Merge branch 'refactoring' into dev

This commit is contained in:
tangxifan 2019-10-05 18:15:31 -06:00
commit 86387ff79c
9 changed files with 1203 additions and 161 deletions

View File

@ -0,0 +1,304 @@
/*********************************************************************
* This file includes functions that are used for
* generating ports for memory modules
*********************************************************************/
#include "vtr_assert.h"
#include "util.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_mem_utils.h"
/*********************************************************************
* Create a port-to-port map for a CMOS memory module
*
* Configuration Chain
* -------------------
*
* config_bus (head) config_bus (tail)
* | ^
* v |
* +-------------------------------------+
* | CMOS-based Memory Module |
* +-------------------------------------+
* | |
* v v
* sram_out sram_outb
*
*
* Memory bank
* -----------
*
* config_bus (BL) config_bus (WL)
* | |
* v v
* +-------------------------------------+
* | CMOS-based Memory Module |
* +-------------------------------------+
* | |
* v v
* sram_out sram_outb
*
**********************************************************************/
static
std::map<std::string, BasicPort> generate_cmos_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const BasicPort& config_bus,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Nothing to do */
break;
case SPICE_SRAM_SCAN_CHAIN: {
/* Link the head port of the memory module:
* the LSB of config bus port is the head port index
*/
std::vector<BasicPort> config_bus_ports;
config_bus_ports.push_back(BasicPort(generate_local_config_bus_port_name(), config_bus.get_msb(), config_bus.get_msb() + 1));
BasicPort head_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_lsb(), config_bus_ports[0].get_lsb());
port2port_name_map[generate_configuration_chain_head_name()] = head_port;
/* Link the tail port of the memory module:
* the MSB of config bus port is the tail port index
*/
BasicPort tail_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_msb(), config_bus_ports[0].get_msb());
port2port_name_map[generate_configuration_chain_tail_name()] = tail_port;
/* Link the SRAM output ports of the memory module */
VTR_ASSERT( 2 == mem_output_bus_ports.size() );
port2port_name_map[generate_configuration_chain_data_out_name()] = mem_output_bus_ports[0];
port2port_name_map[generate_configuration_chain_inverted_data_out_name()] = mem_output_bus_ports[1];
break;
}
case SPICE_SRAM_MEMORY_BANK:
/* TODO: */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}
/*********************************************************************
* Create a port-to-port map for a ReRAM-based memory module
* Memory bank
* -----------
*
* config_bus (BL) config_bus (WL)
* | |
* v v
* +-------------------------------------+
* | ReRAM-based Memory Module |
* +-------------------------------------+
* | |
* v v
* Mem_out Mem_outb
**********************************************************************/
static
std::map<std::string, BasicPort> generate_rram_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const BasicPort& config_bus,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Not supported */
break;
case SPICE_SRAM_SCAN_CHAIN: {
/* Link the head port of the memory module:
* the LSB of config bus port is the head port index
*/
std::vector<BasicPort> config_bus_ports;
config_bus_ports.push_back(BasicPort(generate_local_config_bus_port_name(), config_bus.get_msb(), config_bus.get_msb() + 1));
BasicPort head_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_lsb(), config_bus_ports[0].get_lsb());
port2port_name_map[generate_configuration_chain_head_name()] = head_port;
/* Link the tail port of the memory module:
* the MSB of config bus port is the tail port index
*/
BasicPort tail_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_msb(), config_bus_ports[0].get_msb());
port2port_name_map[generate_configuration_chain_tail_name()] = tail_port;
/* Link the SRAM output ports of the memory module */
VTR_ASSERT( 2 == mem_output_bus_ports.size() );
port2port_name_map[generate_configuration_chain_data_out_name()] = mem_output_bus_ports[0];
port2port_name_map[generate_configuration_chain_inverted_data_out_name()] = mem_output_bus_ports[1];
break;
}
case SPICE_SRAM_MEMORY_BANK:
/* TODO: link BL/WL/Reserved Ports to the inputs of a memory module */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}
/*********************************************************************
* Create a port-to-port map for a memory module
* The content of the port-to-port map will depend not only
* the design technology of the memory cells but also the
* configuration styles of FPGA fabric.
* Here we will branch on the design technology
**********************************************************************/
std::map<std::string, BasicPort> generate_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const BasicPort& config_bus,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_spice_model_design_tech& mem_design_tech,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (mem_design_tech) {
case SPICE_MODEL_DESIGN_CMOS:
port2port_name_map = generate_cmos_mem_module_port2port_map(module_manager, mem_module, config_bus, mem_output_bus_ports, sram_orgz_type);
break;
case SPICE_MODEL_DESIGN_RRAM:
port2port_name_map = generate_rram_mem_module_port2port_map(module_manager, mem_module, config_bus, mem_output_bus_ports, sram_orgz_type);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of memory design technology !\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}
/*********************************************************************
* Update the LSB and MSB of a configuration bus based on the number of
* memory bits of a CMOS memory module.
**********************************************************************/
static
void update_cmos_mem_module_config_bus(const e_sram_orgz& sram_orgz_type,
const size_t& num_config_bits,
BasicPort& config_bus) {
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Not supported */
break;
case SPICE_SRAM_SCAN_CHAIN:
/* Scan-chain of a memory module only has a head and a tail.
* LSB and MSB of configuration bus will be shifted to the next head.
*/
VTR_ASSERT(true == config_bus.rotate(1));
break;
case SPICE_SRAM_MEMORY_BANK:
/* In this case, a memory module has a number of BL/WL and BLB/WLB (possibly).
* LSB and MSB of configuration bus will be shifted by the number of BL/WL/BLB/WLB.
*/
VTR_ASSERT(true == config_bus.rotate(num_config_bits));
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
}
/*********************************************************************
* Update the LSB and MSB of a configuration bus based on the number of
* memory bits of a ReRAM memory module.
**********************************************************************/
static
void update_rram_mem_module_config_bus(const e_sram_orgz& sram_orgz_type,
const size_t& num_config_bits,
BasicPort& config_bus) {
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Not supported */
break;
case SPICE_SRAM_SCAN_CHAIN:
/* Scan-chain of a memory module only has a head and a tail.
* LSB and MSB of configuration bus will be shifted to the next head.
* TODO: this may be changed later!!!
*/
VTR_ASSERT(true == config_bus.rotate(1));
break;
case SPICE_SRAM_MEMORY_BANK:
/* In this case, a memory module contains unique BL/WL or BLB/WLB,
* which are not shared with other modules
* TODO: this may be changed later!!!
*/
VTR_ASSERT(true == config_bus.rotate(1));
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
}
/*********************************************************************
* Update the LSB and MSB of a configuration bus based on the number of
* memory bits of a module.
* Note that this function is designed to do such simple job, in purpose of
* being independent from adding ports or printing ports.
* As such, this function can be re-used in bitstream generation
* when Verilog generation is not needed.
* DO NOT update the configuration bus in the function of adding/printing ports
**********************************************************************/
void update_mem_module_config_bus(const e_sram_orgz& sram_orgz_type,
const e_spice_model_design_tech& mem_design_tech,
const size_t& num_config_bits,
BasicPort& config_bus) {
switch (mem_design_tech) {
case SPICE_MODEL_DESIGN_CMOS:
update_cmos_mem_module_config_bus(sram_orgz_type, num_config_bits, config_bus);
break;
case SPICE_MODEL_DESIGN_RRAM:
update_rram_mem_module_config_bus(sram_orgz_type, num_config_bits, config_bus);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of memory design technology !\n",
__FILE__, __LINE__);
exit(1);
}
}
/********************************************************************
* Check if the MSB of a configuration bus of a switch block
* matches the expected value
********************************************************************/
bool check_mem_config_bus(const e_sram_orgz& sram_orgz_type,
const BasicPort& config_bus,
const size_t& local_expected_msb) {
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Not supported */
return false;
break;
case SPICE_SRAM_SCAN_CHAIN:
/* TODO: comment on why
*/
return (local_expected_msb == config_bus.get_msb());
break;
case SPICE_SRAM_MEMORY_BANK:
/* TODO: comment on why
*/
return (local_expected_msb == config_bus.get_msb());
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
/* Reach here, it means something goes wrong, return a false value */
return false;
}

