bug fixed for routing annotation and routing net fix-up

This commit is contained in:
tangxifan 2020-02-06 12:54:55 -07:00
parent cccbb9fd49
commit 99f5a86b49
8 changed files with 373 additions and 57 deletions

View File

@ -19,6 +19,7 @@ set_target_properties(libopenfpgautil PROPERTIES PREFIX "") #Avoid extra 'lib' p
#Specify link-time dependancies #Specify link-time dependancies
target_link_libraries(libopenfpgautil target_link_libraries(libopenfpgautil
libarchfpga
libvtrutil) libvtrutil)
#Create the test executable #Create the test executable

View File

@ -0,0 +1,175 @@
/********************************************************************
* Memeber function for class SideManagerManager
*******************************************************************/
#include "openfpga_side_manager.h"
/* namespace openfpga begins */
namespace openfpga {
/* Constructors */
SideManager::SideManager(enum e_side side) {
side_ = side;
}
SideManager::SideManager() {
side_ = NUM_SIDES;
}
SideManager::SideManager(size_t side) {
set_side(side);
}
/* Public Accessors */
enum e_side SideManager::get_side() const {
return side_;
}
enum e_side SideManager::get_opposite() const {
switch (side_) {
case TOP:
return BOTTOM;
case RIGHT:
return LEFT;
case BOTTOM:
return TOP;
case LEFT:
return RIGHT;
default:
return NUM_SIDES;
}
}
enum e_side SideManager::get_rotate_clockwise() const {
switch (side_) {
case TOP:
return RIGHT;
case RIGHT:
return BOTTOM;
case BOTTOM:
return LEFT;
case LEFT:
return TOP;
default:
return NUM_SIDES;
}
}
enum e_side SideManager::get_rotate_counterclockwise() const {
switch (side_) {
case TOP:
return LEFT;
case RIGHT:
return TOP;
case BOTTOM:
return RIGHT;
case LEFT:
return BOTTOM;
default:
return NUM_SIDES;
}
}
bool SideManager::validate() const {
if (NUM_SIDES == side_) {
return false;
}
return true;
}
size_t SideManager::to_size_t() const {
switch (side_) {
case TOP:
return 0;
case RIGHT:
return 1;
case BOTTOM:
return 2;
case LEFT:
return 3;
default:
return 4;
}
}
/* Convert to char* */
const char* SideManager::c_str() const {
switch (side_) {
case TOP:
return "top";
case RIGHT:
return "right";
case BOTTOM:
return "bottom";
case LEFT:
return "left";
default:
return "invalid_side";
}
}
/* Convert to char* */
std::string SideManager::to_string() const {
std::string ret;
switch (side_) {
case TOP:
ret.assign("top");
break;
case RIGHT:
ret.assign("right");
break;
case BOTTOM:
ret.assign("bottom");
break;
case LEFT:
ret.assign("left");
break;
default:
ret.assign("invalid_side");
break;
}
return ret;
}
/* Public Mutators */
void SideManager::set_side(size_t side) {
switch (side) {
case 0:
side_ = TOP;
return;
case 1:
side_ = RIGHT;
return;
case 2:
side_ = BOTTOM;
return;
case 3:
side_ = LEFT;
return;
default:
side_ = NUM_SIDES;
return;
}
}
void SideManager::set_side(enum e_side side) {
side_ = side;
return;
}
void SideManager::set_opposite() {
side_ = get_opposite();
return;
}
void SideManager::rotate_clockwise() {
side_ = get_rotate_clockwise();
return;
}
void SideManager::rotate_counterclockwise() {
side_ = get_rotate_counterclockwise();
return;
}
} /* namespace openfpga ends */

