_circuit_model_design_tech& mem_tech,
const size_t& num_config_bits) {
const vtr::vector<ConfigRegionId, size_t>& num_config_bits) {
vtr::ScopedStartFinishTimer timer("Add module nets for configuration buses");

View File

@ -7,6 +7,7 @@
#include <vector>
#include <map>
#include "vtr_vector.h"
#include "vtr_ndmatrix.h"
#include "module_manager.h"
#include "circuit_types.h"
@ -45,19 +46,25 @@ int load_top_module_memory_modules_from_fabric_key(ModuleManager& module_manager
const ModuleId& top_module,
const FabricKey& fabric_key);
vtr::vector<ConfigRegionId, size_t> find_top_module_regional_num_config_bit(const ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const e_config_protocol_type& config_protocol_type);
void add_top_module_sram_ports(ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const ConfigProtocol& config_protocol,
const size_t& num_config_bits);
const vtr::vector<ConfigRegionId, size_t>& num_config_bits);
void add_top_module_nets_memory_config_bus(ModuleManager& module_manager,
DecoderLibrary& decoder_lib,
const ModuleId& parent_module,
const ConfigProtocol& config_protocol,
const e_circuit_model_design_tech& mem_tech,
const size_t& num_config_bits);
const vtr::vector<ConfigRegionId, size_t>& num_config_bits);
} /* end namespace openfpga */

View File

@ -62,37 +62,69 @@ size_t rec_estimate_device_bitstream_num_blocks(const ModuleManager& module_mana
static
size_t rec_estimate_device_bitstream_num_bits(const ModuleManager& module_manager,
const ModuleId& top_module,
const ModuleId& parent_module,
const e_config_protocol_type& config_protocol_type) {
size_t num_bits = 0;
/* If a child module has no configurable children, this is a leaf node
* We can count it in. Otherwise, we should go recursively.
*/
if (0 == module_manager.configurable_children(top_module).size()) {
if (0 == module_manager.configurable_children(parent_module).size()) {
return 1;
}
size_t num_configurable_children = module_manager.configurable_children(top_module).size();
/* Frame-based configuration protocol will have 1 decoder
* if there are more than 1 configurable children
/* Two cases to walk through configurable children:
* - For top-level module:
* Iterate over the multiple regions and visit each configuration child under any region
* In each region, frame-based configuration protocol or memory bank protocol will contain
* decoders. We should bypass them when count the bitstream size
* - For other modules:
* Iterate over the configurable children regardless of regions
*/
if ( (CONFIG_MEM_FRAME_BASED == config_protocol_type)
&& (2 <= num_configurable_children)) {
num_configurable_children--;
}
if (parent_module == top_module) {
for (const ConfigRegionId& config_region : module_manager.regions(parent_module)) {
size_t curr_region_num_config_child = module_manager.region_configurable_children(parent_module, config_region).size();
/* Memory configuration protocol will have 2 decoders
* at the top-level
*/
if (CONFIG_MEM_MEMORY_BANK == config_protocol_type) {
std::string top_block_name = generate_fpga_top_module_name();
if (top_module == module_manager.find_module(top_block_name)) {
num_configurable_children -= 2;
/* FIXME: This will be uncommented when multi-region support is extended for frame-based
* Frame-based configuration protocol will have 1 decoder
* if there are more than 1 configurable children
if ( (CONFIG_MEM_FRAME_BASED == config_protocol_type)
&& (2 <= curr_region_num_config_child)) {
curr_region_num_config_child--;
}
*/
/* Memory configuration protocol will have 2 decoders
* at the top-level
*/
if (CONFIG_MEM_MEMORY_BANK == config_protocol_type) {
VTR_ASSERT(2 <= curr_region_num_config_child);
curr_region_num_config_child -= 2;
}
/* Visit all the children in a recursively way */
for (size_t ichild = 0; ichild < curr_region_num_config_child; ++ichild) {
ModuleId child_module = module_manager.region_configurable_children(parent_module, config_region)[ichild];
num_bits += rec_estimate_device_bitstream_num_bits(module_manager, top_module, child_module, config_protocol_type);
}
}
} else {
VTR_ASSERT_SAFE(parent_module != top_module);
size_t num_configurable_children = module_manager.configurable_children(parent_module).size();
/* Frame-based configuration protocol will have 1 decoder
* if there are more than 1 configurable children
*/
if ( (CONFIG_MEM_FRAME_BASED == config_protocol_type)
&& (2 <= num_configurable_children)) {
num_configurable_children--;
}
for (size_t ichild = 0; ichild < num_configurable_children; ++ichild) {
ModuleId child_module = module_manager.configurable_children(parent_module)[ichild];
num_bits += rec_estimate_device_bitstream_num_bits(module_manager, top_module, child_module, config_protocol_type);
}
}
for (size_t ichild = 0; ichild < num_configurable_children; ++ichild) {
ModuleId child_module = module_manager.configurable_children(top_module)[ichild];
num_bits += rec_estimate_device_bitstream_num_bits(module_manager, child_module, config_protocol_type);
}
return num_bits;
@ -141,6 +173,7 @@ BitstreamManager build_device_bitstream(const VprContext& vpr_ctx,
/* Estimate the number of bits to be added to the database */
size_t num_bits_to_reserve = rec_estimate_device_bitstream_num_bits(openfpga_ctx.module_graph(),
top_module,
top_module,
openfpga_ctx.arch().config_protocol.type());
bitstream_manager.reserve_bits(num_bits_to_reserve);