View File

@ -0,0 +1,29 @@
/********************************************************************
* Header file for fpga_x2p_mem_utils.cpp
**********************************************************************/
#ifndef FPGA_X2P_MEM_UTILS_H
#define FPGA_X2P_MEM_UTILS_H
/* Header files are included for the data types appear in the function declaration below */
#include <vector>
#include "device_port.h"
#include "spice_types.h"
#include "module_manager.h"
std::map<std::string, BasicPort> generate_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const BasicPort& config_bus,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_spice_model_design_tech& mem_design_tech,
const e_sram_orgz& sram_orgz_type);
void update_mem_module_config_bus(const e_sram_orgz& sram_orgz_type,
const e_spice_model_design_tech& mem_design_tech,
const size_t& num_config_bits,
BasicPort& config_bus);
bool check_mem_config_bus(const e_sram_orgz& sram_orgz_type,
const BasicPort& config_bus,
const size_t& local_expected_msb);
#endif

View File

@ -168,6 +168,30 @@ std::string generate_routing_block_netlist_name(const std::string& prefix,
return std::string( prefix + std::to_string(coordinate.x()) + std::string("_") + std::to_string(coordinate.y()) + postfix );
}
/*********************************************************************
* Generate the netlist name for a connection block with a given coordinate
*********************************************************************/
std::string generate_connection_block_netlist_name(const t_rr_type& cb_type,
const vtr::Point<size_t>& coordinate,
const std::string& postfix) {
std::string prefix("cb");
switch (cb_type) {
case CHANX:
prefix += std::string("x_");
break;
case CHANY:
prefix += std::string("y_");
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File: %s [LINE%d]) Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
return generate_routing_block_netlist_name(prefix, coordinate, postfix);
}
/*********************************************************************
* Generate the module name for a unique routing channel
*********************************************************************/
@ -242,6 +266,33 @@ std::string generate_routing_track_port_name(const t_rr_type& chan_type,
return port_name;
}
/*********************************************************************
* Generate the middle output port name for a routing track
* with a given coordinate
*********************************************************************/
std::string generate_routing_track_middle_output_port_name(const t_rr_type& chan_type,
const vtr::Point<size_t>& coordinate,
const size_t& track_id) {
/* Channel must be either CHANX or CHANY */
VTR_ASSERT( (CHANX == chan_type) || (CHANY == chan_type) );
/* Create a map between chan_type and module_prefix */
std::map<t_rr_type, std::string> module_prefix_map;
/* TODO: use a constexpr string to replace the fixed name? */
module_prefix_map[CHANX] = std::string("chanx");
module_prefix_map[CHANY] = std::string("chany");
std::string port_name = module_prefix_map[chan_type];
port_name += std::string("_" + std::to_string(coordinate.x()) + std::string("__") + std::to_string(coordinate.y()) + std::string("__"));
port_name += std::string("midout_");
/* Add the track id to the port name */
port_name += std::to_string(track_id) + std::string("_");
return port_name;
}
/*********************************************************************
* Generate the module name for a switch block with a given coordinate
*********************************************************************/
@ -249,6 +300,29 @@ std::string generate_switch_block_module_name(const vtr::Point<size_t>& coordina
return std::string( "sb_" + std::to_string(coordinate.x()) + std::string("__") + std::to_string(coordinate.y()) + std::string("_") );
}
/*********************************************************************
* Generate the module name for a connection block with a given coordinate
*********************************************************************/
std::string generate_connection_block_module_name(const t_rr_type& cb_type,
const vtr::Point<size_t>& coordinate) {
std::string prefix("cb");
switch (cb_type) {
case CHANX:
prefix += std::string("x_");
break;
case CHANY:
prefix += std::string("y_");
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File: %s [LINE%d]) Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
return std::string( prefix + std::to_string(coordinate.x()) + std::string("__") + std::to_string(coordinate.y()) + std::string("_") );
}
/*********************************************************************
* Generate the port name for a Grid
* TODO: add more comments about why we need different names for