View File

@ -0,0 +1,49 @@
#ifndef OPENFPGA_SIDE_MANAGER_H
#define OPENFPGA_SIDE_MANAGER_H
/********************************************************************
* Include header files that are required by function declaration
*******************************************************************/
#include <cstddef>
#include <string>
/* Header files form archfpga library */
#include "physical_types.h"
/* namespace openfpga begins */
namespace openfpga {
/********************************************************************
* Define a class for the sides of a physical block in FPGA architecture
* Basically, each block has four sides :
* TOP, RIGHT, BOTTOM, LEFT
* This class aims to provide a easy proctol for manipulating a side
********************************************************************/
class SideManager {
public: /* Constructor */
SideManager(enum e_side side);
SideManager();
SideManager(size_t side);
public: /* Accessors */
enum e_side get_side() const;
enum e_side get_opposite() const;
enum e_side get_rotate_clockwise() const;
enum e_side get_rotate_counterclockwise() const;
bool validate() const;
size_t to_size_t() const;
const char* c_str() const;
std::string to_string() const;
public: /* Mutators */
void set_side(size_t side);
void set_side(enum e_side side);
void set_opposite();
void rotate_clockwise();
void rotate_counterclockwise();
private: /* internal data */
enum e_side side_;
};
} /* namespace openfpga ends */
#endif

View File

@ -16,26 +16,33 @@ namespace openfpga {
* based on VPR routing results * based on VPR routing results
* - Unmapped rr_node will use invalid ids * - Unmapped rr_node will use invalid ids
*******************************************************************/ *******************************************************************/
void annotate_rr_node_nets(const ClusteringContext& vpr_clustering_ctx, void annotate_rr_node_nets(const DeviceContext& device_ctx,
const RoutingContext& vpr_routing_ctx, const ClusteringContext& clustering_ctx,
VprRoutingAnnotation& vpr_routing_annotation) { const RoutingContext& routing_ctx,
VprRoutingAnnotation& vpr_routing_annotation,
const bool& verbose) {
size_t counter = 0; size_t counter = 0;
VTR_LOG("Annotating rr_node with routed nets..."); VTR_LOG("Annotating rr_node with routed nets...");
VTR_LOGV(verbose, "\n");
for (auto net_id : vpr_clustering_ctx.clb_nlist.nets()) { for (auto net_id : clustering_ctx.clb_nlist.nets()) {
/* Ignore nets that are not routed */ /* Ignore nets that are not routed */
if (true == vpr_clustering_ctx.clb_nlist.net_is_ignored(net_id)) { if (true == clustering_ctx.clb_nlist.net_is_ignored(net_id)) {
continue; continue;
} }
/* Ignore used in local cluster only, reserved one CLB pin */ /* Ignore used in local cluster only, reserved one CLB pin */
if (false == vpr_clustering_ctx.clb_nlist.net_sinks(net_id).size()) { if (false == clustering_ctx.clb_nlist.net_sinks(net_id).size()) {
continue; continue;
} }
t_trace* tptr = vpr_routing_ctx.trace[net_id].head; t_trace* tptr = routing_ctx.trace[net_id].head;
while (tptr != nullptr) { while (tptr != nullptr) {
RRNodeId rr_node = tptr->index; RRNodeId rr_node = tptr->index;
vpr_routing_annotation.set_rr_node_net(rr_node, net_id); /* Ignore source and sink nodes, they are the common node multiple starting and ending points */
counter++; if ( (SOURCE != device_ctx.rr_graph.node_type(rr_node))
&& (SINK != device_ctx.rr_graph.node_type(rr_node)) ) {
vpr_routing_annotation.set_rr_node_net(rr_node, net_id);
counter++;
}
tptr = tptr->next; tptr = tptr->next;
} }
} }

View File

@ -15,9 +15,11 @@
/* begin namespace openfpga */ /* begin namespace openfpga */
namespace openfpga { namespace openfpga {
void annotate_rr_node_nets(const ClusteringContext& vpr_clustering_ctx, void annotate_rr_node_nets(const DeviceContext& device_ctx,
const RoutingContext& vpr_routing_ctx, const ClusteringContext& clustering_ctx,
VprRoutingAnnotation& vpr_routing_annotation); const RoutingContext& routing_ctx,
VprRoutingAnnotation& vpr_routing_annotation,
const bool& verbose);
} /* end namespace openfpga */ } /* end namespace openfpga */