View File

@ -58,7 +58,6 @@ void rec_build_module_fabric_dependent_chain_bitstream(const BitstreamManager& b
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
if (true != bitstream_manager.valid_block_id(child_block))
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
/* Go recursively */
@ -79,7 +78,6 @@ void rec_build_module_fabric_dependent_chain_bitstream(const BitstreamManager& b
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
if (true != bitstream_manager.valid_block_id(child_block))
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
/* Go recursively */
@ -126,6 +124,7 @@ void rec_build_module_fabric_dependent_memory_bank_bitstream(const BitstreamMana
const ModuleManager& module_manager,
const ModuleId& top_module,
const ModuleId& parent_module,
const ConfigRegionId& config_region,
const size_t& bl_addr_size,
const size_t& wl_addr_size,
const size_t& num_bls,
@ -138,42 +137,84 @@ void rec_build_module_fabric_dependent_memory_bank_bitstream(const BitstreamMana
* we dive to the next level first!
*/
if (0 < bitstream_manager.block_children(parent_block).size()) {
/* For top module, we will skip the two decoders at the end of the configurable children list */
std::vector<ModuleId> configurable_children = module_manager.configurable_children(parent_module);
size_t num_configurable_children = configurable_children.size();
/* For top module:
* - Use regional configurable children
* - we will skip the two decoders at the end of the configurable children list
*/
if (parent_module == top_module) {
std::vector<ModuleId> configurable_children = module_manager.region_configurable_children(parent_module, config_region);
VTR_ASSERT(2 <= configurable_children.size());
num_configurable_children -= 2;
}
size_t num_configurable_children = configurable_children.size() - 2;
/* Early exit if there is no configurable children */
if (0 == num_configurable_children) {
/* Ensure that there should be no configuration bits in the parent block */
VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size());
return;
}
/* Early exit if there is no configurable children */
if (0 == num_configurable_children) {
/* Ensure that there should be no configuration bits in the parent block */
VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size());
return;
}
for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) {
ModuleId child_module = configurable_children[child_id];
size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id];
/* Get the instance name and ensure it is not empty */
std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance);
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
if (true != bitstream_manager.valid_block_id(child_block))
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) {
ModuleId child_module = configurable_children[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(parent_module, config_region)[child_id];
/* Go recursively */
rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, child_block,
module_manager, top_module, child_module,
bl_addr_size, wl_addr_size,
num_bls, num_wls,
cur_mem_index,
fabric_bitstream,
fabric_bitstream_region);
/* Get the instance name and ensure it is not empty */
std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance);
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
/* Go recursively */
rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, child_block,
module_manager, top_module, child_module,
config_region,
bl_addr_size, wl_addr_size,
num_bls, num_wls,
cur_mem_index,
fabric_bitstream,
fabric_bitstream_region);
}
} else {
VTR_ASSERT(parent_module != top_module);
/* For other modules:
* - Use configurable children directly
* - no need to exclude decoders as they are not there
*/
std::vector<ModuleId> configurable_children = module_manager.configurable_children(parent_module);
size_t num_configurable_children = configurable_children.size();
/* Early exit if there is no configurable children */
if (0 == num_configurable_children) {
/* Ensure that there should be no configuration bits in the parent block */
VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size());
return;
}
for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) {
ModuleId child_module = configurable_children[child_id];
size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id];
/* Get the instance name and ensure it is not empty */
std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance);
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
/* Go recursively */
rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, child_block,
module_manager, top_module, child_module,
config_region,
bl_addr_size, wl_addr_size,
num_bls, num_wls,
cur_mem_index,
fabric_bitstream,
fabric_bitstream_region);
}
}
/* Ensure that there should be no configuration bits in the parent block */
VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size());
@ -451,30 +492,14 @@ void build_module_fabric_dependent_bitstream(const ConfigProtocol& config_protoc
break;
}
case CONFIG_MEM_MEMORY_BANK: {
size_t cur_mem_index = 0;
/* Find BL address port size */
/* Find global BL address port size */
ModulePortId bl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_BL_ADDRESS_PORT_NAME));
BasicPort bl_addr_port_info = module_manager.module_port(top_module, bl_addr_port);
/* Find WL address port size */
/* Find global WL address port size */
ModulePortId wl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_WL_ADDRESS_PORT_NAME));
BasicPort wl_addr_port_info = module_manager.module_port(top_module, wl_addr_port);
/* Find BL and WL decoders which are the last two configurable children*/
std::vector<ModuleId> configurable_children = module_manager.configurable_children(top_module);
VTR_ASSERT(2 <= configurable_children.size());
ModuleId bl_decoder_module = configurable_children[configurable_children.size() - 2];
VTR_ASSERT(0 == module_manager.configurable_child_instances(top_module)[configurable_children.size() - 2]);
ModuleId wl_decoder_module = configurable_children[configurable_children.size() - 1];
VTR_ASSERT(0 == module_manager.configurable_child_instances(top_module)[configurable_children.size() - 1]);
ModulePortId bl_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort bl_port_info = module_manager.module_port(bl_decoder_module, bl_port);
ModulePortId wl_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort wl_port_info = module_manager.module_port(wl_decoder_module, wl_port);
/* Reserve bits before build-up */
fabric_bitstream.set_use_address(true);
fabric_bitstream.set_use_wl_address(true);
@ -482,13 +507,27 @@ void build_module_fabric_dependent_bitstream(const ConfigProtocol& config_protoc
fabric_bitstream.set_wl_address_length(wl_addr_port_info.get_width());
fabric_bitstream.reserve_bits(bitstream_manager.num_bits());
/* TODO: Currently only support 1 region. Will expand later! */
VTR_ASSERT(1 == module_manager.regions(top_module).size());
/* Build bitstreams by region */
for (const ConfigRegionId& config_region : module_manager.regions(top_module)) {
size_t cur_mem_index = 0;
/* Find port information for local BL and WL decoder in this region */
std::vector<ModuleId> configurable_children = module_manager.region_configurable_children(top_module, config_region);
VTR_ASSERT(2 <= configurable_children.size());
ModuleId bl_decoder_module = configurable_children[configurable_children.size() - 2];
ModuleId wl_decoder_module = configurable_children[configurable_children.size() - 1];
ModulePortId bl_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort bl_port_info = module_manager.module_port(bl_decoder_module, bl_port);
ModulePortId wl_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort wl_port_info = module_manager.module_port(wl_decoder_module, wl_port);
/* Build the bitstream for all the blocks in this region */
FabricBitRegionId fabric_bitstream_region = fabric_bitstream.add_region();
rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, top_block,
module_manager, top_module, top_module,
config_region,
bl_addr_port_info.get_width(),
wl_addr_port_info.get_width(),
bl_port_info.get_width(),

