refactoring physical block Verilog generation

This commit is contained in:
tangxifan 2019-10-07 17:39:00 -06:00
parent 997bfdbb95
commit 86c9af872e
1 changed files with 145 additions and 6 deletions

View File

@ -16,7 +16,9 @@
/* Header files for FPGA X2P tool suite */ /* Header files for FPGA X2P tool suite */
#include "fpga_x2p_naming.h" #include "fpga_x2p_naming.h"
#include "fpga_x2p_types.h"
#include "fpga_x2p_utils.h" #include "fpga_x2p_utils.h"
#include "fpga_x2p_pbtypes_utils.h"
/* Header files for Verilog generator */ /* Header files for Verilog generator */
#include "verilog_global.h" #include "verilog_global.h"
@ -24,6 +26,143 @@
#include "verilog_writer_utils.h" #include "verilog_writer_utils.h"
#include "verilog_grid.h" #include "verilog_grid.h"
/********************************************************************
* Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.)
* This function will traverse the graph of complex logic block (t_pb_graph_node)
* in a recursive way, using a Depth First Search (DFS) algorithm.
* As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph
* will be printed out first, while the top-level will be printed out in the last
*
* Note: this function will print a unique Verilog module for each type of
* t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes.
*
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*******************************************************************/
static
void print_verilog_physical_blocks_rec(std::fstream& fp,
ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
t_pb_graph_node* physical_pb_graph_node,
const bool& use_explicit_mapping) {
/* Check the file handler*/
check_file_handler(fp);
/* Check cur_pb_graph_node*/
if (NULL == physical_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n",
__FILE__, __LINE__);
exit(1);
}
/* Get the pb_type definition related to the node */
t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type;
/* Find the mode that physical implementation of a pb_type */
int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type));
/* For non-leaf node in the pb_type graph:
* Recursively Depth-First Generate all the child pb_type at the level
*/
if (FALSE == is_primitive_pb_type(physical_pb_type)) {
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) {
/* Go recursive to visit the children */
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
cur_sram_orgz_info,
&(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]),
use_explicit_mapping);
}
}
/* For leaf node, a primitive Verilog module will be generated */
if (TRUE == is_primitive_pb_type(physical_pb_type)) {
/* Branch on the type of this physical pb_type, different Verilog modules are generated */
switch (physical_pb_type->class_type) {
case LUT_CLASS:
/* TODO: refactor this function
dump_verilog_pb_primitive_verilog_model(cur_sram_orgz_info, fp, formatted_subckt_prefix,
cur_pb_graph_node, pb_type_index,
cur_pb_type->spice_model,
my_bool_to_boolean(is_explicit_mapping));
*/
break;
case LATCH_CLASS:
VTR_ASSERT(0 == physical_pb_type->num_modes);
/* TODO: refactor this function
dump_verilog_pb_primitive_verilog_model(cur_sram_orgz_info, fp, formatted_subckt_prefix,
cur_pb_graph_node, pb_type_index,
cur_pb_type->spice_model,
my_bool_to_boolean(is_explicit_mapping));
*/
break;
case UNKNOWN_CLASS:
case MEMORY_CLASS:
/* TODO: refactor this function
dump_verilog_pb_primitive_verilog_model(cur_sram_orgz_info, fp, formatted_subckt_prefix,
cur_pb_graph_node , pb_type_index,
cur_pb_type->spice_model,
my_bool_to_boolean(is_explicit_mapping));
*/
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Unknown class type of pb_type(%s)!\n",
__FILE__, __LINE__, physical_pb_type->name);
exit(1);
}
/* Finish for primitive node, return */
return;
}
/* TODO: Generate the name of the Verilog module for this pb_type */
/* TODO: Register the Verilog module in module manager */
/* TODO: Add ports to the Verilog module */
/* TODO: Count I/O (INOUT) ports from the sub-modules under this Verilog module */
/* TODO: Count shared SRAM ports from the sub-modules under this Verilog module */
/* TODO: Count SRAM ports from the sub-modules under this Verilog module */
/* TODO: Count formal verification ports from the sub-modules under this Verilog module */
/* TODO: Print Verilog module declaration */
/* Comment lines */
print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
/* TODO: Print local wires (bus wires for memory configuration) */
/*
dump_verilog_sram_config_bus_internal_wires(fp, cur_sram_orgz_info,
stamped_sram_cnt,
stamped_sram_cnt + num_conf_bits - 1);
*/
/* TODO: Instanciate all the child Verilog modules */
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ipb++) {
/* Each child may exist multiple times in the hierarchy*/
for (int jpb = 0; jpb < physical_pb_type->modes[physical_mode_index].pb_type_children[ipb].num_pb; jpb++) {
/* we should make sure this placement index == child_pb_type[jpb] */
VTR_ASSERT(jpb == physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][jpb].placement_index);
}
}
/* TODO: Print programmable/non-programmable interconnections inside the Verilog module */
/*
dump_verilog_pb_graph_interc(cur_sram_orgz_info, fp, subckt_name,
cur_pb_graph_node, mode_index,
is_explicit_mapping);
*/
/* Print an end to the Verilog module */
print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
return;
}
/***************************************************************************** /*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist * This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block * for a type of physical block
@ -96,11 +235,11 @@ void print_verilog_grid(ModuleManager& module_manager,
print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
/* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */ /* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
/* print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
dump_verilog_phy_pb_graph_node_rec(cur_sram_orgz_info, fp, subckt_name_prefix, cur_sram_orgz_info,
phy_block_type->pb_graph_head, iz, phy_block_type->pb_graph_head,
is_explicit_mapping); use_explicit_mapping);
*/
print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
} }
@ -132,7 +271,7 @@ void print_verilog_grid(ModuleManager& module_manager,
fp.close(); fp.close();
/* Add fname to the linked list */ /* Add fname to the linked list */
/* /* TODO: add it when it is ready
grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str()); grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str());
*/ */
} }