View File

@ -37,7 +37,7 @@ void VprRoutingAnnotation::set_rr_node_net(const RRNodeId& rr_node,
VTR_ASSERT(size_t(rr_node) < rr_node_nets_.size()); VTR_ASSERT(size_t(rr_node) < rr_node_nets_.size());
/* Warn any override attempt */ /* Warn any override attempt */
if (ClusterNetId::INVALID() != rr_node_nets_[rr_node]) { if (ClusterNetId::INVALID() != rr_node_nets_[rr_node]) {
VTR_LOG_WARN("Override the net '%ld' for node'%ld' with in routing context annotation!\n", VTR_LOG_WARN("Override the net '%ld' for node '%ld' with in routing context annotation!\n",
size_t(net_id), size_t(rr_node)); size_t(net_id), size_t(rr_node));
} }

View File

@ -57,8 +57,9 @@ void link_arch(OpenfpgaContext& openfpga_context,
*/ */
openfpga_context.mutable_vpr_routing_annotation().init(g_vpr_ctx.device().rr_graph); openfpga_context.mutable_vpr_routing_annotation().init(g_vpr_ctx.device().rr_graph);
annotate_rr_node_nets(g_vpr_ctx.clustering(), g_vpr_ctx.routing(), annotate_rr_node_nets(g_vpr_ctx.device(), g_vpr_ctx.clustering(), g_vpr_ctx.routing(),
openfpga_context.mutable_vpr_routing_annotation()); openfpga_context.mutable_vpr_routing_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
} }
} /* end namespace openfpga */ } /* end namespace openfpga */