View File

@ -40,7 +40,7 @@ std::string generate_verilog_undriven_local_wire_name(const ModuleManager& modul
if (!module_manager.instance_name(parent, child, instance_id).empty()) {
wire_name = module_manager.instance_name(parent, child, instance_id);
} else {
wire_name = module_manager.module_name(parent) + std::string("_") + std::to_string(instance_id);
wire_name = module_manager.module_name(child) + std::string("_") + std::to_string(instance_id);
wire_name += std::string("_");
}

View File

@ -1517,6 +1517,7 @@ void print_verilog_top_testbench_memory_bank_bitstream(std::fstream& fp,
fp << ";";
fp << std::endl;
fp << "\t\t";
fp << generate_verilog_port_constant_values(wl_addr_port, initial_wl_addr_values);
fp << ";";
fp << std::endl;
@ -1528,37 +1529,87 @@ void print_verilog_top_testbench_memory_bank_bitstream(std::fstream& fp,
fp << std::endl;
/* Attention: the configuration chain protcol requires the last configuration bit is fed first
* We will visit the fabric bitstream in a reverse way
/* Reorganize the fabric bitstream by the same address across regions:
* This is due to that the length of fabric bitstream could be different in each region.
* Template:
* <bl_address> <wl_address> <din_values_from_different_regions>
* An example:
* 000000 00000 1011
*
* Note: the std::map may cause large memory footprint for large bitstream databases!
*/
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
/* When fast configuration is enabled, we skip zero data_in values */
if ((true == fast_configuration)
&& (bit_value_to_skip == fabric_bitstream.bit_din(bit_id))) {
continue;
std::map<std::pair<std::string, std::string>, std::vector<bool>> fabric_bits_by_addr;
for (const FabricBitRegionId& region : fabric_bitstream.regions()) {
for (const FabricBitId& bit_id : fabric_bitstream.region_bits(region)) {
/* Create string for BL address */
VTR_ASSERT(bl_addr_port.get_width() == fabric_bitstream.bit_bl_address(bit_id).size());
std::string bl_addr_str;
for (const char& addr_bit : fabric_bitstream.bit_bl_address(bit_id)) {
bl_addr_str.push_back(addr_bit);
}
/* Create string for WL address */
VTR_ASSERT(wl_addr_port.get_width() == fabric_bitstream.bit_wl_address(bit_id).size());
std::string wl_addr_str;
for (const char& addr_bit : fabric_bitstream.bit_wl_address(bit_id)) {
wl_addr_str.push_back(addr_bit);
}
/* Place the config bit */
auto result = fabric_bits_by_addr.find(std::make_pair(bl_addr_str, wl_addr_str));
if (result == fabric_bits_by_addr.end()) {
/* This is a new bit, resize the vector to the number of regions
* and deposit '0' to all the bits
*/
fabric_bits_by_addr[std::make_pair(bl_addr_str, wl_addr_str)] = std::vector<bool>(fabric_bitstream.regions().size(), false);
fabric_bits_by_addr[std::make_pair(bl_addr_str, wl_addr_str)][size_t(region)] = fabric_bitstream.bit_din(bit_id);
} else {
VTR_ASSERT_SAFE(result != fabric_bits_by_addr.end());
result->second[size_t(region)] = fabric_bitstream.bit_din(bit_id);
}
}
}
for (const auto& addr_din_pair : fabric_bits_by_addr) {
/* When fast configuration is enabled,
* the rule to skip any configuration bit should consider the whole data input values.
* Only all the bits in the din port match the value to be skipped,
* the programming cycle can be skipped!
*/
if (true == fast_configuration) {
bool skip_curr_bits = true;
for (const bool& bit : addr_din_pair.second) {
if (bit_value_to_skip != bit) {
skip_curr_bits = false;
break;
}
}
if (true == skip_curr_bits) {
continue;
}
}
fp << "\t\t" << std::string(TOP_TESTBENCH_PROG_TASK_NAME);
fp << "(" << bl_addr_port.get_width() << "'b";
VTR_ASSERT(bl_addr_port.get_width() == fabric_bitstream.bit_bl_address(bit_id).size());
for (const char& addr_bit : fabric_bitstream.bit_bl_address(bit_id)) {
fp << addr_bit;
}
VTR_ASSERT(bl_addr_port.get_width() == addr_din_pair.first.first.length());
fp << addr_din_pair.first.first;
fp << ", ";
fp << wl_addr_port.get_width() << "'b";
VTR_ASSERT(wl_addr_port.get_width() == fabric_bitstream.bit_wl_address(bit_id).size());
for (const char& addr_bit : fabric_bitstream.bit_wl_address(bit_id)) {
fp << addr_bit;
}
VTR_ASSERT(wl_addr_port.get_width() == addr_din_pair.first.second.length());
fp << addr_din_pair.first.second;
fp << ", ";
fp <<"1'b";
if (true == fabric_bitstream.bit_din(bit_id)) {
fp << "1";
} else {
VTR_ASSERT(false == fabric_bitstream.bit_din(bit_id));
fp << "0";
fp << din_port.get_width() << "'b";
VTR_ASSERT(din_port.get_width() == addr_din_pair.second.size());
for (const bool& din_value : addr_din_pair.second) {
if (true == din_value) {
fp << "1";
} else {
VTR_ASSERT(false == din_value);
fp << "0";
}
}
fp << ");" << std::endl;
}

View File

@ -1793,6 +1793,7 @@ ModuleNetId create_module_source_pin_net(ModuleManager& module_manager,
* - des_module should be the cur_module or a child of it
* - src_instance should be valid and des_instance should be valid as well
* - src port size should match the des port size
*
*******************************************************************/
void add_module_bus_nets(ModuleManager& module_manager,
const ModuleId& cur_module_id,

View File

@ -0,0 +1,198 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" lib_name="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="SRAM" prefix="SRAM" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAM" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="memory_bank" circuit_model_name="SRAM" num_regions="4"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,200 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="SRAMSR" prefix="SRAMSR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="memory_bank" circuit_model_name="SRAMSR" num_regions="4"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,35 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/fix_device_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_multi_region_bank_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_vpr_device_layout=2x2
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM]
bench0_top = and2
bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=

View File

@ -0,0 +1,34 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/fast_configuration_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_multi_region_bank_use_both_set_reset_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM]
bench0_top = and2
bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=