refactor memory organization at the top-level module

This commit is contained in:
tangxifan 2019-10-18 15:33:25 -06:00
parent cfec8d70ab
commit 8c1158fc5c
9 changed files with 1171 additions and 651 deletions

View File

@ -0,0 +1,563 @@
/********************************************************************
* This file includes functions that are used to add module nets
* for direct connections between CLBs/heterogeneous blocks
* in the top-level module of a FPGA fabric
*******************************************************************/
#include <algorithm>
#include "vtr_assert.h"
#include "util.h"
#include "device_port.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_pbtypes_utils.h"
#include "module_manager_utils.h"
#include "globals.h"
#include "verilog_global.h"
#include "build_top_module_directs.h"
/********************************************************************
* Check if the grid coorindate given is in the device grid range
*******************************************************************/
static
bool is_grid_coordinate_exist_in_device(const vtr::Point<size_t>& device_size,
const vtr::Point<size_t>& grid_coordinate) {
return (grid_coordinate < device_size);
}
/********************************************************************
* Add module net for one direction connection between two CLBs or
* two grids
* This function will
* 1. find the pin id and port id of the source clb port in module manager
* 2. find the pin id and port id of the destination clb port in module manager
* 3. add a direct connection module to the top module
* 4. add a first module net and configure its source and sink,
* in order to connect the source pin to the input of the top module
* 4. add a second module net and configure its source and sink,
* in order to connect the sink pin to the output of the top module
*******************************************************************/
static
void add_module_nets_clb2clb_direct_connection(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const vtr::Point<size_t>& src_clb_coord,
const vtr::Point<size_t>& des_clb_coord,
const t_clb_to_clb_directs& direct) {
/* Find the source port and destination port on the CLBs */
BasicPort src_clb_port;
BasicPort des_clb_port;
src_clb_port.set_width(direct.from_clb_pin_start_index, direct.from_clb_pin_end_index);
des_clb_port.set_width(direct.to_clb_pin_start_index, direct.to_clb_pin_end_index);
/* Check bandwidth match between from_clb and to_clb pins */
if (src_clb_port.get_width() != des_clb_port.get_width()) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d]) Unmatch pin bandwidth in direct connection (name=%s)!\n",
__FILE__, __LINE__, direct.name);
exit(1);
}
/* Find the module name of source clb */
t_type_ptr src_grid_type = grids[src_clb_coord.x()][src_clb_coord.y()].type;
e_side src_grid_border_side = find_grid_border_side(device_size, src_clb_coord);
std::string src_module_name_prefix(grid_verilog_file_name_prefix);
std::string src_module_name = generate_grid_block_module_name(src_module_name_prefix, std::string(src_grid_type->name), IO_TYPE == src_grid_type, src_grid_border_side);
ModuleId src_grid_module = module_manager.find_module(src_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(src_grid_module));
/* Record the instance id */
size_t src_grid_instance = grid_instance_ids[src_clb_coord.x()][src_clb_coord.y()];
/* Find the module name of sink clb */
t_type_ptr sink_grid_type = grids[des_clb_coord.x()][des_clb_coord.y()].type;
e_side sink_grid_border_side = find_grid_border_side(device_size, des_clb_coord);
std::string sink_module_name_prefix(grid_verilog_file_name_prefix);
std::string sink_module_name = generate_grid_block_module_name(sink_module_name_prefix, std::string(sink_grid_type->name), IO_TYPE == sink_grid_type, sink_grid_border_side);
ModuleId sink_grid_module = module_manager.find_module(sink_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(sink_grid_module));
/* Record the instance id */
size_t sink_grid_instance = grid_instance_ids[des_clb_coord.x()][des_clb_coord.y()];
/* Find the module id of a direct connection module */
std::string direct_module_name = circuit_lib.model_name(direct.circuit_model);
ModuleId direct_module = module_manager.find_module(direct_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(direct_module));
/* Find inputs and outputs of the direct circuit module */
std::vector<CircuitPortId> direct_input_ports = circuit_lib.model_ports_by_type(direct.circuit_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(1 == direct_input_ports.size());
ModulePortId direct_input_port_id = module_manager.find_module_port(direct_module, circuit_lib.port_lib_name(direct_input_ports[0]));
VTR_ASSERT(true == module_manager.valid_module_port_id(direct_module, direct_input_port_id));
VTR_ASSERT(1 == module_manager.module_port(direct_module, direct_input_port_id).get_width());
std::vector<CircuitPortId> direct_output_ports = circuit_lib.model_ports_by_type(direct.circuit_model, SPICE_MODEL_PORT_OUTPUT, true);
VTR_ASSERT(1 == direct_output_ports.size());
ModulePortId direct_output_port_id = module_manager.find_module_port(direct_module, circuit_lib.port_lib_name(direct_output_ports[0]));
VTR_ASSERT(true == module_manager.valid_module_port_id(direct_module, direct_output_port_id));
VTR_ASSERT(1 == module_manager.module_port(direct_module, direct_output_port_id).get_width());
for (size_t pin_id : src_clb_port.pins()) {
/* Generate the pin name of source port/pin in the grid */
size_t src_pin_height = find_grid_pin_height(grids, src_clb_coord, src_clb_port.pins()[pin_id]);
e_side src_pin_grid_side = find_grid_pin_side(device_size, grids, src_clb_coord, src_pin_height, src_clb_port.pins()[pin_id]);
std::string src_port_name = generate_grid_port_name(src_clb_coord, src_pin_height, src_pin_grid_side, src_clb_port.pins()[pin_id], false);
ModulePortId src_port_id = module_manager.find_module_port(src_grid_module, src_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(src_grid_module, src_port_id));
VTR_ASSERT(1 == module_manager.module_port(src_grid_module, src_port_id).get_width());
/* Generate the pin name of sink port/pin in the grid */
size_t sink_pin_height = find_grid_pin_height(grids, des_clb_coord, des_clb_port.pins()[pin_id]);
e_side sink_pin_grid_side = find_grid_pin_side(device_size, grids, des_clb_coord, sink_pin_height, des_clb_port.pins()[pin_id]);
std::string sink_port_name = generate_grid_port_name(des_clb_coord, sink_pin_height, sink_pin_grid_side, des_clb_port.pins()[pin_id], false);
ModulePortId sink_port_id = module_manager.find_module_port(sink_grid_module, sink_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(sink_grid_module, sink_port_id));
VTR_ASSERT(1 == module_manager.module_port(sink_grid_module, sink_port_id).get_width());
/* Add a submodule of direct connection module to the top-level module */
size_t direct_instance_id = module_manager.num_instance(top_module, direct_module);
module_manager.add_child_module(top_module, direct_module);
/* Create the 1st module net */
ModuleNetId net_direct_src = module_manager.create_module_net(top_module);
/* Connect the wire between src_pin of clb and direct_instance input*/
module_manager.add_module_net_source(top_module, net_direct_src, src_grid_module, src_grid_instance, src_port_id, 0);
module_manager.add_module_net_sink(top_module, net_direct_src, direct_module, direct_instance_id, direct_input_port_id, 0);
/* Create the 2nd module net */
ModuleNetId net_direct_sink = module_manager.create_module_net(top_module);
/* Connect the wire between direct_instance output and sink_pin of clb */
module_manager.add_module_net_source(top_module, net_direct_sink, direct_module, direct_instance_id, direct_output_port_id, 0);
module_manager.add_module_net_sink(top_module, net_direct_sink, sink_grid_module, sink_grid_instance, sink_port_id, 0);
}
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*
* This function supports the following type of direct connection:
* 1. Direct connection between grids in the same column or row
* +------+ +------+
* | | | |
* | Grid |----->| Grid |
* | | | |
* +------+ +------+
* | direction connection
* v
* +------+
* | |
* | Grid |
* | |
* +------+
*
*******************************************************************/
static
void add_top_module_nets_intra_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
/* Scan the grid, visit each grid and apply direct connections */
for (size_t ix = 0; ix < device_size.x(); ++ix) {
for (size_t iy = 0; iy < device_size.y(); ++iy) {
/* Bypass EMPTY_TYPE*/
if ( (NULL == grids[ix][iy].type)
|| (EMPTY_TYPE == grids[ix][iy].type)) {
continue;
}
/* Bypass any grid with a non-zero offset! They have been visited in the offset=0 case */
if (0 != grids[ix][iy].offset) {
continue;
}
/* Check each clb2clb directs by comparing the source and destination clb types
* Direct connections are made only for those matched clbs
*/
for (const t_clb_to_clb_directs& direct : clb2clb_directs) {
/* Bypass unmatched clb type */
if (grids[ix][iy].type != direct.from_clb_type) {
continue;
}
/* See if the destination CLB is in the bound */
vtr::Point<size_t> src_clb_coord(ix, iy);
vtr::Point<size_t> des_clb_coord(ix + direct.x_offset, iy + direct.y_offset);
if (false == is_grid_coordinate_exist_in_device(device_size, des_clb_coord)) {
continue;
}
/* Check if the destination clb_type matches */
if (grids[des_clb_coord.x()][des_clb_coord.y()].type == direct.to_clb_type) {