View File

@ -10,6 +10,9 @@
/* Headers from vpr library */ /* Headers from vpr library */
#include "vpr_utils.h" #include "vpr_utils.h"
/* Headers from openfpgautil library */
#include "openfpga_side_manager.h"
#include "pb_type_utils.h" #include "pb_type_utils.h"
#include "openfpga_pb_pin_fixup.h" #include "openfpga_pb_pin_fixup.h"
@ -56,6 +59,7 @@ void update_cluster_pin_with_post_routing_results(const DeviceContext& device_ct
VprClusteringAnnotation& vpr_clustering_annotation, VprClusteringAnnotation& vpr_clustering_annotation,
const vtr::Point<size_t>& grid_coord, const vtr::Point<size_t>& grid_coord,
const ClusterBlockId& blk_id, const ClusterBlockId& blk_id,
const e_side& border_side,
const bool& verbose) { const bool& verbose) {
/* Handle each pin */ /* Handle each pin */
auto logical_block = clustering_ctx.clb_nlist.block_type(blk_id); auto logical_block = clustering_ctx.clb_nlist.block_type(blk_id);
@ -66,6 +70,7 @@ void update_cluster_pin_with_post_routing_results(const DeviceContext& device_ct
int physical_pin = get_physical_pin(physical_tile, logical_block, j); int physical_pin = get_physical_pin(physical_tile, logical_block, j);
auto pin_class = physical_tile->pin_class[physical_pin]; auto pin_class = physical_tile->pin_class[physical_pin];
auto class_inf = physical_tile->class_inf[pin_class]; auto class_inf = physical_tile->class_inf[pin_class];
t_rr_type rr_node_type; t_rr_type rr_node_type;
if (class_inf.type == DRIVER) { if (class_inf.type == DRIVER) {
rr_node_type = OPIN; rr_node_type = OPIN;
@ -74,49 +79,74 @@ void update_cluster_pin_with_post_routing_results(const DeviceContext& device_ct
rr_node_type = IPIN; rr_node_type = IPIN;
} }
std::vector<e_side> pin_sides = find_logic_tile_pin_side(physical_tile, physical_pin); std::vector<e_side> pin_sides = find_logic_tile_pin_side(physical_tile, physical_pin);
/* As some grid go across columns or rows, we may not have the pin on any side */ /* As some grid has height/width offset, we may not have the pin on any side */
if (0 == pin_sides.size()) { if (0 == pin_sides.size()) {
continue; continue;
} }
for (const e_side& pin_side : pin_sides) { /* For regular grid, we should have pin only one side!
/* Find the net mapped to this pin in routing results */ * I/O grids: VPR creates the grid with duplicated pins on every side
const RRNodeId& rr_node = device_ctx.rr_graph.find_node(grid_coord.x(), grid_coord.y(), rr_node_type, physical_pin, pin_side); * but the expected side (only used side) will be opposite side of the border side!
if (false == device_ctx.rr_graph.valid_node_id(rr_node)) { */
continue; e_side pin_side = NUM_SIDES;
} if (NUM_SIDES == border_side) {
/* Get the cluster net id which has been mapped to this net */ VTR_ASSERT(1 == pin_sides.size());
ClusterNetId routing_net_id = vpr_routing_annotation.rr_node_net(rr_node); pin_side = pin_sides[0];
} else {
/* Find the net mapped to this pin in clustering results*/ SideManager side_manager(border_side);
ClusterNetId cluster_net_id = clustering_ctx.clb_nlist.block_net(blk_id, j); VTR_ASSERT(pin_sides.end() != std::find(pin_sides.begin(), pin_sides.end(), side_manager.get_opposite()));
pin_side = side_manager.get_opposite();
/* If matched, we finish here */
if (routing_net_id == cluster_net_id) {
continue;
}
/* Add to net modification */
vpr_clustering_annotation.rename_net(blk_id, j, routing_net_id);
std::string routing_net_name("unmapped");
if (ClusterNetId::INVALID() != routing_net_id) {
routing_net_name = clustering_ctx.clb_nlist.net_name(routing_net_id);
}
std::string cluster_net_name("unmapped");
if (ClusterNetId::INVALID() != cluster_net_id) {
cluster_net_name = clustering_ctx.clb_nlist.net_name(cluster_net_id);
}
VTR_LOGV(verbose,
"Fixed up net '%s' mapping mismatch at clustered block '%s' pin '%s[%d]' (was net '%s')\n",
routing_net_name.c_str(),
clustering_ctx.clb_nlist.block_pb(blk_id)->name,
get_pb_graph_node_pin_from_block_pin(blk_id, physical_pin)->port->name,
get_pb_graph_node_pin_from_block_pin(blk_id, physical_pin)->pin_number,
cluster_net_name.c_str()
);
} }
/* Find the net mapped to this pin in routing results */
const RRNodeId& rr_node = device_ctx.rr_graph.find_node(grid_coord.x(), grid_coord.y(), rr_node_type, physical_pin, pin_side);
if (false == device_ctx.rr_graph.valid_node_id(rr_node)) {
continue;
}
/* Get the cluster net id which has been mapped to this net */
ClusterNetId routing_net_id = vpr_routing_annotation.rr_node_net(rr_node);
/* Find the net mapped to this pin in clustering results*/
ClusterNetId cluster_net_id = clustering_ctx.clb_nlist.block_net(blk_id, j);
/* Ignore those net have never been routed */