View File

@ -48,6 +48,10 @@ std::string generate_routing_block_netlist_name(const std::string& prefix,
const vtr::Point<size_t>& block_id,
const std::string& postfix);
std::string generate_connection_block_netlist_name(const t_rr_type& cb_type,
const vtr::Point<size_t>& coordinate,
const std::string& postfix);
std::string generate_routing_channel_module_name(const t_rr_type& chan_type,
const size_t& block_id);
@ -59,8 +63,15 @@ std::string generate_routing_track_port_name(const t_rr_type& chan_type,
const size_t& track_id,
const PORTS& port_direction);
std::string generate_routing_track_middle_output_port_name(const t_rr_type& chan_type,
const vtr::Point<size_t>& coordinate,
const size_t& track_id);
std::string generate_switch_block_module_name(const vtr::Point<size_t>& coordinate);
std::string generate_connection_block_module_name(const t_rr_type& cb_type,
const vtr::Point<size_t>& coordinate);
std::string generate_grid_port_name(const vtr::Point<size_t>& coordinate,
const size_t& height,
const e_side& side,

View File

@ -210,150 +210,3 @@ void add_sram_ports_to_module_manager(ModuleManager& module_manager,
}
}
/*********************************************************************
* Create a port-to-port map for a CMOS memory module
*
* Configuration Chain
* -------------------
*
* config_bus (head) config_bus (tail)
* | ^
* v |
* +-------------------------------------+
* | CMOS-based Memory Module |
* +-------------------------------------+
* | |
* v v
* sram_out sram_outb
*
*
* Memory bank
* -----------
*
* config_bus (BL) config_bus (WL)
* | |
* v v
* +-------------------------------------+
* | CMOS-based Memory Module |
* +-------------------------------------+
* | |
* v v
* sram_out sram_outb
*
**********************************************************************/
static
std::map<std::string, BasicPort> generate_cmos_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const std::vector<BasicPort>& config_bus_ports,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Nothing to do */
break;
case SPICE_SRAM_SCAN_CHAIN: {
/* Link the head port of the memory module:
* the LSB of config bus port is the head port index
*/
VTR_ASSERT( 1 == config_bus_ports.size() );
BasicPort head_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_lsb(), config_bus_ports[0].get_lsb());
port2port_name_map[generate_configuration_chain_head_name()] = head_port;
/* Link the tail port of the memory module:
* the MSB of config bus port is the tail port index
*/
BasicPort tail_port(config_bus_ports[0].get_name(), config_bus_ports[0].get_msb(), config_bus_ports[0].get_msb());
port2port_name_map[generate_configuration_chain_tail_name()] = tail_port;
/* Link the SRAM output ports of the memory module */
VTR_ASSERT( 2 == mem_output_bus_ports.size() );
port2port_name_map[generate_configuration_chain_data_out_name()] = mem_output_bus_ports[0];
port2port_name_map[generate_configuration_chain_inverted_data_out_name()] = mem_output_bus_ports[1];
break;
}
case SPICE_SRAM_MEMORY_BANK:
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}
/*********************************************************************
* Create a port-to-port map for a ReRAM-based memory module
* Memory bank
* -----------
*
* config_bus (BL) config_bus (WL)
* | |
* v v
* +-------------------------------------+
* | ReRAM-based Memory Module |
* +-------------------------------------+
* | |
* v v
* Mem_out Mem_outb
**********************************************************************/
static
std::map<std::string, BasicPort> generate_rram_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (sram_orgz_type) {
case SPICE_SRAM_STANDALONE:
/* Not supported */
break;
case SPICE_SRAM_SCAN_CHAIN:
/* TODO: to be supported */
break;
case SPICE_SRAM_MEMORY_BANK:
/* TODO: link BL/WL/Reserved Ports to the inputs of a memory module */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}
/*********************************************************************
* Create a port-to-port map for a memory module
* The content of the port-to-port map will depend not only
* the design technology of the memory cells but also the
* configuration styles of FPGA fabric.
* Here we will branch on the design technology
**********************************************************************/
std::map<std::string, BasicPort> generate_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const std::vector<BasicPort>& config_bus_ports,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_spice_model_design_tech& mem_design_tech,
const e_sram_orgz& sram_orgz_type) {
std::map<std::string, BasicPort> port2port_name_map;
switch (mem_design_tech) {
case SPICE_MODEL_DESIGN_CMOS:
port2port_name_map = generate_cmos_mem_module_port2port_map(module_manager, mem_module, config_bus_ports, mem_output_bus_ports, sram_orgz_type);
break;
case SPICE_MODEL_DESIGN_RRAM:
port2port_name_map = generate_rram_mem_module_port2port_map(module_manager, mem_module, sram_orgz_type);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of memory design technology !\n",
__FILE__, __LINE__);
exit(1);
}
return port2port_name_map;
}