/* Add a module net for a direct connection with the two grids in top_model */
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
}
}
}
}
/********************************************************************
* Find the coordinate of a grid in a specific column
* with a given type
* This function will return the coordinate of the grid that satifies
* the type requirement
*******************************************************************/
static
vtr::Point<size_t> find_grid_coordinate_given_type(const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<vtr::Point<size_t>>& candidate_coords,
t_type_ptr wanted_grid_type) {
for (vtr::Point<size_t> coord : candidate_coords) {
/* If the next column is not longer in device range, we can return */
if (false == is_grid_coordinate_exist_in_device(device_size, coord)) {
continue;
}
if (wanted_grid_type == grids[coord.x()][coord.y()].type) {
return coord;
}
}
/* Return an valid coordinate */
return vtr::Point<size_t>(size_t(-1), size_t(-1));
}
/********************************************************************
* Find the coordinate of the destination clb/heterogeneous block
* considering intra column/row direct connections in core grids
*******************************************************************/
static
vtr::Point<size_t> find_intra_direct_destination_coordinate(const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const vtr::Point<size_t> src_coord,
const t_clb_to_clb_directs& direct) {
vtr::Point<size_t> des_coord(size_t(-1), size_t(-1));
t_type_ptr src_grid_type = grids[src_coord.x()][src_coord.y()].type;
std::vector<size_t> first_search_space;
std::vector<size_t> second_search_space;
/* Cross column connection from Bottom to Top on Right
* The next column may NOT have the grid type we want!
* Think about heterogeneous architecture!
* Our search space will start from the next column
* and ends at the RIGHT side of fabric
*/
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
if (POSITIVE_DIR == direct.x_dir) {
/* Our first search space will be in x-direction:
*
* x ... nx
* +-----+
* |Grid | ----->
* +-----+
*/
for (size_t ix = src_coord.x() + 1; ix < device_size.x() - 1; ++ix) {
first_search_space.push_back(ix);
}
} else {
VTR_ASSERT(NEGATIVE_DIR == direct.x_dir);
/* Our first search space will be in x-direction:
*
* 1 ... x
* +-----+
* < -------|Grid |
* +-----+
*/
for (size_t ix = src_coord.x() - 1; ix >= 1; --ix) {
first_search_space.push_back(ix);
}
}
/* Our second search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* | .
* | .
* v .
* +------+
* | Grid | 1
* +------+
*/
for (size_t iy = 1 ; iy < device_size.y() - 1; ++iy) {
second_search_space.push_back(iy);
}
/* For negative direction, our second search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* ^ .
* | .
* | .
* +------+
* | Grid | 1
* +------+
*/
if (NEGATIVE_DIR == direct.y_dir) {
std::reverse(second_search_space.begin(), second_search_space.end());
}
}
/* Cross row connection from Bottom to Top on Right
* The next column may NOT have the grid type we want!
* Think about heterogeneous architecture!
* Our search space will start from the next column
* and ends at the RIGHT side of fabric
*/
if (P2P_DIRECT_ROW == direct.interconnection_type) {
if (POSITIVE_DIR == direct.y_dir) {
/* Our first search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* ^ .
* | .
* | .
* +------+
* | Grid | y
* +------+
*/
for (size_t iy = src_coord.y() + 1; iy < device_size.y() - 1; ++iy) {
first_search_space.push_back(iy);
}
} else {
VTR_ASSERT(NEGATIVE_DIR == direct.y_dir);
/* For negative y-direction,
* Our first search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* | .
* | .
* v .
* +------+
* | Grid | y
* +------+
*/
for (size_t iy = src_coord.y() - 1; iy >= 1; --iy) {
first_search_space.push_back(iy);
}
}
/* Our second search space will be in x-direction:
*
* 1 ... nx
* +------+ +------+
* | Grid |------>| Grid |
* +------+ +------+
*/
for (size_t ix = 1 ; ix < device_size.x() - 1; ++ix) {
second_search_space.push_back(ix);
}
/* For negative direction,
* our second search space will be in x-direction:
*
* 1 ... nx
* +------+ +------+
* | Grid |<------| Grid |
* +------+ +------+
*/
if (NEGATIVE_DIR == direct.x_dir) {
std::reverse(second_search_space.begin(), second_search_space.end());
}
}
for (size_t ix : first_search_space) {
std::vector<vtr::Point<size_t>> next_col_row_coords;
for (size_t iy : second_search_space) {
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
next_col_row_coords.push_back(vtr::Point<size_t>(ix, iy));
} else {
VTR_ASSERT(P2P_DIRECT_ROW == direct.interconnection_type);
/* For cross-row connection, our search space is flipped */
next_col_row_coords.push_back(vtr::Point<size_t>(iy, ix));
}
}
vtr::Point<size_t> des_coord_cand = find_grid_coordinate_given_type(device_size, grids, next_col_row_coords, src_grid_type);
/* For a valid coordinate, we can return */
if ( (size_t(-1) != des_coord_cand.x())
&& (size_t(-1) != des_coord_cand.y()) ) {
return des_coord_cand;
}
}
return des_coord;
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*
* This function supports the following type of direct connection:
*
* 1. Direct connections across columns and rows
* +------+
* | |
* | v
* +------+ | +------+
* | | | | |
* | Grid | | | Grid |
* | | | | |
* +------+ | +------+
* |
* +------+ | +------+
* | | | | |
* | Grid | | | Grid |
* | | | | |
* +------+ | +------+
* | |
* +------+
*
* Note that: this will only apply to the core grids!
* I/Os or any blocks on the border of fabric are NOT supported!
*
*******************************************************************/
static
void add_top_module_nets_inter_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
std::vector<e_side> border_sides = {TOP, RIGHT, BOTTOM, LEFT};
/* Go through the direct connection list, see if we need intra-column/row connection here */
for (const t_clb_to_clb_directs& direct: clb2clb_directs) {
if ( (P2P_DIRECT_COLUMN != direct.interconnection_type)
&& (P2P_DIRECT_ROW != direct.interconnection_type)) {
continue;
}
/* For cross-column connection, we will search the first valid grid in each column
* from y = 1 to y = ny
*
* +------+
* | Grid | y=ny
* +------+
* ^
* | search direction (when y_dir is negative)
* ...
* |
* +------+
* | Grid | y=1
* +------+
*
*/
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
std::vector<vtr::Point<size_t>> next_col_src_grid_coords;
/* For negative y- direction, we should start from y = ny */
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
next_col_src_grid_coords.push_back(vtr::Point<size_t>(ix, iy));
}
/* For positive y- direction, we should start from y = 1 */
if (POSITIVE_DIR == direct.y_dir) {
std::reverse(next_col_src_grid_coords.begin(), next_col_src_grid_coords.end());
}
vtr::Point<size_t> src_clb_coord = find_grid_coordinate_given_type(device_size, grids, next_col_src_grid_coords, direct.from_clb_type);
/* Skip if we do not have a valid coordinate for source CLB/heterogeneous block */
if ( (size_t(-1) == src_clb_coord.x())
|| (size_t(-1) == src_clb_coord.y()) ) {
continue;
}
/* For a valid coordinate, we can find the coordinate of the destination clb */
vtr::Point<size_t> des_clb_coord = find_intra_direct_destination_coordinate(device_size, grids, src_clb_coord, direct);
/* If destination clb is valid, we should add something */
if ( (size_t(-1) == des_clb_coord.x())
|| (size_t(-1) == des_clb_coord.y()) ) {
continue;
}
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
continue; /* Go to next direct type */
}
/* Reach here, it must be a cross-row connection */
VTR_ASSERT(P2P_DIRECT_ROW == direct.interconnection_type);
/* For cross-row connection, we will search the first valid grid in each column
* from x = 1 to x = nx
*
* x=1 x=nx
* +------+ +------+
* | Grid | <--- ... ---- | Grid |
* +------+ +------+
*
*/
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
std::vector<vtr::Point<size_t>> next_col_src_grid_coords;
/* For negative x- direction, we should start from x = nx */
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
next_col_src_grid_coords.push_back(vtr::Point<size_t>(ix, iy));
}
/* For positive x- direction, we should start from x = 1 */
if (POSITIVE_DIR == direct.x_dir) {
std::reverse(next_col_src_grid_coords.begin(), next_col_src_grid_coords.end());
}
vtr::Point<size_t> src_clb_coord = find_grid_coordinate_given_type(device_size, grids, next_col_src_grid_coords, direct.from_clb_type);
/* Skip if we do not have a valid coordinate for source CLB/heterogeneous block */
if ( (size_t(-1) == src_clb_coord.x())
|| (size_t(-1) == src_clb_coord.y()) ) {
continue;
}
/* For a valid coordinate, we can find the coordinate of the destination clb */
vtr::Point<size_t> des_clb_coord = find_intra_direct_destination_coordinate(device_size, grids, src_clb_coord, direct);
/* If destination clb is valid, we should add something */
if ( (size_t(-1) == des_clb_coord.x())
|| (size_t(-1) == des_clb_coord.y()) ) {
continue;
}
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
}
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*******************************************************************/
void add_top_module_nets_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
add_top_module_nets_intra_clb2clb_direct_connections(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
clb2clb_directs);
add_top_module_nets_inter_clb2clb_direct_connections(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
clb2clb_directs);
}

View File

@ -0,0 +1,18 @@
#ifndef BUILD_TOP_MODULE_DIRECTS_H
#define BUILD_TOP_MODULE_DIRECTS_H
#include <vector>
#include "vtr_geometry.h"
#include "vpr_types.h"
#include "module_manager.h"
#include "circuit_library.h"
void add_top_module_nets_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs);
#endif

View File

@ -0,0 +1,425 @@
/********************************************************************
* This file includes functions that are used to organize memories
* in the top module of FPGA fabric
*******************************************************************/
#include "vtr_assert.h"
#include "fpga_x2p_utils.h"
#include "fpga_x2p_naming.h"
#include "globals.h"
#include "verilog_global.h"
#include "module_manager_utils.h"
#include "build_top_module_memory.h"
/********************************************************************
* This function adds the CBX/CBY of a tile
* to the memory modules and memory instances
* This function is designed for organizing memory modules in top-level
* module
*******************************************************************/
static
void organize_top_module_tile_cb_modules(const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
t_sram_orgz_info* cur_sram_orgz_info,
const std::vector<std::vector<size_t>>& cb_instance_ids,
const DeviceRRGSB& L_device_rr_gsb,
const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const bool& compact_routing_hierarchy,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances) {
/* If the CB does not exist, we can skip addition */
if ( (TRUE != is_cb_exist(cb_type, rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type)))
|| (true != rr_gsb.is_cb_exist(cb_type))) {
return;
}
vtr::Point<size_t> cb_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
/* If we use compact routing hierarchy, we should instanciate the unique module of SB */
if (true == compact_routing_hierarchy) {
const RRGSB& unique_mirror = L_device_rr_gsb.get_cb_unique_module(cb_type, DeviceCoordinator(cb_coord.x(), cb_coord.y()));
cb_coord.set_x(unique_mirror.get_cb_x(cb_type));
cb_coord.set_y(unique_mirror.get_cb_y(cb_type));
}
std::string cb_module_name = generate_connection_block_module_name(cb_type, cb_coord);
ModuleId cb_module = module_manager.find_module(cb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(cb_module));
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if (0 < find_module_num_config_bits(module_manager, cb_module,
circuit_lib, sram_model,
cur_sram_orgz_info->type)) {
memory_modules.push_back(cb_module);
memory_instances.push_back(cb_instance_ids[cb_coord.x()][cb_coord.y()]);
}
}
/********************************************************************
* This function adds the SB, CBX, CBY and Grid of a tile
* to the memory modules and memory instances
* This function is designed for organizing memory modules in top-level
* module
*******************************************************************/
static
void organize_top_module_tile_memory_modules(const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
t_sram_orgz_info* cur_sram_orgz_info,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const DeviceRRGSB& L_device_rr_gsb,
const std::vector<std::vector<size_t>>& sb_instance_ids,
const std::map<t_rr_type, std::vector<std::vector<size_t>>>& cb_instance_ids,
const bool& compact_routing_hierarchy,
const vtr::Point<size_t>& tile_coord,
const e_side& tile_border_side,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances) {
vtr::Point<size_t> gsb_coord_range(L_device_rr_gsb.get_gsb_range().get_x(), L_device_rr_gsb.get_gsb_range().get_y());
vtr::Point<size_t> gsb_coord(tile_coord.x(), tile_coord.y() - 1);
/* We do NOT consider SB and CBs if the gsb is not in the range! */
if ( (gsb_coord.x() < gsb_coord_range.x())
&& (gsb_coord.y() < gsb_coord_range.y()) ) {
const RRGSB& rr_gsb = L_device_rr_gsb.get_gsb(gsb_coord.x(), gsb_coord.y());
/* Find Switch Block: unique module id and instance id!
* Note that switch block does always exist in a GSB
*/
vtr::Point<size_t> sb_coord(rr_gsb.get_sb_x(), rr_gsb.get_sb_y());
/* If we use compact routing hierarchy, we should instanciate the unique module of SB */
if (true == compact_routing_hierarchy) {
const RRGSB& unique_mirror = L_device_rr_gsb.get_sb_unique_module(DeviceCoordinator(sb_coord.x(), sb_coord.y()));
sb_coord.set_x(unique_mirror.get_sb_x());
sb_coord.set_y(unique_mirror.get_sb_y());
}
std::string sb_module_name = generate_switch_block_module_name(sb_coord);
ModuleId sb_module = module_manager.find_module(sb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(sb_module));
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if (0 < find_module_num_config_bits(module_manager, sb_module,
circuit_lib, sram_model,
cur_sram_orgz_info->type)) {
memory_modules.push_back(sb_module);
memory_instances.push_back(sb_instance_ids[sb_coord.x()][sb_coord.y()]);
}
/* Try to find and add CBX and CBY */
organize_top_module_tile_cb_modules(module_manager, circuit_lib,
sram_model, cur_sram_orgz_info,
cb_instance_ids.at(CHANX),
L_device_rr_gsb, rr_gsb, CHANX,
compact_routing_hierarchy,
memory_modules, memory_instances);
organize_top_module_tile_cb_modules(module_manager, circuit_lib,
sram_model, cur_sram_orgz_info,
cb_instance_ids.at(CHANY),
L_device_rr_gsb, rr_gsb, CHANY,
compact_routing_hierarchy,
memory_modules, memory_instances);
}
/* Find the module name for this type of grid */
t_type_ptr grid_type = grids[tile_coord.x()][tile_coord.y()].type;
std::string grid_module_name_prefix(grid_verilog_file_name_prefix);
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), IO_TYPE == grid_type, tile_border_side);
ModuleId grid_module = module_manager.find_module(grid_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if (0 < find_module_num_config_bits(module_manager, grid_module,
circuit_lib, sram_model,
cur_sram_orgz_info->type)) {
memory_modules.push_back(grid_module);
memory_instances.push_back(grid_instance_ids[tile_coord.x()][tile_coord.y()]);
}
}
/********************************************************************
* Organize the list of memory modules and instances
* This function will record all the sub modules of the top-level module
* (those have memory ports) to two lists:
* 1. memory_modules records the module ids
* 2. memory_instances records the instance ids
* To keep a clean memory connection between sub modules and top-level module,
* the sequence of memory_modules and memory_instances will follow
* a chain of tiles considering their physical location
*
* Inter tile connection:
* +--------------------------------------------------------+
* | +------+------+-----+------+ |
* | | I/O | I/O | ... | I/O | |
* | | TOP | TOP | | TOP | |
* | +------+------+-----+------+ |
* | +---------------------------------->tail |
* | +------+ | +------+------+-----+------+ +------+ |
* | | | | | | | | | | | |
* | | I/O | | | Tile | Tile | ... | Tile | | I/O | |
* | | LEFT | | | [h+1]| [h+2]| | [n] | |RIGHT | |
* | +------+ | +------+------+-----+------+ +------+ |
* | +-------------------------------+ |
* | ... ... ... ... ... | ... |
* | +-------------------------------+ |
* | +------+ | +------+------+-----+------+ +------+ |
* | | | | | | | | | | | |
* | | I/O | | | Tile | Tile | ... | Tile | | I/O | |
* | | LEFT | | | [i+1]| [i+2]| | [j] | |RIGHT | |
* | +------+ | +------+------+-----+------+ +------+ |
* | +-------------------------------+ |
* | +------+ +------+------+-----+------+ | +------+ |
* | | | | | | | | | | | |
* | | I/O | | Tile | Tile | ... | Tile | | | I/O | |
* | | LEFT | | [0] | [1] | | [i] | | |RIGHT | |
* | +------+ +------+------+-----+------+ | +------+ |
* +-------------------------------------------+ |
* +------+------+-----+------+ |
* | I/O | I/O | ... | I/O | |
* |BOTTOM|BOTTOM| |BOTTOM| |
* +------+------+-----+------+ |
* head >-----------------------------------------------+
*
* Inner tile connection
*
* Tile
* +---------------+----------+
* <-+---------------+ + |
* | | | |
* | CLB | | CBY |
* | +-|-+ |
* | | | |
* +---------------+----------+
* | +-+----+-----+---<---
* | CBX | SB |
* | | |
* +---------------+----------+
*
*******************************************************************/
void organize_top_module_memory_modules(const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
t_sram_orgz_info* cur_sram_orgz_info,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const DeviceRRGSB& L_device_rr_gsb,
const std::vector<std::vector<size_t>>& sb_instance_ids,
const std::map<t_rr_type, std::vector<std::vector<size_t>>>& cb_instance_ids,
const bool& compact_routing_hierarchy,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances) {
/* Ensure clean vectors to return */
VTR_ASSERT(true == memory_modules.empty());
VTR_ASSERT(true == memory_instances.empty());
/* First, organize the I/O tiles on the border */
/* Special for the I/O tileas on RIGHT and BOTTOM,
* which are only I/O blocks, which do NOT contain CBs and SBs
*/
std::vector<e_side> io_sides{BOTTOM, RIGHT, TOP, LEFT};
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coords;
/* BOTTOM side I/Os */
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
io_coords[BOTTOM].push_back(vtr::Point<size_t>(ix, 0));
}
/* RIGHT side I/Os */
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
io_coords[RIGHT].push_back(vtr::Point<size_t>(device_size.x() - 1, iy));
}
/* TOP side I/Os */
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
io_coords[TOP].push_back(vtr::Point<size_t>(ix, device_size.y() - 1));
}
/* LEFT side I/Os */
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
io_coords[LEFT].push_back(vtr::Point<size_t>(0, iy));
}
for (const e_side& io_side : io_sides) {
for (const vtr::Point<size_t>& io_coord : io_coords[io_side]) {
/* Identify the GSB that surrounds the grid */
organize_top_module_tile_memory_modules(module_manager,
circuit_lib, sram_model, cur_sram_orgz_info,
grids, grid_instance_ids,
L_device_rr_gsb, sb_instance_ids, cb_instance_ids,
compact_routing_hierarchy,
io_coord, io_side,
memory_modules, memory_instances);
}
}
/* For the core grids */
std::vector<vtr::Point<size_t>> core_coords;
bool positive_direction = true;
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
/* For positive direction: -----> */
if (true == positive_direction) {
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
core_coords.push_back(vtr::Point<size_t>(ix, iy));
}
} else {
VTR_ASSERT(false == positive_direction);
/* For negative direction: -----> */
for (size_t ix = device_size.x() - 2; ix >= 1; --ix) {
core_coords.push_back(vtr::Point<size_t>(ix, iy));
}
}
/* Flip the positive direction to be negative */
positive_direction = !positive_direction;
}
for (const vtr::Point<size_t>& core_coord : core_coords) {
organize_top_module_tile_memory_modules(module_manager,
circuit_lib, sram_model, cur_sram_orgz_info,
grids, grid_instance_ids,
L_device_rr_gsb, sb_instance_ids, cb_instance_ids,
compact_routing_hierarchy,
core_coord, NUM_SIDES,
memory_modules, memory_instances);
}
}
/*********************************************************************
* Add the port-to-port connection between all the memory modules
* and their parent module
*
* Create nets to wire the control signals of memory module to
* the configuration ports of primitive module
*
* Configuration Chain
* -------------------
*
* config_bus (head) config_bus (tail)
* | ^
* primitive | |
* +---------------------------------------------+
* | | | |
* | v | |
* | +-------------------------------------+ |
* | | CMOS-based Memory Modules | |
* | +-------------------------------------+ |
* | | | |
* | v v |
* | sram_out sram_outb |
* | |
* +---------------------------------------------+
*
* Memory bank
* -----------
*
* config_bus (BL) config_bus (WL)
* | |
* primitive | |
* +---------------------------------------------+
* | | | |
* | v v |
* | +-------------------------------------+ |
* | | CMOS-based Memory Modules | |
* | +-------------------------------------+ |
* | | | |
* | v v |
* | sram_out sram_outb |
* | |
* +---------------------------------------------+
*
**********************************************************************/
static
void add_top_module_nets_cmos_memory_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,
const std::vector<size_t>& memory_instances,
const e_sram_orgz& sram_orgz_type) {
/* Ensure that the size of memory_model vector matches the memory_module vector */
VTR_ASSERT(memory_modules.size() == memory_instances.size());
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Nothing to do */
break;
case SPICE_SRAM_SCAN_CHAIN: {
add_module_nets_cmos_memory_chain_config_bus(module_manager, parent_module, memory_modules, memory_instances, sram_orgz_type);
break;
}
case SPICE_SRAM_MEMORY_BANK:
/* TODO: */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
}
/********************************************************************
* TODO:
* Add the port-to-port connection between a memory module
* and the configuration bus of a primitive module
*
* Create nets to wire the control signals of memory module to
* the configuration ports of primitive module
*
* Primitive module
* +----------------------------+
* | +--------+ |
* config | | | |
* ports --->|--------------->| Memory | |
* | | Module | |
* | | | |
* | +--------+ |
* +----------------------------+
* The detailed config ports really depend on the type
* of SRAM organization.
*
* The config_bus in the argument is the reserved address of configuration
* bus in the parent_module for this memory module
*
* The configuration bus connection will depend not only
* the design technology of the memory cells but also the
* configuration styles of FPGA fabric.
* Here we will branch on the design technology
*
* Note: this function SHOULD be called after the pb_type_module is created
* and its child module (logic_module and memory_module) is created!
*******************************************************************/
void add_top_module_nets_memory_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,
const std::vector<size_t>& memory_instances,
const e_sram_orgz& sram_orgz_type,
const e_spice_model_design_tech& mem_tech) {
switch (mem_tech) {
case SPICE_MODEL_DESIGN_CMOS:
add_top_module_nets_cmos_memory_config_bus(module_manager, parent_module,
memory_modules, memory_instances,
sram_orgz_type);
break;
case SPICE_MODEL_DESIGN_RRAM:
/* TODO: */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of memory design technology !\n",
__FILE__, __LINE__);
exit(1);
}
}

View File

@ -0,0 +1,32 @@
#ifndef BUILD_TOP_MODULE_MEMORY_H
#define BUILD_TOP_MODULE_MEMORY_H
#include <vector>
#include <map>
#include "module_manager.h"
#include "spice_types.h"
#include "circuit_library.h"
#include "rr_blocks.h"
void organize_top_module_memory_modules(const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
t_sram_orgz_info* cur_sram_orgz_info,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const DeviceRRGSB& L_device_rr_gsb,
const std::vector<std::vector<size_t>>& sb_instance_ids,
const std::map<t_rr_type, std::vector<std::vector<size_t>>>& cb_instance_ids,
const bool& compact_routing_hierarchy,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances);
void add_top_module_nets_memory_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,
const std::vector<size_t>& memory_instances,
const e_sram_orgz& sram_orgz_type,
const e_spice_model_design_tech& mem_tech);
#endif

View File

@ -565,6 +565,113 @@ void add_module_nets_between_logic_and_memory_sram_bus(ModuleManager& module_man
}
}
/* Connect all the memory modules under the parent module in a chain
*
* +--------+ +--------+ +--------+
* ccff_head --->| Memory |--->| Memory |--->... --->| Memory |----> ccff_tail
* | Module | | Module | | Module |
* | [0] | | [1] | | [N-1] |
* +--------+ +--------+ +--------+
* For the 1st memory module:
* net source is the configuration chain head of the primitive module
* net sink is the configuration chain head of the next memory module
*
* For the rest of memory modules:
* net source is the configuration chain tail of the previous memory module
* net sink is the configuration chain head of the next memory module
*/
void add_module_nets_cmos_memory_chain_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,
const std::vector<size_t>& memory_instances,
const e_sram_orgz& sram_orgz_type) {
for (size_t mem_index = 0; mem_index < memory_modules.size(); ++mem_index) {
ModuleId net_src_module_id;
size_t net_src_instance_id;
ModulePortId net_src_port_id;
ModuleId net_sink_module_id;
size_t net_sink_instance_id;
ModulePortId net_sink_port_id;
if (0 == mem_index) {
/* Find the port name of configuration chain head */
std::string src_port_name = generate_sram_port_name(sram_orgz_type, SPICE_MODEL_PORT_INPUT);
net_src_module_id = parent_module;
net_src_instance_id = 0;
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_configuration_chain_head_name();
net_sink_module_id = memory_modules[mem_index];
net_sink_instance_id = memory_instances[mem_index];
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
} else {
/* Find the port name of previous memory module */
std::string src_port_name = generate_configuration_chain_tail_name();
net_src_module_id = memory_modules[mem_index - 1];
net_src_instance_id = memory_instances[mem_index - 1];
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_configuration_chain_head_name();
net_sink_module_id = memory_modules[mem_index];
net_sink_instance_id = memory_instances[mem_index];
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
}
/* Get the pin id for source port */
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
/* Get the pin id for sink port */
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
/* Port sizes of source and sink should match */
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
/* Create a net for each pin */
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
/* Create a net and add source and sink to it */
ModuleNetId net = module_manager.create_module_net(parent_module);
/* Add net source */
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
/* Add net sink */
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
}
}
/* For the last memory module:
* net source is the configuration chain tail of the previous memory module
* net sink is the configuration chain tail of the primitive module
*/
/* Find the port name of previous memory module */
std::string src_port_name = generate_configuration_chain_tail_name();
ModuleId net_src_module_id = memory_modules.back();
size_t net_src_instance_id = memory_instances.back();
ModulePortId net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_sram_port_name(sram_orgz_type, SPICE_MODEL_PORT_OUTPUT);
ModuleId net_sink_module_id = parent_module;
size_t net_sink_instance_id = 0;
ModulePortId net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
/* Get the pin id for source port */
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
/* Get the pin id for sink port */
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
/* Port sizes of source and sink should match */
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
/* Create a net for each pin */
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
/* Create a net and add source and sink to it */
ModuleNetId net = module_manager.create_module_net(parent_module);
/* Add net source */
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
/* Add net sink */
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
}
}
/*********************************************************************
* Add the port-to-port connection between all the memory modules
* and their parent module
@ -623,106 +730,7 @@ void add_module_nets_cmos_memory_config_bus(ModuleManager& module_manager,
/* Nothing to do */
break;
case SPICE_SRAM_SCAN_CHAIN: {
/* Connect all the memory modules under the parent module in a chain
*
* +--------+ +--------+ +--------+
* ccff_head --->| Memory |--->| Memory |--->... --->| Memory |----> ccff_tail
* | Module | | Module | | Module |
* | [0] | | [1] | | [N-1] |
* +--------+ +--------+ +--------+
* For the 1st memory module:
* net source is the configuration chain head of the primitive module
* net sink is the configuration chain head of the next memory module
*
* For the rest of memory modules:
* net source is the configuration chain tail of the previous memory module
* net sink is the configuration chain head of the next memory module
*/
for (size_t mem_index = 0; mem_index < memory_modules.size(); ++mem_index) {
ModuleId net_src_module_id;
size_t net_src_instance_id;
ModulePortId net_src_port_id;
ModuleId net_sink_module_id;
size_t net_sink_instance_id;
ModulePortId net_sink_port_id;
if (0 == mem_index) {
/* Find the port name of configuration chain head */
std::string src_port_name = generate_sram_port_name(sram_orgz_type, SPICE_MODEL_PORT_INPUT);
net_src_module_id = parent_module;
net_src_instance_id = 0;
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_configuration_chain_head_name();
net_sink_module_id = memory_modules[mem_index];
net_sink_instance_id = memory_instances[mem_index];
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
} else {
/* Find the port name of previous memory module */
std::string src_port_name = generate_configuration_chain_tail_name();
net_src_module_id = memory_modules[mem_index - 1];
net_src_instance_id = memory_instances[mem_index - 1];
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_configuration_chain_head_name();
net_sink_module_id = memory_modules[mem_index];
net_sink_instance_id = memory_instances[mem_index];
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
}
/* Get the pin id for source port */
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
/* Get the pin id for sink port */
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
/* Port sizes of source and sink should match */
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
/* Create a net for each pin */
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
/* Create a net and add source and sink to it */
ModuleNetId net = module_manager.create_module_net(parent_module);
/* Add net source */
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
/* Add net sink */
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
}
}
/* For the last memory module:
* net source is the configuration chain tail of the previous memory module
* net sink is the configuration chain tail of the primitive module
*/
/* Find the port name of previous memory module */
std::string src_port_name = generate_configuration_chain_tail_name();
ModuleId net_src_module_id = memory_modules.back();
size_t net_src_instance_id = memory_instances.back();
ModulePortId net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
/* Find the port name of next memory module */
std::string sink_port_name = generate_sram_port_name(sram_orgz_type, SPICE_MODEL_PORT_OUTPUT);
ModuleId net_sink_module_id = parent_module;
size_t net_sink_instance_id = 0;
ModulePortId net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
/* Get the pin id for source port */
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
/* Get the pin id for sink port */
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
/* Port sizes of source and sink should match */
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
/* Create a net for each pin */
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
/* Create a net and add source and sink to it */
ModuleNetId net = module_manager.create_module_net(parent_module);
/* Add net source */
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
/* Add net sink */
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
}
add_module_nets_cmos_memory_chain_config_bus(module_manager, parent_module, memory_modules, memory_instances, sram_orgz_type);
break;
}
case SPICE_SRAM_MEMORY_BANK:

View File

@ -69,6 +69,12 @@ void add_module_nets_between_logic_and_memory_sram_bus(ModuleManager& module_man
const CircuitLibrary& circuit_lib,
const CircuitModelId& logic_model);
void add_module_nets_cmos_memory_chain_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,
const std::vector<size_t>& memory_instances,
const e_sram_orgz& sram_orgz_type);
void add_module_nets_memory_config_bus(ModuleManager& module_manager,
const ModuleId& parent_module,
const std::vector<ModuleId>& memory_modules,

View File

@ -2449,7 +2449,7 @@ const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, size_t index)
}
/* Give a coordinator of a rr switch block, and return its unique mirror */
const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, DeviceCoordinator& coordinator) const {
const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, const DeviceCoordinator& coordinator) const {
assert (validate_cb_type(cb_type));
assert(validate_coordinator(coordinator));
size_t cb_unique_module_id;
@ -2472,7 +2472,7 @@ const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, DeviceCoordina
}
/* Give a coordinator of a rr switch block, and return its unique mirror */
const RRGSB DeviceRRGSB::get_sb_unique_module(DeviceCoordinator& coordinator) const {
const RRGSB DeviceRRGSB::get_sb_unique_module(const DeviceCoordinator& coordinator) const {
assert(validate_coordinator(coordinator));
size_t sb_unique_module_id = sb_unique_module_id_[coordinator.get_x()][coordinator.get_y()];
return get_sb_unique_module(sb_unique_module_id);

View File

@ -338,9 +338,9 @@ class DeviceRRGSB {
const RRGSB get_sb_unique_submodule(size_t index, enum e_side side, size_t seg_id) const; /* Get a rr switch block which a unique mirror */
const RRGSB get_sb_unique_submodule(DeviceCoordinator& coordinator, enum e_side side, size_t seg_id) const; /* Get a rr switch block which a unique mirror */
const RRGSB get_sb_unique_module(size_t index) const; /* Get a rr switch block which a unique mirror */
const RRGSB get_sb_unique_module(DeviceCoordinator& coordinator) const; /* Get a rr switch block which a unique mirror */
const RRGSB get_sb_unique_module(const DeviceCoordinator& coordinator) const; /* Get a rr switch block which a unique mirror */
const RRGSB& get_cb_unique_module(t_rr_type cb_type, size_t index) const; /* Get a rr switch block which a unique mirror */
const RRGSB& get_cb_unique_module(t_rr_type cb_type, DeviceCoordinator& coordinator) const;
const RRGSB& get_cb_unique_module(t_rr_type cb_type, const DeviceCoordinator& coordinator) const;
size_t get_max_num_sides() const; /* Get the maximum number of sides across the switch blocks */
size_t get_num_segments() const; /* Get the size of segment_ids */
size_t get_segment_id(size_t index) const; /* Get a segment id */

View File

@ -15,6 +15,8 @@
#include "fpga_x2p_utils.h"
#include "fpga_x2p_pbtypes_utils.h"
#include "module_manager_utils.h"
#include "build_top_module_memory.h"
#include "build_top_module_directs.h"
#include "verilog_global.h"
#include "verilog_routing.h"
@ -22,15 +24,6 @@
#include "verilog_module_writer.h"
#include "verilog_top_module.h"
/********************************************************************
* Check if the grid coorindate given is in the device grid range
*******************************************************************/
static
bool is_grid_coordinate_exist_in_device(const vtr::Point<size_t>& device_size,
const vtr::Point<size_t>& grid_coordinate) {
return (grid_coordinate < device_size);
}
/********************************************************************
* Generate the name for a grid block, by considering
* 1. if it locates on the border with given device size
@ -236,6 +229,7 @@ std::vector<std::vector<size_t>> add_top_module_switch_block_instances(ModuleMan
const ModuleId& top_module,
const DeviceRRGSB& L_device_rr_gsb,
const bool& compact_routing_hierarchy) {
/* TODO: deprecate DeviceCoordinator, use vtr::Point<size_t> only! */
DeviceCoordinator sb_range = L_device_rr_gsb.get_gsb_range();
/* Reserve an array for the instance ids */
@ -798,540 +792,6 @@ void add_top_module_nets_connect_grids_and_gsbs(ModuleManager& module_manager,
}
}
/********************************************************************
* Add module net for one direction connection between two CLBs or
* two grids
* This function will
* 1. find the pin id and port id of the source clb port in module manager
* 2. find the pin id and port id of the destination clb port in module manager
* 3. add a direct connection module to the top module
* 4. add a first module net and configure its source and sink,
* in order to connect the source pin to the input of the top module
* 4. add a second module net and configure its source and sink,
* in order to connect the sink pin to the output of the top module
*******************************************************************/
static
void add_module_nets_clb2clb_direct_connection(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const vtr::Point<size_t>& src_clb_coord,
const vtr::Point<size_t>& des_clb_coord,
const t_clb_to_clb_directs& direct) {
/* Find the source port and destination port on the CLBs */
BasicPort src_clb_port;
BasicPort des_clb_port;
src_clb_port.set_width(direct.from_clb_pin_start_index, direct.from_clb_pin_end_index);
des_clb_port.set_width(direct.to_clb_pin_start_index, direct.to_clb_pin_end_index);
/* Check bandwidth match between from_clb and to_clb pins */
if (src_clb_port.get_width() != des_clb_port.get_width()) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d]) Unmatch pin bandwidth in direct connection (name=%s)!\n",
__FILE__, __LINE__, direct.name);
exit(1);
}
/* Find the module name of source clb */
t_type_ptr src_grid_type = grids[src_clb_coord.x()][src_clb_coord.y()].type;
e_side src_grid_border_side = find_grid_border_side(device_size, src_clb_coord);
std::string src_module_name_prefix(grid_verilog_file_name_prefix);
std::string src_module_name = generate_grid_block_module_name(src_module_name_prefix, std::string(src_grid_type->name), IO_TYPE == src_grid_type, src_grid_border_side);
ModuleId src_grid_module = module_manager.find_module(src_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(src_grid_module));
/* Record the instance id */
size_t src_grid_instance = grid_instance_ids[src_clb_coord.x()][src_clb_coord.y()];
/* Find the module name of sink clb */
t_type_ptr sink_grid_type = grids[des_clb_coord.x()][des_clb_coord.y()].type;
e_side sink_grid_border_side = find_grid_border_side(device_size, des_clb_coord);
std::string sink_module_name_prefix(grid_verilog_file_name_prefix);
std::string sink_module_name = generate_grid_block_module_name(sink_module_name_prefix, std::string(sink_grid_type->name), IO_TYPE == sink_grid_type, sink_grid_border_side);
ModuleId sink_grid_module = module_manager.find_module(sink_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(sink_grid_module));
/* Record the instance id */
size_t sink_grid_instance = grid_instance_ids[des_clb_coord.x()][des_clb_coord.y()];
/* Find the module id of a direct connection module */
std::string direct_module_name = circuit_lib.model_name(direct.circuit_model);
ModuleId direct_module = module_manager.find_module(direct_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(direct_module));
/* Find inputs and outputs of the direct circuit module */
std::vector<CircuitPortId> direct_input_ports = circuit_lib.model_ports_by_type(direct.circuit_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(1 == direct_input_ports.size());
ModulePortId direct_input_port_id = module_manager.find_module_port(direct_module, circuit_lib.port_lib_name(direct_input_ports[0]));
VTR_ASSERT(true == module_manager.valid_module_port_id(direct_module, direct_input_port_id));
VTR_ASSERT(1 == module_manager.module_port(direct_module, direct_input_port_id).get_width());
std::vector<CircuitPortId> direct_output_ports = circuit_lib.model_ports_by_type(direct.circuit_model, SPICE_MODEL_PORT_OUTPUT, true);
VTR_ASSERT(1 == direct_output_ports.size());
ModulePortId direct_output_port_id = module_manager.find_module_port(direct_module, circuit_lib.port_lib_name(direct_output_ports[0]));
VTR_ASSERT(true == module_manager.valid_module_port_id(direct_module, direct_output_port_id));
VTR_ASSERT(1 == module_manager.module_port(direct_module, direct_output_port_id).get_width());
for (size_t pin_id : src_clb_port.pins()) {
/* Generate the pin name of source port/pin in the grid */
size_t src_pin_height = find_grid_pin_height(grids, src_clb_coord, src_clb_port.pins()[pin_id]);
e_side src_pin_grid_side = find_grid_pin_side(device_size, grids, src_clb_coord, src_pin_height, src_clb_port.pins()[pin_id]);
std::string src_port_name = generate_grid_port_name(src_clb_coord, src_pin_height, src_pin_grid_side, src_clb_port.pins()[pin_id], false);
ModulePortId src_port_id = module_manager.find_module_port(src_grid_module, src_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(src_grid_module, src_port_id));
VTR_ASSERT(1 == module_manager.module_port(src_grid_module, src_port_id).get_width());
/* Generate the pin name of sink port/pin in the grid */
size_t sink_pin_height = find_grid_pin_height(grids, des_clb_coord, des_clb_port.pins()[pin_id]);
e_side sink_pin_grid_side = find_grid_pin_side(device_size, grids, des_clb_coord, sink_pin_height, des_clb_port.pins()[pin_id]);
std::string sink_port_name = generate_grid_port_name(des_clb_coord, sink_pin_height, sink_pin_grid_side, des_clb_port.pins()[pin_id], false);
ModulePortId sink_port_id = module_manager.find_module_port(sink_grid_module, sink_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(sink_grid_module, sink_port_id));
VTR_ASSERT(1 == module_manager.module_port(sink_grid_module, sink_port_id).get_width());
/* Add a submodule of direct connection module to the top-level module */
size_t direct_instance_id = module_manager.num_instance(top_module, direct_module);
module_manager.add_child_module(top_module, direct_module);
/* Create the 1st module net */
ModuleNetId net_direct_src = module_manager.create_module_net(top_module);
/* Connect the wire between src_pin of clb and direct_instance input*/
module_manager.add_module_net_source(top_module, net_direct_src, src_grid_module, src_grid_instance, src_port_id, 0);
module_manager.add_module_net_sink(top_module, net_direct_src, direct_module, direct_instance_id, direct_input_port_id, 0);
/* Create the 2nd module net */
ModuleNetId net_direct_sink = module_manager.create_module_net(top_module);
/* Connect the wire between direct_instance output and sink_pin of clb */
module_manager.add_module_net_source(top_module, net_direct_sink, direct_module, direct_instance_id, direct_output_port_id, 0);
module_manager.add_module_net_sink(top_module, net_direct_sink, sink_grid_module, sink_grid_instance, sink_port_id, 0);
}
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*
* This function supports the following type of direct connection:
* 1. Direct connection between grids in the same column or row
* +------+ +------+
* | | | |
* | Grid |----->| Grid |
* | | | |
* +------+ +------+
* | direction connection
* v
* +------+
* | |
* | Grid |
* | |
* +------+
*
*******************************************************************/
static
void add_top_module_nets_intra_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
/* Scan the grid, visit each grid and apply direct connections */
for (size_t ix = 0; ix < device_size.x(); ++ix) {
for (size_t iy = 0; iy < device_size.y(); ++iy) {
/* Bypass EMPTY_TYPE*/
if ( (NULL == grids[ix][iy].type)
|| (EMPTY_TYPE == grids[ix][iy].type)) {
continue;
}
/* Bypass any grid with a non-zero offset! They have been visited in the offset=0 case */
if (0 != grids[ix][iy].offset) {
continue;
}
/* Check each clb2clb directs by comparing the source and destination clb types
* Direct connections are made only for those matched clbs
*/
for (const t_clb_to_clb_directs& direct : clb2clb_directs) {
/* Bypass unmatched clb type */
if (grids[ix][iy].type != direct.from_clb_type) {
continue;
}
/* See if the destination CLB is in the bound */
vtr::Point<size_t> src_clb_coord(ix, iy);
vtr::Point<size_t> des_clb_coord(ix + direct.x_offset, iy + direct.y_offset);
if (false == is_grid_coordinate_exist_in_device(device_size, des_clb_coord)) {
continue;
}
/* Check if the destination clb_type matches */
if (grids[des_clb_coord.x()][des_clb_coord.y()].type == direct.to_clb_type) {
/* Add a module net for a direct connection with the two grids in top_model */
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
}
}
}
}
/********************************************************************
* Find the coordinate of a grid in a specific column
* with a given type
* This function will return the coordinate of the grid that satifies
* the type requirement
*******************************************************************/
static
vtr::Point<size_t> find_grid_coordinate_given_type(const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<vtr::Point<size_t>>& candidate_coords,
t_type_ptr wanted_grid_type) {
for (vtr::Point<size_t> coord : candidate_coords) {
/* If the next column is not longer in device range, we can return */
if (false == is_grid_coordinate_exist_in_device(device_size, coord)) {
continue;
}
if (wanted_grid_type == grids[coord.x()][coord.y()].type) {
return coord;
}
}
/* Return an valid coordinate */
return vtr::Point<size_t>(size_t(-1), size_t(-1));
}
/********************************************************************
* Find the coordinate of the destination clb/heterogeneous block
* considering intra column/row direct connections in core grids
*******************************************************************/
static
vtr::Point<size_t> find_intra_direct_destination_coordinate(const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const vtr::Point<size_t> src_coord,
const t_clb_to_clb_directs& direct) {
vtr::Point<size_t> des_coord(size_t(-1), size_t(-1));
t_type_ptr src_grid_type = grids[src_coord.x()][src_coord.y()].type;
std::vector<size_t> first_search_space;
std::vector<size_t> second_search_space;
/* Cross column connection from Bottom to Top on Right
* The next column may NOT have the grid type we want!
* Think about heterogeneous architecture!
* Our search space will start from the next column
* and ends at the RIGHT side of fabric
*/
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
if (POSITIVE_DIR == direct.x_dir) {
/* Our first search space will be in x-direction:
*
* x ... nx
* +-----+
* |Grid | ----->
* +-----+
*/
for (size_t ix = src_coord.x() + 1; ix < device_size.x() - 1; ++ix) {
first_search_space.push_back(ix);
}
} else {
VTR_ASSERT(NEGATIVE_DIR == direct.x_dir);
/* Our first search space will be in x-direction:
*
* 1 ... x
* +-----+
* < -------|Grid |
* +-----+
*/
for (size_t ix = src_coord.x() - 1; ix >= 1; --ix) {
first_search_space.push_back(ix);
}
}
/* Our second search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* | .
* | .
* v .
* +------+
* | Grid | 1
* +------+
*/
for (size_t iy = 1 ; iy < device_size.y() - 1; ++iy) {
second_search_space.push_back(iy);
}
/* For negative direction, our second search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* ^ .
* | .
* | .
* +------+
* | Grid | 1
* +------+
*/
if (NEGATIVE_DIR == direct.y_dir) {
std::reverse(second_search_space.begin(), second_search_space.end());
}
}
/* Cross row connection from Bottom to Top on Right
* The next column may NOT have the grid type we want!
* Think about heterogeneous architecture!
* Our search space will start from the next column
* and ends at the RIGHT side of fabric
*/
if (P2P_DIRECT_ROW == direct.interconnection_type) {
if (POSITIVE_DIR == direct.y_dir) {
/* Our first search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* ^ .
* | .
* | .
* +------+
* | Grid | y
* +------+
*/
for (size_t iy = src_coord.y() + 1; iy < device_size.y() - 1; ++iy) {
first_search_space.push_back(iy);
}
} else {
VTR_ASSERT(NEGATIVE_DIR == direct.y_dir);
/* For negative y-direction,
* Our first search space will be in y-direction:
*
* +------+
* | Grid | ny
* +------+
* | .
* | .
* v .
* +------+
* | Grid | y
* +------+
*/
for (size_t iy = src_coord.y() - 1; iy >= 1; --iy) {
first_search_space.push_back(iy);
}
}
/* Our second search space will be in x-direction:
*
* 1 ... nx
* +------+ +------+
* | Grid |------>| Grid |
* +------+ +------+
*/
for (size_t ix = 1 ; ix < device_size.x() - 1; ++ix) {
second_search_space.push_back(ix);
}
/* For negative direction,
* our second search space will be in x-direction:
*
* 1 ... nx
* +------+ +------+
* | Grid |<------| Grid |
* +------+ +------+
*/
if (NEGATIVE_DIR == direct.x_dir) {
std::reverse(second_search_space.begin(), second_search_space.end());
}
}
for (size_t ix : first_search_space) {
std::vector<vtr::Point<size_t>> next_col_row_coords;
for (size_t iy : second_search_space) {
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
next_col_row_coords.push_back(vtr::Point<size_t>(ix, iy));
} else {
VTR_ASSERT(P2P_DIRECT_ROW == direct.interconnection_type);
/* For cross-row connection, our search space is flipped */
next_col_row_coords.push_back(vtr::Point<size_t>(iy, ix));
}
}
vtr::Point<size_t> des_coord_cand = find_grid_coordinate_given_type(device_size, grids, next_col_row_coords, src_grid_type);
/* For a valid coordinate, we can return */
if ( (size_t(-1) != des_coord_cand.x())
&& (size_t(-1) != des_coord_cand.y()) ) {
return des_coord_cand;
}
}
return des_coord;
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*
* This function supports the following type of direct connection:
*
* 1. Direct connections across columns and rows
* +------+
* | |
* | v
* +------+ | +------+
* | | | | |
* | Grid | | | Grid |
* | | | | |
* +------+ | +------+
* |
* +------+ | +------+
* | | | | |
* | Grid | | | Grid |
* | | | | |
* +------+ | +------+
* | |
* +------+
*
* Note that: this will only apply to the core grids!
* I/Os or any blocks on the border of fabric are NOT supported!
*
*******************************************************************/
static
void add_top_module_nets_inter_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
std::vector<e_side> border_sides = {TOP, RIGHT, BOTTOM, LEFT};
/* Go through the direct connection list, see if we need intra-column/row connection here */
for (const t_clb_to_clb_directs& direct: clb2clb_directs) {
if ( (P2P_DIRECT_COLUMN != direct.interconnection_type)
&& (P2P_DIRECT_ROW != direct.interconnection_type)) {
continue;
}
/* For cross-column connection, we will search the first valid grid in each column
* from y = 1 to y = ny
*
* +------+
* | Grid | y=ny
* +------+
* ^
* | search direction (when y_dir is negative)
* ...
* |
* +------+
* | Grid | y=1
* +------+
*
*/
if (P2P_DIRECT_COLUMN == direct.interconnection_type) {
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
std::vector<vtr::Point<size_t>> next_col_src_grid_coords;
/* For negative y- direction, we should start from y = ny */
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
next_col_src_grid_coords.push_back(vtr::Point<size_t>(ix, iy));
}
/* For positive y- direction, we should start from y = 1 */
if (POSITIVE_DIR == direct.y_dir) {
std::reverse(next_col_src_grid_coords.begin(), next_col_src_grid_coords.end());
}
vtr::Point<size_t> src_clb_coord = find_grid_coordinate_given_type(device_size, grids, next_col_src_grid_coords, direct.from_clb_type);
/* Skip if we do not have a valid coordinate for source CLB/heterogeneous block */
if ( (size_t(-1) == src_clb_coord.x())
|| (size_t(-1) == src_clb_coord.y()) ) {
continue;
}
/* For a valid coordinate, we can find the coordinate of the destination clb */
vtr::Point<size_t> des_clb_coord = find_intra_direct_destination_coordinate(device_size, grids, src_clb_coord, direct);
/* If destination clb is valid, we should add something */
if ( (size_t(-1) == des_clb_coord.x())
|| (size_t(-1) == des_clb_coord.y()) ) {
continue;
}
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
continue; /* Go to next direct type */
}
/* Reach here, it must be a cross-row connection */
VTR_ASSERT(P2P_DIRECT_ROW == direct.interconnection_type);
/* For cross-row connection, we will search the first valid grid in each column
* from x = 1 to x = nx
*
* x=1 x=nx
* +------+ +------+
* | Grid | <--- ... ---- | Grid |
* +------+ +------+
*
*/
for (size_t iy = 1; iy < device_size.y() - 1; ++iy) {
std::vector<vtr::Point<size_t>> next_col_src_grid_coords;
/* For negative x- direction, we should start from x = nx */
for (size_t ix = 1; ix < device_size.x() - 1; ++ix) {
next_col_src_grid_coords.push_back(vtr::Point<size_t>(ix, iy));
}
/* For positive x- direction, we should start from x = 1 */
if (POSITIVE_DIR == direct.x_dir) {
std::reverse(next_col_src_grid_coords.begin(), next_col_src_grid_coords.end());
}
vtr::Point<size_t> src_clb_coord = find_grid_coordinate_given_type(device_size, grids, next_col_src_grid_coords, direct.from_clb_type);
/* Skip if we do not have a valid coordinate for source CLB/heterogeneous block */
if ( (size_t(-1) == src_clb_coord.x())
|| (size_t(-1) == src_clb_coord.y()) ) {
continue;
}
/* For a valid coordinate, we can find the coordinate of the destination clb */
vtr::Point<size_t> des_clb_coord = find_intra_direct_destination_coordinate(device_size, grids, src_clb_coord, direct);
/* If destination clb is valid, we should add something */
if ( (size_t(-1) == des_clb_coord.x())
|| (size_t(-1) == des_clb_coord.y()) ) {
continue;
}
add_module_nets_clb2clb_direct_connection(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
src_clb_coord, des_clb_coord,
direct);
}
}
}
/********************************************************************
* Add module net of clb-to-clb direct connections to module manager
* Note that the direct connections are not limited to CLBs only.
* It can be more generic and thus cover all the grid types,
* such as heterogeneous blocks
*******************************************************************/
static
void add_top_module_nets_clb2clb_direct_connections(ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const vtr::Point<size_t>& device_size,
const std::vector<std::vector<t_grid_tile>>& grids,
const std::vector<std::vector<size_t>>& grid_instance_ids,
const std::vector<t_clb_to_clb_directs>& clb2clb_directs) {
add_top_module_nets_intra_clb2clb_direct_connections(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
clb2clb_directs);
add_top_module_nets_inter_clb2clb_direct_connections(module_manager, top_module, circuit_lib,
device_size, grids, grid_instance_ids,
clb2clb_directs);
}
/********************************************************************
* Print the top-level module for the FPGA fabric in Verilog format
* This function will
@ -1421,13 +881,21 @@ void print_verilog_top_module(ModuleManager& module_manager,
std::vector<ModuleId> memory_modules;
std::vector<size_t> memory_instances;
/* TODO: Add module nets to connect memory cells inside
/* Organize the list of memory modules and instances */
organize_top_module_memory_modules(module_manager,
circuit_lib, sram_model, cur_sram_orgz_info,
device_size, grids, grid_instance_ids,
L_device_rr_gsb, sb_instance_ids, cb_instance_ids,
compact_routing_hierarchy,
memory_modules, memory_instances);
/* Add module nets to connect memory cells inside
* This is a one-shot addition that covers all the memory modules in this pb module!
*/
if (false == memory_modules.empty()) {
add_module_nets_memory_config_bus(module_manager, top_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
add_top_module_nets_memory_config_bus(module_manager, top_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
}
/* Start printing out Verilog netlists */