if ( (ClusterNetId::INVALID() != cluster_net_id)
&& (true == clustering_ctx.clb_nlist.net_is_ignored(cluster_net_id))) {
continue;
}
/* Ignore used in local cluster only, reserved one CLB pin */
if (false == clustering_ctx.clb_nlist.net_sinks(cluster_net_id).size()) {
continue;
}
/* If matched, we finish here */
if (routing_net_id == cluster_net_id) {
continue;
}
/* Add to net modification */
vpr_clustering_annotation.rename_net(blk_id, j, routing_net_id);
std::string routing_net_name("unmapped");
if (ClusterNetId::INVALID() != routing_net_id) {
routing_net_name = clustering_ctx.clb_nlist.net_name(routing_net_id);
}
std::string cluster_net_name("unmapped");
if (ClusterNetId::INVALID() != cluster_net_id) {
cluster_net_name = clustering_ctx.clb_nlist.net_name(cluster_net_id);
}
VTR_LOGV(verbose,
"Fixed up net '%s' mapping mismatch at clustered block '%s' pin 'grid[%ld][%ld].%s.%s[%d]' (was net '%s')\n",
routing_net_name.c_str(),
clustering_ctx.clb_nlist.block_pb(blk_id)->name,
grid_coord.x(), grid_coord.y(),
clustering_ctx.clb_nlist.block_pb(blk_id)->pb_graph_node->pb_type->name,
get_pb_graph_node_pin_from_block_pin(blk_id, physical_pin)->port->name,
get_pb_graph_node_pin_from_block_pin(blk_id, physical_pin)->pin_number,
cluster_net_name.c_str()
);
} }
} }
@ -131,12 +161,15 @@ void update_pb_pin_with_post_routing_results(const DeviceContext& device_ctx,
const VprRoutingAnnotation& vpr_routing_annotation, const VprRoutingAnnotation& vpr_routing_annotation,
VprClusteringAnnotation& vpr_clustering_annotation, VprClusteringAnnotation& vpr_clustering_annotation,
const bool& verbose) { const bool& verbose) {
for (size_t x = 0; x < device_ctx.grid.width(); ++x) { /* Update the core logic (center blocks of the FPGA) */
for (size_t y = 0; y < device_ctx.grid.height(); ++y) { for (size_t x = 1; x < device_ctx.grid.width() - 1; ++x) {
for (size_t y = 1; y < device_ctx.grid.height() - 1; ++y) {
/* Bypass the EMPTY tiles */ /* Bypass the EMPTY tiles */
if (device_ctx.EMPTY_PHYSICAL_TILE_TYPE == device_ctx.grid[x][y].type) { if (true == is_empty_type(device_ctx.grid[x][y].type)) {
continue; continue;
} }
/* We must have an regular (non-I/O) type here */
VTR_ASSERT(false == is_io_type(device_ctx.grid[x][y].type));
/* Get the mapped blocks to this grid */ /* Get the mapped blocks to this grid */
for (const ClusterBlockId& cluster_blk_id : placement_ctx.grid_blocks[x][y].blocks) { for (const ClusterBlockId& cluster_blk_id : placement_ctx.grid_blocks[x][y].blocks) {
/* Skip invalid ids */ /* Skip invalid ids */
@ -147,7 +180,55 @@ void update_pb_pin_with_post_routing_results(const DeviceContext& device_ctx,
vtr::Point<size_t> grid_coord(x, y); vtr::Point<size_t> grid_coord(x, y);
update_cluster_pin_with_post_routing_results(device_ctx, clustering_ctx, update_cluster_pin_with_post_routing_results(device_ctx, clustering_ctx,
vpr_routing_annotation, vpr_clustering_annotation, vpr_routing_annotation, vpr_clustering_annotation,
grid_coord, cluster_blk_id, grid_coord, cluster_blk_id, NUM_SIDES,
verbose);
}
}
}
/* Update the periperal I/O blocks at fours sides of FPGA */
std::vector<e_side> io_sides{TOP, RIGHT, BOTTOM, LEFT};
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coords;
/* TOP side */
for (size_t x = 1; x < device_ctx.grid.width() - 1; ++x) {
io_coords[TOP].push_back(vtr::Point<size_t>(x, device_ctx.grid.height() -1));
}
/* RIGHT side */
for (size_t y = 1; y < device_ctx.grid.height() - 1; ++y) {
io_coords[RIGHT].push_back(vtr::Point<size_t>(device_ctx.grid.width() -1, y));
}
/* BOTTOM side */
for (size_t x = 1; x < device_ctx.grid.width() - 1; ++x) {
io_coords[BOTTOM].push_back(vtr::Point<size_t>(x, 0));
}
/* LEFT side */
for (size_t y = 1; y < device_ctx.grid.height() - 1; ++y) {
io_coords[LEFT].push_back(vtr::Point<size_t>(0, y));
}
/* Walk through io grid on by one */
for (const e_side& io_side : io_sides) {
for (const vtr::Point<size_t>& io_coord : io_coords[io_side]) {
/* Bypass EMPTY grid */
if (true == is_empty_type(device_ctx.grid[io_coord.x()][io_coord.y()].type)) {
continue;
}
/* We must have an I/O type here */
VTR_ASSERT(true == is_io_type(device_ctx.grid[io_coord.x()][io_coord.y()].type));
/* Get the mapped blocks to this grid */
for (const ClusterBlockId& cluster_blk_id : placement_ctx.grid_blocks[io_coord.x()][io_coord.y()].blocks) {
/* Skip invalid ids */
if (ClusterBlockId::INVALID() == cluster_blk_id) {
continue;
}
/* Update on I/O grid */
update_cluster_pin_with_post_routing_results(device_ctx, clustering_ctx,
vpr_routing_annotation, vpr_clustering_annotation,
io_coord, cluster_blk_id, io_side,
verbose); verbose);
} }
} }