View File

@ -38,12 +38,5 @@ void add_sram_ports_to_module_manager(ModuleManager& module_manager,
const e_sram_orgz sram_orgz_type,
const size_t& port_size);
std::map<std::string, BasicPort> generate_mem_module_port2port_map(const ModuleManager& module_manager,
const ModuleId& mem_module,
const std::vector<BasicPort>& config_bus_ports,
const std::vector<BasicPort>& mem_output_bus_ports,
const e_spice_model_design_tech& mem_design_tech,
const e_sram_orgz& sram_orgz_type);
#endif

View File

@ -9,6 +9,64 @@
#include "fpga_x2p_types.h"
#include "rr_blocks_utils.h"
/*********************************************************************
* This function will find the global ports required by a Connection Block
* module. It will find all the circuit models in the circuit library
* that may be included in the connection block
* Collect the global ports from the circuit_models and merge with the same name
********************************************************************/
std::vector<CircuitPortId> find_connection_block_global_ports(const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const CircuitLibrary& circuit_lib,
const std::vector<t_switch_inf>& switch_lib) {
std::vector<CircuitModelId> sub_models;
/* Walk through the OUTPUT nodes at each side of a GSB,
* get the switch id of incoming edges
* and get the circuit model linked to the switch id
*/
std::vector<enum e_side> cb_ipin_sides = rr_gsb.get_cb_ipin_sides(cb_type);
for (size_t iside = 0; iside < cb_ipin_sides.size(); ++iside) {
enum e_side cb_ipin_side = cb_ipin_sides[iside];
for (size_t inode = 0; inode < rr_gsb.get_num_ipin_nodes(cb_ipin_side); ++inode) {
/* Find the size of routing multiplexers driving this IPIN node */
int mux_size = rr_gsb.get_ipin_node(cb_ipin_side, inode)->fan_in;
/* Bypass fan_in == 1 or 0, they are not considered as routing multiplexers */
if (2 > mux_size) {
continue;
}
/* Find the driver switch of the node */
short driver_switch = rr_gsb.get_ipin_node(cb_ipin_side, inode)->drive_switches[DEFAULT_SWITCH_ID];
/* Find the circuit model id of the driver switch */
VTR_ASSERT( (size_t)driver_switch < switch_lib.size() );
/* Get the model, and try to add to the sub_model list */
CircuitModelId switch_circuit_model = switch_lib[driver_switch].circuit_model;
/* Make sure it is a valid id */
VTR_ASSERT( CircuitModelId::INVALID() != switch_circuit_model );
/* Get the model, and try to add to the sub_model list */
if (sub_models.end() == std::find(sub_models.begin(), sub_models.end(), switch_circuit_model)) {
/* Not yet in the list, add it */
sub_models.push_back(switch_circuit_model);
}
}
}
std::vector<CircuitPortId> global_ports;
/* Iterate over the model list, and add the global ports*/
for (const auto& model : sub_models) {
std::vector<CircuitPortId> temp_global_ports = circuit_lib.model_global_ports(model, true);
/* Add the temp_global_ports to the list to be returned, make sure we do not have any duplicated ports */
for (const auto& port_candidate : temp_global_ports) {
if (global_ports.end() == std::find(global_ports.begin(), global_ports.end(), port_candidate)) {
/* Not yet in the list, add it */
global_ports.push_back(port_candidate);
}
}
}
return global_ports;
}
/*********************************************************************
* This function will find the global ports required by a Switch Block
* module. It will find all the circuit models in the circuit library
@ -61,6 +119,32 @@ std::vector<CircuitPortId> find_switch_block_global_ports(const RRGSB& rr_gsb,
return global_ports;
}
/*********************************************************************
* This function will find the number of multiplexers required by
* a connection Block module.
********************************************************************/
size_t find_connection_block_number_of_muxes(const RRGSB& rr_gsb,
const t_rr_type& cb_type) {
size_t num_muxes = 0;
std::vector<enum e_side> cb_ipin_sides = rr_gsb.get_cb_ipin_sides(cb_type);
for (size_t iside = 0; iside < cb_ipin_sides.size(); ++iside) {
enum e_side cb_ipin_side = cb_ipin_sides[iside];
for (size_t inode = 0; inode < rr_gsb.get_num_ipin_nodes(cb_ipin_side); ++inode) {
/* Find the size of routing multiplexers driving this IPIN node */
int mux_size = rr_gsb.get_ipin_node(cb_ipin_side, inode)->fan_in;
/* Bypass fan_in == 1 or 0, they are not considered as routing multiplexers */
if (2 > mux_size) {
continue;
}
/* This means we need a multiplexer, update the counter */
num_muxes++;
}
}
return num_muxes;
}
/*********************************************************************
* This function will find the number of multiplexers required by
* a Switch Block module.

View File

@ -10,10 +10,18 @@
#include "circuit_library.h"
#include "rr_blocks.h"
std::vector<CircuitPortId> find_connection_block_global_ports(const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const CircuitLibrary& circuit_lib,
const std::vector<t_switch_inf>& switch_lib);
std::vector<CircuitPortId> find_switch_block_global_ports(const RRGSB& rr_gsb,
const CircuitLibrary& circuit_lib,
const std::vector<t_switch_inf>& switch_lib);
size_t find_connection_block_number_of_muxes(const RRGSB& rr_gsb,
const t_rr_type& cb_type);
size_t find_switch_block_number_of_muxes(const RRGSB& rr_gsb);
#endif

View File

@ -43,6 +43,7 @@
#include "mux_utils.h"
#include "module_manager.h"
#include "module_manager_utils.h"
#include "fpga_x2p_mem_utils.h"
/* Include Verilog support headers*/
#include "verilog_global.h"
@ -50,6 +51,30 @@
#include "verilog_writer_utils.h"
#include "verilog_routing.h"
/********************************************************************
* Print local wires that are used for SRAM configuration
* This function is supposed to be used by Verilog generation
* of connection blocks
* It will count the number of connection blocks, which is the
* port width for local wires when Configuration chain is used
********************************************************************/
static
void print_verilog_connection_block_local_sram_wires(std::fstream& fp,
const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const e_sram_orgz& sram_orgz_type,
const size_t& port_size) {
size_t local_port_size = port_size;
if (SPICE_SRAM_SCAN_CHAIN == sram_orgz_type) {
/* Plus 1 for the wire size to connect to the tail of the configuration chain */
local_port_size = find_connection_block_number_of_muxes(rr_gsb, cb_type) + 1;
}
print_verilog_local_sram_wires(fp, circuit_lib, sram_model, sram_orgz_type, local_port_size);
}
/********************************************************************
* Print local wires that are used for SRAM configuration
* This function is supposed to be used by Verilog generation
@ -62,7 +87,7 @@ void print_verilog_switch_block_local_sram_wires(std::fstream& fp,
const RRGSB& rr_gsb,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const e_sram_orgz sram_orgz_type,
const e_sram_orgz& sram_orgz_type,
const size_t& port_size) {
size_t local_port_size = port_size;
if (SPICE_SRAM_SCAN_CHAIN == sram_orgz_type) {
@ -72,6 +97,28 @@ void print_verilog_switch_block_local_sram_wires(std::fstream& fp,
print_verilog_local_sram_wires(fp, circuit_lib, sram_model, sram_orgz_type, local_port_size);
}
/********************************************************************
* Check if the MSB of a configuration bus of a switch block
* matches the expected value
* Exception:
* 1. Configuration bus for configuration chain will follow
* the number of multiplexers in the switch block
********************************************************************/
static
bool check_switch_block_mem_config_bus(const e_sram_orgz& sram_orgz_type,
const RRGSB& rr_gsb,
const BasicPort& config_bus,
const size_t& expected_msb) {
size_t local_expected_msb = expected_msb;
if (SPICE_SRAM_SCAN_CHAIN == sram_orgz_type) {
/* Note the size of local wires is number of routing multiplexers + 1
* Wire MSB is the number of routing multiplexers in the configuration chain
*/
local_expected_msb = find_switch_block_number_of_muxes(rr_gsb);
}
return check_mem_config_bus(sram_orgz_type, config_bus, local_expected_msb);
}
/*********************************************************************
* Generate the Verilog module for a routing channel
* Routing track wire, which is 1-input and dual output
@ -2157,6 +2204,29 @@ void update_routing_connection_box_conf_bits(t_sram_orgz_info* cur_sram_orgz_inf
return;
}
/*********************************************************************
* Generate a port for a routing track of a swtich block
********************************************************************/
static
BasicPort generate_verilog_connection_box_ipin_port(const RRGSB& rr_gsb,
t_rr_node* src_rr_node) {
/* Ensure the src_rr_node is an input pin of a CLB */
VTR_ASSERT(IPIN == src_rr_node->type);
/* Create port description for input pin of a CLB */
vtr::Point<size_t> port_coord(src_rr_node->xlow, src_rr_node->ylow);
/* Search all the sides of a SB, see this drive_rr_node is an INPUT of this SB */
enum e_side cb_ipin_side = NUM_SIDES;
int cb_ipin_index = -1;
rr_gsb.get_node_side_and_index(src_rr_node, OUT_PORT, &cb_ipin_side, &cb_ipin_index);
/* We need to be sure that drive_rr_node is part of the CB */
VTR_ASSERT((-1 != cb_ipin_index)&&(NUM_SIDES != cb_ipin_side));
std::string port_name = generate_grid_side_port_name(port_coord,
rr_gsb.get_ipin_node_grid_side(cb_ipin_side, cb_ipin_index),
rr_gsb.get_ipin_node(cb_ipin_side, cb_ipin_index)->ptc_num);
return BasicPort(port_name, 1); /* Every grid output has a port size of 1 */
}
/*********************************************************************
* Generate a port for a routing track of a swtich block
********************************************************************/
@ -2179,6 +2249,39 @@ BasicPort generate_verilog_unique_switch_box_chan_port(const RRGSB& rr_sb,
return BasicPort(chan_port_name, 1); /* Every track has a port size of 1 */
}
/*********************************************************************
* Generate an input port for routing multiplexer inside the connection block
* which is the middle output of a routing track
********************************************************************/
static
BasicPort generate_connection_block_chan_port(const RRGSB& rr_gsb,
const t_rr_type& cb_type,
t_rr_node* chan_rr_node) {
BasicPort input_port;
/* Generate the input port object */
switch (chan_rr_node->type) {
case CHANX:
case CHANY: {
/* Create port description for the routing track middle output */
vtr::Point<size_t> middle_output_port_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
int chan_node_track_id = rr_gsb.get_cb_chan_node_index(cb_type, chan_rr_node);
/* Create a port description for the middle output */
std::string middle_output_port_name = generate_routing_track_middle_output_port_name(cb_type, middle_output_port_coord, chan_node_track_id);
input_port.set_name(middle_output_port_name);
input_port.set_width(1);
break;
}
default: /* OPIN, SOURCE, IPIN, SINK are invalid*/
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid rr_node type! Should be [OPIN|CHANX|CHANY].\n",
__FILE__, __LINE__);
exit(1);
}
return input_port;
}
/*********************************************************************
* Generate an input port for routing multiplexer inside the switch block
* In addition to give the Routing Resource node of the input
@ -2231,6 +2334,24 @@ BasicPort generate_switch_block_input_port(const RRGSB& rr_sb,
return input_port;
}
/*********************************************************************
* Generate a list of routing track middle output ports
* for routing multiplexer inside the connection block
********************************************************************/
static
std::vector<BasicPort> generate_connection_block_mux_input_ports(const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const std::vector<t_rr_node*>& input_rr_nodes) {
std::vector<BasicPort> input_ports;
for (auto input_rr_node : input_rr_nodes) {
input_ports.push_back(generate_connection_block_chan_port(rr_gsb, cb_type, input_rr_node));
}
return input_ports;
}
/*********************************************************************
* Generate a list of input ports for routing multiplexer inside the switch block
********************************************************************/
@ -2330,6 +2451,7 @@ static
void print_verilog_unique_switch_box_mux(ModuleManager& module_manager,
std::fstream& fp,
t_sram_orgz_info* cur_sram_orgz_info,
BasicPort& config_bus,
const ModuleId& sb_module,
const RRGSB& rr_sb,
const CircuitLibrary& circuit_lib,
@ -2460,18 +2582,22 @@ void print_verilog_unique_switch_box_mux(ModuleManager& module_manager,
std::map<std::string, BasicPort> mem_port2port_name_map;
/* TODO: Make the port2port map generation more generic!!! */
std::vector<BasicPort> config_ports;
config_ports.push_back(BasicPort(generate_local_config_bus_port_name(), mux_instance_id - 1, mux_instance_id));
/* Link the SRAM ports of the routing multiplexer to the memory module */
std::vector<BasicPort> mem_output_ports;
mem_output_ports.push_back(mux_config_port);
mem_output_ports.push_back(mux_config_inv_port);
mem_port2port_name_map = generate_mem_module_port2port_map(module_manager, mem_module,
config_ports,
config_bus,
mem_output_ports,
circuit_lib.design_tech_type(mux_model),
cur_sram_orgz_info->type);
/* Update the config bus for the module */
update_mem_module_config_bus(cur_sram_orgz_info->type,
circuit_lib.design_tech_type(mux_model),
mux_num_config_bits,
config_bus);
/* Print an instance of the MUX Module */
/* Print an instance of the memory module associated with the routing multiplexer */
print_verilog_comment(fp, std::string("----- BEGIN Instanciation of memory cells for a routing multiplexer -----"));
print_verilog_module_instance(fp, module_manager, sb_module, mem_module, mem_port2port_name_map, use_explicit_mapping);
print_verilog_comment(fp, std::string("----- END Instanciation of memory cells for a routing multiplexer -----"));
@ -2500,6 +2626,7 @@ static
void print_verilog_unique_switch_box_interc(ModuleManager& module_manager,
std::fstream& fp,
t_sram_orgz_info* cur_sram_orgz_info,
BasicPort& config_bus,
const ModuleId& sb_module,
const RRGSB& rr_sb,
const CircuitLibrary& circuit_lib,
@ -2534,7 +2661,7 @@ void print_verilog_unique_switch_box_interc(ModuleManager& module_manager,
drive_rr_nodes[DEFAULT_SWITCH_ID]);
} else if (1 < drive_rr_nodes.size()) {
/* Print the multiplexer, fan_in >= 2 */
print_verilog_unique_switch_box_mux(module_manager, fp, cur_sram_orgz_info,
print_verilog_unique_switch_box_mux(module_manager, fp, cur_sram_orgz_info, config_bus,
sb_module, rr_sb, circuit_lib, mux_lib,
rr_switches, chan_side, cur_rr_node,
drive_rr_nodes,
@ -2734,6 +2861,11 @@ void print_verilog_routing_switch_box_unique_module(ModuleManager& module_manage
rr_gsb.get_sb_num_conf_bits());
print_verilog_comment(fp, std::string("---- END local wires for SRAM data ports ----"));
/* Create a counter for the configuration bus */
BasicPort config_bus;
/* Counter start from 0 */
config_bus.set_width(0, 0);
/* TODO: Print routing multiplexers */
for (size_t side = 0; side < rr_gsb.get_num_sides(); ++side) {
Side side_manager(side);
@ -2741,7 +2873,8 @@ void print_verilog_routing_switch_box_unique_module(ModuleManager& module_manage
for (size_t itrack = 0; itrack < rr_gsb.get_chan_width(side_manager.get_side()); ++itrack) {
/* We care INC_DIRECTION tracks at this side*/
if (OUT_PORT == rr_gsb.get_chan_node_direction(side_manager.get_side(), itrack)) {
print_verilog_unique_switch_box_interc(module_manager, fp, cur_sram_orgz_info, module_id, rr_sb,
print_verilog_unique_switch_box_interc(module_manager, fp, cur_sram_orgz_info, config_bus,
module_id, rr_sb,
circuit_lib, mux_lib, rr_switches,
side_manager.get_side(),
itrack, is_explicit_mapping);
@ -2749,6 +2882,11 @@ void print_verilog_routing_switch_box_unique_module(ModuleManager& module_manage
}
}
/* TODO: Add check code for config_bus. The MSB should match the number of configuration bits!!! */
VTR_ASSERT(true == check_switch_block_mem_config_bus(cur_sram_orgz_info->type,
rr_gsb, config_bus,
rr_gsb.get_sb_num_conf_bits()));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_manager.module_name(module_id));
@ -3261,6 +3399,46 @@ int count_verilog_connection_box_one_side_reserved_conf_bits(t_sram_orgz_info* c
return num_reserved_conf_bits;
}
/*********************************************************************
* Print a short interconneciton in connection
********************************************************************/
static
void print_verilog_connection_box_short_interc(std::fstream& fp,
const RRGSB& rr_gsb,
const t_rr_type& cb_type,
t_rr_node* src_rr_node) {
/* Check the file handler*/
check_file_handler(fp);
/* Ensure we have only one 1 driver node */
VTR_ASSERT_SAFE(1 == src_rr_node->fan_in);
/* Find the driver node */
t_rr_node* drive_rr_node = src_rr_node->drive_rr_nodes[0];
/* We have OPINs since we may have direct connections:
* These connections should be handled by other functions in the compact_netlist.c
* So we just return here for OPINs
*/
if (OPIN == drive_rr_node->type) {
return;
}
VTR_ASSERT((CHANX == drive_rr_node->type) || (CHANY == drive_rr_node->type));
/* Create port description for the routing track middle output */
BasicPort middle_output_port = generate_connection_block_chan_port(rr_gsb, cb_type, drive_rr_node);
/* Create port description for input pin of a CLB */
BasicPort input_port = generate_verilog_connection_box_ipin_port(rr_gsb, src_rr_node);
/* Print the wire connection */
print_verilog_wire_connection(fp, input_port, middle_output_port, false);
return;
}
/* SRC rr_node is the IPIN of a grid.*/
static
void dump_verilog_connection_box_short_interc(FILE* fp,
@ -3411,6 +3589,186 @@ void dump_verilog_connection_box_short_interc(FILE* fp,
return;
}
/*********************************************************************
* Print a Verilog instance of a routing multiplexer as well as
* associated memory modules for a connection inside a connection block
********************************************************************/
static
void print_verilog_connection_box_mux(ModuleManager& module_manager,
std::fstream& fp,
t_sram_orgz_info* cur_sram_orgz_info,
BasicPort& config_bus,
const ModuleId& cb_module,
const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
const std::vector<t_switch_inf>& rr_switches,
t_rr_node* cur_rr_node,
const bool& use_explicit_mapping) {
/* Check the file handler*/
check_file_handler(fp);
/* Check */
/* Check current rr_node is an input pin of a CLB */
VTR_ASSERT(IPIN == cur_rr_node->type);
/* Build a vector of driver rr_nodes */
std::vector<t_rr_node*> drive_rr_nodes;
for (int inode = 0; inode < cur_rr_node->num_drive_rr_nodes; inode++) {
drive_rr_nodes.push_back(cur_rr_node->drive_rr_nodes[inode]);
}
int switch_index = cur_rr_node->drive_switches[DEFAULT_SWITCH_ID];
/* Get the circuit model id of the routing multiplexer */
CircuitModelId mux_model = rr_switches[switch_index].circuit_model;
/* Find the input size of the implementation of a routing multiplexer */
size_t datapath_mux_size = drive_rr_nodes.size();
/* Get the multiplexing graph from the Mux Library */
MuxId mux_id = mux_lib.mux_graph(mux_model, datapath_mux_size);
const MuxGraph& mux_graph = mux_lib.mux_graph(mux_id);
/* Find the module name of the multiplexer and try to find it in the module manager */
std::string mux_module_name = generate_mux_subckt_name(circuit_lib, mux_model, datapath_mux_size, std::string(""));
ModuleId mux_module = module_manager.find_module(mux_module_name);
VTR_ASSERT (true == module_manager.valid_module_id(mux_module));
/* Get the MUX instance id from the module manager */
size_t mux_instance_id = module_manager.num_instance(cb_module, mux_module);
/* Print the input bus for the inputs of a multiplexer
* We use the datapath input size (mux_size) to name the bus
* just to following the naming convention when the tool is built
* The bus port size should be the input size of multiplexer implementation
*/
BasicPort inbus_port;
inbus_port.set_name(generate_mux_input_bus_port_name(circuit_lib, mux_model, datapath_mux_size, mux_instance_id));
inbus_port.set_width(datapath_mux_size);
/* TODO: Generate input ports that are wired to the input bus of the routing multiplexer */
std::vector<BasicPort> mux_input_ports = generate_connection_block_mux_input_ports(rr_gsb, cb_type, drive_rr_nodes);
/* Connect input ports to bus */
print_verilog_comment(fp, std::string("----- BEGIN A local bus wire for multiplexer inputs -----"));
fp << generate_verilog_local_wire(inbus_port, mux_input_ports) << std::endl;
print_verilog_comment(fp, std::string("----- END A local bus wire for multiplexer inputs -----"));
fp << std::endl;
/* Find the number of reserved configuration bits for the routing multiplexer */
size_t mux_num_reserved_config_bits = find_mux_num_reserved_config_bits(circuit_lib, mux_model, mux_graph);
/* Find the number of configuration bits for the routing multiplexer */
size_t mux_num_config_bits = find_mux_num_config_bits(circuit_lib, mux_model, mux_graph, cur_sram_orgz_info->type);
/* Print the configuration bus for the routing multiplexers */
print_verilog_comment(fp, std::string("----- BEGIN Local wires to group configuration ports -----"));
print_verilog_mux_config_bus(fp, circuit_lib, mux_model, cur_sram_orgz_info->type,
datapath_mux_size, mux_instance_id,
