[test] now add QuickLogic memory bank to fpga bitstream regression tests

This commit is contained in:
tangxifan 2022-05-25 11:42:32 +08:00
parent 86347a9d49
commit 9832722056
5 changed files with 124 additions and 0 deletions

View File

@ -10,12 +10,15 @@ echo -e "FPGA-Bitstream regression tests";
echo -e "Testing bitstream generation for an auto-sized device";
run-task fpga_bitstream/generate_bitstream/configuration_chain/device_auto $@
run-task fpga_bitstream/generate_bitstream/ql_memory_bank_shift_register/device_auto $@
echo -e "Testing bitstream generation for an 48x48 FPGA device";
run-task fpga_bitstream/generate_bitstream/configuration_chain/device_48x48 $@
run-task fpga_bitstream/generate_bitstream/ql_memory_bank_shift_register/device_48x48 $@
echo -e "Testing bitstream generation for an 96x96 FPGA device";
run-task fpga_bitstream/generate_bitstream/configuration_chain/device_96x96 $@
run-task fpga_bitstream/generate_bitstream/ql_memory_bank_shift_register/device_96x96 $@
echo -e "Testing loading architecture bitstream from an external file";
run-task fpga_bitstream/load_external_architecture_bitstream $@

View File

@ -0,0 +1,38 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
# Runtime of this bitstream generation should not exceed 3 minutes as a QoR requirement
timeout_each_job = 3*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/generate_bitstream_fix_device_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_qlbanksr_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
# VPR parameters
openfpga_vpr_route_chan_width=50
openfpga_vpr_device_layout=48x48
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/SAPone/rtl/*
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_read_verilog_options_common = -nolatches
bench0_top = SAPone
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -0,0 +1,36 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
# Runtime of this bitstream generation should not exceed 6 minutes as a QoR requirement
timeout_each_job = 6*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/generate_bitstream_fix_device_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_qlbanksr_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_vpr_route_chan_width=100
openfpga_vpr_device_layout=96x96
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/RISC_posedge_clk/rtl/*.v
[SYNTHESIS_PARAM]
bench_read_verilog_options_common = -nolatches
bench0_top = RISC_core_top
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -0,0 +1,33 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/generate_bitstream_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_qlbanksr_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM]
bench_read_verilog_options_common = -nolatches
bench0_top = and2
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -84,6 +84,20 @@
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="48x48" width="50" height="50">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="96x96" width="98" height="98">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM