developing routing track rr_node set up in tileable routing architecture

This commit is contained in:
tangxifan 2019-06-15 18:11:08 -06:00
parent 155c8d4924
commit 8c9cc003ea
1 changed files with 281 additions and 33 deletions

View File

@ -61,6 +61,72 @@
/************************************************************************ /************************************************************************
* Local function in the file * Local function in the file
***********************************************************************/ ***********************************************************************/
/************************************************************************
* Initialize a rr_node
************************************************************************/
static
void tileable_rr_graph_init_rr_node(t_rr_node* cur_rr_node) {
cur_rr_node->xlow = 0;
cur_rr_node->xhigh = 0;
cur_rr_node->ylow = 0;
cur_rr_node->xhigh = 0;
cur_rr_node->ptc_num = 0;
cur_rr_node->track_ids.clear();
cur_rr_node->cost_index = 0;
cur_rr_node->occ = 0;
cur_rr_node->fan_in = 0;
cur_rr_node->num_edges = 0;
cur_rr_node->type = NUM_RR_TYPES;
cur_rr_node->edges = NULL;
cur_rr_node->switches = NULL;
cur_rr_node->driver_switch = 0;
cur_rr_node->unbuf_switched = 0;
cur_rr_node->buffered = 0;
cur_rr_node->R = 0.;
cur_rr_node->C = 0.;
cur_rr_node->direction = BI_DIRECTION; /* Give an invalid value, easy to check errors */
cur_rr_node->drivers = SINGLE;
cur_rr_node->num_wire_drivers = 0;
cur_rr_node->num_opin_drivers = 0;
cur_rr_node->num_drive_rr_nodes = 0;
cur_rr_node->drive_rr_nodes = NULL;
cur_rr_node->drive_switches = NULL;
cur_rr_node->vpack_net_num_changed = FALSE;
cur_rr_node->is_parasitic_net = FALSE;
cur_rr_node->is_in_heap = FALSE;
cur_rr_node->sb_num_drive_rr_nodes = 0;
cur_rr_node->sb_drive_rr_nodes = NULL;
cur_rr_node->sb_drive_switches = NULL;
cur_rr_node->pb = NULL;
cur_rr_node->name_mux = NULL;
cur_rr_node->id_path = -1;
cur_rr_node->prev_node = -1;
cur_rr_node->prev_edge = -1;
cur_rr_node->net_num = -1;
cur_rr_node->vpack_net_num = -1;
cur_rr_node->prev_node_in_pack = -1;
cur_rr_node->prev_edge_in_pack = -1;
cur_rr_node->net_num_in_pack = -1;
cur_rr_node->pb_graph_pin = NULL;
cur_rr_node->tnode = NULL;
cur_rr_node->pack_intrinsic_cost = 0.;
cur_rr_node->z = 0;
return;
}
/************************************************************************ /************************************************************************
* Generate the number of tracks for each types of routing segments * Generate the number of tracks for each types of routing segments
@ -398,47 +464,222 @@ std::vector<size_t> estimate_num_rr_nodes_per_type(const DeviceCoordinator& devi
* in X-direction and Y-direction channels!!! * in X-direction and Y-direction channels!!!
* So we will load segment details for different channels * So we will load segment details for different channels
***********************************************************************/ ***********************************************************************/
/* For X-direction Channel */ /* For X-direction Channel: CHANX */
/* For LEFT side of FPGA */ for (size_t ix = 0; ix < grids.size() - 1; ++ix) {
ChanNodeDetails left_chanx_details = build_unidir_chan_node_details(chan_width[0], device_size.get_x() - 2, LEFT, segment_infs); for (size_t iy = 0; iy < grids[ix].size() - 1; ++iy) {
for (size_t iy = 0; iy < device_size.get_y() - 1; ++iy) { enum e_side chan_side = NUM_SIDES;
num_rr_nodes_per_type[CHANX] += left_chanx_details.get_num_starting_tracks(); /* For LEFT side of FPGA */
} if (0 == ix) {
/* For RIGHT side of FPGA */ chan_side = LEFT;
ChanNodeDetails right_chanx_details = build_unidir_chan_node_details(chan_width[0], device_size.get_x() - 2, RIGHT, segment_infs); }
for (size_t iy = 0; iy < device_size.get_y() - 1; ++iy) { /* For RIGHT side of FPGA */
num_rr_nodes_per_type[CHANX] += right_chanx_details.get_num_starting_tracks(); if (grids.size() - 2 == ix) {
} chan_side = RIGHT;
/* For core of FPGA */ }
ChanNodeDetails core_chanx_details = build_unidir_chan_node_details(chan_width[1], device_size.get_x() - 2, NUM_SIDES, segment_infs); ChanNodeDetails chanx_details = build_unidir_chan_node_details(chan_width[0], device_size.get_x() - 2, chan_side, segment_infs);
for (size_t ix = 1; ix < grids.size() - 2; ++ix) { num_rr_nodes_per_type[CHANX] += chanx_details.get_num_starting_tracks();
for (size_t iy = 1; iy < grids[ix].size() - 2; ++iy) {
num_rr_nodes_per_type[CHANX] += core_chanx_details.get_num_starting_tracks();
} }
} }
/* For Y-direction Channel */ /* For Y-direction Channel: CHANX */
/* For TOP side of FPGA */ for (size_t ix = 0; ix < grids.size() - 1; ++ix) {
ChanNodeDetails top_chany_details = build_unidir_chan_node_details(chan_width[1], device_size.get_y() - 2, TOP, segment_infs); for (size_t iy = 0; iy < grids[ix].size() - 1; ++iy) {
for (size_t ix = 0; ix < device_size.get_x() - 1; ++ix) { enum e_side chan_side = NUM_SIDES;
num_rr_nodes_per_type[CHANY] += top_chany_details.get_num_starting_tracks(); /* For LEFT side of FPGA */
} if (0 == iy) {
/* For BOTTOM side of FPGA */ chan_side = BOTTOM;
ChanNodeDetails bottom_chany_details = build_unidir_chan_node_details(chan_width[1], device_size.get_y() - 2, BOTTOM, segment_infs); }
for (size_t ix = 0; ix < device_size.get_x() - 1; ++ix) { /* For RIGHT side of FPGA */
num_rr_nodes_per_type[CHANY] += bottom_chany_details.get_num_starting_tracks(); if (grids[ix].size() - 2 == iy) {
} chan_side = TOP;
/* For core of FPGA */ }
ChanNodeDetails core_chany_details = build_unidir_chan_node_details(chan_width[1], device_size.get_y() - 2, NUM_SIDES, segment_infs); ChanNodeDetails chany_details = build_unidir_chan_node_details(chan_width[1], device_size.get_y() - 2, chan_side, segment_infs);
for (size_t ix = 1; ix < grids.size() - 2; ++ix) { num_rr_nodes_per_type[CHANY] += chany_details.get_num_starting_tracks();
for (size_t iy = 1; iy < grids[ix].size() - 2; ++iy) {
num_rr_nodes_per_type[CHANY] += core_chany_details.get_num_starting_tracks();
} }
} }
return num_rr_nodes_per_type; return num_rr_nodes_per_type;
} }
/************************************************************************
* Configure rr_nodes for this grid
* coordinators: xlow, ylow, xhigh, yhigh,
* features: capacity, ptc_num (pin_num),
***********************************************************************/
static
void load_one_grid_rr_nodes_basic_info(const DeviceCoordinator& grid_coordinator,
const t_grid_tile& cur_grid, enum e_side io_side,
t_rr_graph* rr_graph, size_t* cur_node_id) {
Side io_side_manager(io_side);
/* Walk through the height of each grid,
* get pins and configure the rr_nodes */
for (int height = 0; height < cur_grid.type->height; ++height) {
/* Walk through sides */
for (size_t side = 0; side < NUM_SIDES; ++side) {
Side side_manager(side);
/* skip unwanted sides */
if ( (IO_TYPE == cur_grid.type)
&& (side != io_side_manager.to_size_t()) ) {
continue;
}
/* Find OPINs */
/* Configure pins by pins */
std::vector<int> opin_list = get_grid_side_pins(cur_grid, DRIVER, side_manager.get_side(), height);
for (size_t pin = 0; pin < opin_list.size(); ++pin) {
/* Configure the rr_node for the OPIN */
rr_graph->rr_node[*cur_node_id].type = OPIN;
rr_graph->rr_node[*cur_node_id].xlow = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].xhigh = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].ylow = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].yhigh = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].ptc_num = opin_list[pin];
rr_graph->rr_node[*cur_node_id].capacity = 1;
rr_graph->rr_node[*cur_node_id].occ = 0;
(*cur_node_id)++;
/* Set a SOURCE rr_node for the OPIN */
rr_graph->rr_node[*cur_node_id].type = SOURCE;
rr_graph->rr_node[*cur_node_id].xlow = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].xhigh = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].ylow = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].yhigh = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].ptc_num = opin_list[pin];
rr_graph->rr_node[*cur_node_id].capacity = 1;
rr_graph->rr_node[*cur_node_id].occ = 0;
/* TODO: should we set pb_graph_pin here? */
(*cur_node_id)++;
}
/* Find IPINs */
/* Configure pins by pins */
std::vector<int> ipin_list = get_grid_side_pins(cur_grid, RECEIVER, side_manager.get_side(), height);
for (size_t pin = 0; pin < ipin_list.size(); ++pin) {
rr_graph->rr_node[*cur_node_id].type = IPIN;
rr_graph->rr_node[*cur_node_id].xlow = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].xhigh = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].ylow = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].yhigh = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].ptc_num = opin_list[pin];
rr_graph->rr_node[*cur_node_id].capacity = 1;
rr_graph->rr_node[*cur_node_id].occ = 0;
(*cur_node_id)++;
/* Set a SINK rr_node for the OPIN */
rr_graph->rr_node[*cur_node_id].type = SINK;
rr_graph->rr_node[*cur_node_id].xlow = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].xhigh = grid_coordinator.get_x();
rr_graph->rr_node[*cur_node_id].ylow = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].yhigh = grid_coordinator.get_y();
rr_graph->rr_node[*cur_node_id].ptc_num = opin_list[pin];
rr_graph->rr_node[*cur_node_id].capacity = 1;
rr_graph->rr_node[*cur_node_id].occ = 0;
/* TODO: should we set pb_graph_pin here? */
(*cur_node_id)++;
}
}
}
return;
}
/************************************************************************
* Initialize the basic information of routing track rr_nodes
* coordinators: xlow, ylow, xhigh, yhigh,
* features: capacity, track_ids, ptc_num, direction
***********************************************************************/
static
void load_one_chan_rr_nodes_basic_info(const DeviceCoordinator& chan_coordinator,
t_rr_type chan_type,
const ChanNodeDetails& chan_details,
t_rr_graph* rr_graph,
size_t* cur_node_id) {
return;
}
/************************************************************************
* Initialize the basic information of rr_nodes:
* coordinators: xlow, ylow, xhigh, yhigh,
* features: capacity, track_ids, ptc_num, direction
* grid_info : pb_graph_pin
***********************************************************************/
static
void load_rr_nodes_basic_info(t_rr_graph* rr_graph,
std::vector<size_t> num_rr_nodes_per_type,
const DeviceCoordinator& device_size,
std::vector<std::vector<t_grid_tile>> grids,
std::vector<size_t> chan_width,
std::vector<t_segment_inf> segment_infs) {
/* counter */
size_t cur_node_id = 0;
/* configure by node type */
/* SOURCE, SINK, OPIN and IPIN */
/************************************************************************
* Search the grid and find the number OPINs and IPINs per grid
* Note that the number of SOURCE nodes are the same as OPINs
* and the number of SINK nodes are the same as IPINs
***********************************************************************/
for (size_t ix = 0; ix < grids.size(); ++ix) {
for (size_t iy = 0; iy < grids[ix].size(); ++iy) {
/* Skip EMPTY tiles */
if (EMPTY_TYPE == grids[ix][iy].type) {
continue;
}
DeviceCoordinator grid_coordinator(ix, iy);
enum e_side io_side = NUM_SIDES;
/* If this is the block on borders, we consider IO side */
if (IO_TYPE == grid[ix][iy].type) {
DeviceCoordinator io_device_size(device_size.get_x() - 1, device_size.get_y() - 1);
io_side = determine_io_grid_pin_side(device_size, grid_coordinator);
}
/* Configure rr_nodes for this grid */
load_one_grid_rr_nodes_basic_info(grid_coordinator, grid[ix][iy], io_side,
rr_graph, &cur_node_id);
}
}
/* For X-direction Channel: CHANX */
for (size_t ix = 0; ix < grids.size() - 1; ++ix) {
for (size_t iy = 0; iy < grids[ix].size() - 1; ++iy) {
DeviceCoordinator chan_coordinator(ix, iy);
enum e_side chan_side = NUM_SIDES;
/* For LEFT side of FPGA */
if (0 == ix) {
chan_side = LEFT;
}
/* For RIGHT side of FPGA */
if (grids.size() - 2 == ix) {
chan_side = RIGHT;
}
ChanNodeDetails chanx_details = build_unidir_chan_node_details(chan_width[0], device_size.get_x() - 2, chan_side, segment_infs);
/* Configure CHANX in this channel */
load_one_chan_rr_nodes_basic_info(chan_coordinator, CHANX, chanx_details,
rr_graph, &cur_node_id);
}
}
/* For Y-direction Channel: CHANX */
for (size_t ix = 0; ix < grids.size() - 1; ++ix) {
for (size_t iy = 0; iy < grids[ix].size() - 1; ++iy) {
DeviceCoordinator chan_coordinator(ix, iy);
enum e_side chan_side = NUM_SIDES;
/* For LEFT side of FPGA */
if (0 == iy) {
chan_side = BOTTOM;
}
/* For RIGHT side of FPGA */
if (grids[ix].size() - 2 == iy) {
chan_side = TOP;
}
ChanNodeDetails chany_details = build_unidir_chan_node_details(chan_width[1], device_size.get_y() - 2, chan_side, segment_infs);
/* Configure CHANX in this channel */
load_one_chan_rr_nodes_basic_info(chan_coordinator, CHANY, chany_details,
rr_graph, &cur_node_id);
}
}
/* Check */
assert ((int)cur_node_id == rr_graph->num_rr_nodes);
return;
}
/************************************************************************ /************************************************************************
* Main function of this file * Main function of this file
@ -541,8 +782,11 @@ t_rr_graph build_tileable_unidir_rr_graph(INP int L_num_types,
for (size_t i = 0; i < num_rr_nodes_per_type.size(); ++i) { for (size_t i = 0; i < num_rr_nodes_per_type.size(); ++i) {
rr_graph.num_rr_nodes += num_rr_nodes_per_type[i]; rr_graph.num_rr_nodes += num_rr_nodes_per_type[i];
} }
/* use calloc to initialize everything to be zero */ /* use calloc and memset to initialize everything to be zero */
rr_graph.rr_node = (t_rr_node*)my_calloc(rr_graph.num_rr_nodes, sizeof(t_rr_node)); rr_graph.rr_node = (t_rr_node*)my_calloc(rr_graph.num_rr_nodes, sizeof(t_rr_node));
for (int i = 0; i < rr_graph.num_rr_nodes; ++i) {
tileable_rr_graph_init_rr_node(&(rr_graph.rr_node[i]));
}
/************************************************************************ /************************************************************************
* 4. Initialize the basic information of rr_nodes: * 4. Initialize the basic information of rr_nodes:
@ -550,6 +794,10 @@ t_rr_graph build_tileable_unidir_rr_graph(INP int L_num_types,
* features: capacity, track_ids, ptc_num, direction * features: capacity, track_ids, ptc_num, direction
* grid_info : pb_graph_pin * grid_info : pb_graph_pin
***********************************************************************/ ***********************************************************************/
load_rr_nodes_basic_info(&rr_graph, num_rr_nodes_per_type,
device_size, grids, device_chan_width, segment_infs);
/* build_rr_graph_fast_lookup(&rr_graph); */
/************************************************************************ /************************************************************************
* 3. Create the connectivity of OPINs * 3. Create the connectivity of OPINs