mux_num_reserved_config_bits, mux_num_config_bits);
print_verilog_comment(fp, std::string("----- END Local wires to group configuration ports -----"));
fp << std::endl;
/* Dump ports visible only during formal verification */
print_verilog_comment(fp, std::string("----- BEGIN Local wires used in only formal verification purpose -----"));
print_verilog_preprocessing_flag(fp, std::string(verilog_formal_verification_preproc_flag));
/* Print the SRAM configuration ports for formal verification */
/* TODO: align with the port width of formal verification port of SB module */
print_verilog_formal_verification_mux_sram_ports_wiring(fp, circuit_lib, mux_model,
datapath_mux_size, mux_instance_id, mux_num_config_bits);
print_verilog_endif(fp);
print_verilog_comment(fp, std::string("----- END Local wires used in only formal verification purpose -----"));
fp << std::endl;
/* Instanciate the MUX Module */
/* Create port-to-port map */
std::map<std::string, BasicPort> mux_port2port_name_map;
/* Link input bus port to routing track middle outputs */
std::vector<CircuitPortId> mux_model_input_ports = circuit_lib.model_ports_by_type(mux_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(1 == mux_model_input_ports.size());
/* Use the port name convention in the circuit library */
mux_port2port_name_map[circuit_lib.port_lib_name(mux_model_input_ports[0])] = inbus_port;
/* Link output port to Connection Block output: src_rr_node */
std::vector<CircuitPortId> mux_model_output_ports = circuit_lib.model_ports_by_type(mux_model, SPICE_MODEL_PORT_OUTPUT, true);
VTR_ASSERT(1 == mux_model_output_ports.size());
/* Use the port name convention in the circuit library */
mux_port2port_name_map[circuit_lib.port_lib_name(mux_model_output_ports[0])] = generate_verilog_connection_box_ipin_port(rr_gsb, cur_rr_node);
/* Link SRAM port to different configuraton port for the routing multiplexer
* Different design technology requires different configuration bus!
*/
std::vector<CircuitPortId> mux_model_sram_ports = circuit_lib.model_ports_by_type(mux_model, SPICE_MODEL_PORT_SRAM, true);
VTR_ASSERT( 1 == mux_model_sram_ports.size() );
/* For the regular SRAM port, module port use the same name */
std::string mux_module_sram_port_name = circuit_lib.port_lib_name(mux_model_sram_ports[0]);
BasicPort mux_config_port(generate_mux_sram_port_name(circuit_lib, mux_model, datapath_mux_size, mux_instance_id, SPICE_MODEL_PORT_INPUT),
mux_num_config_bits);
mux_port2port_name_map[mux_module_sram_port_name] = mux_config_port;
/* For the inverted SRAM port */
std::string mux_module_sram_inv_port_name = circuit_lib.port_lib_name(mux_model_sram_ports[0]) + std::string("_inv");
BasicPort mux_config_inv_port(generate_mux_sram_port_name(circuit_lib, mux_model, datapath_mux_size, mux_instance_id, SPICE_MODEL_PORT_OUTPUT),
mux_num_config_bits);
mux_port2port_name_map[mux_module_sram_inv_port_name] = mux_config_inv_port;
/* Print an instance of the MUX Module */
print_verilog_comment(fp, std::string("----- BEGIN Instanciation of a routing multiplexer -----"));
print_verilog_module_instance(fp, module_manager, cb_module, mux_module, mux_port2port_name_map, use_explicit_mapping);
print_verilog_comment(fp, std::string("----- END Instanciation of a routing multiplexer -----"));
fp << std::endl;
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and child modules
*/
module_manager.add_child_module(cb_module, mux_module);
/* Instanciate memory modules */
/* Find the name and module id of the memory module */
std::string mem_module_name = generate_mux_subckt_name(circuit_lib, mux_model, datapath_mux_size, std::string(verilog_mem_posfix));
ModuleId mem_module = module_manager.find_module(mem_module_name);
VTR_ASSERT (true == module_manager.valid_module_id(mem_module));
/* Create port-to-port map */
std::map<std::string, BasicPort> mem_port2port_name_map;
/* TODO: Make the port2port map generation more generic!!! */
/* Link the SRAM ports of the routing multiplexer to the memory module */
std::vector<BasicPort> mem_output_ports;
mem_output_ports.push_back(mux_config_port);
mem_output_ports.push_back(mux_config_inv_port);
mem_port2port_name_map = generate_mem_module_port2port_map(module_manager, mem_module,
config_bus,
mem_output_ports,
circuit_lib.design_tech_type(mux_model),
cur_sram_orgz_info->type);
/* Update the config bus for the module */
update_mem_module_config_bus(cur_sram_orgz_info->type,
circuit_lib.design_tech_type(mux_model),
mux_num_config_bits,
config_bus);
/* Print an instance of the memory module associated with the routing multiplexer */
print_verilog_comment(fp, std::string("----- BEGIN Instanciation of memory cells for a routing multiplexer -----"));
print_verilog_module_instance(fp, module_manager, cb_module, mem_module, mem_port2port_name_map, use_explicit_mapping);
print_verilog_comment(fp, std::string("----- END Instanciation of memory cells for a routing multiplexer -----"));
fp << std::endl;
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and child modules
*/
module_manager.add_child_module(cb_module, mem_module);
/* Create the path of the input of multiplexer in the hierarchy
* TODO: this MUST be deprecated later because module manager is created to handle these problems!!!
*/
std::string mux_input_hie_path = std::string(rr_gsb.gen_cb_verilog_instance_name(cb_type)) + std::string("/")
+ mux_module_name + std::string("_")
+ std::to_string(mux_instance_id) + std::string("_/in");
cur_rr_node->name_mux = my_strdup(mux_input_hie_path.c_str());
}
static
void dump_verilog_connection_box_mux(t_sram_orgz_info* cur_sram_orgz_info,
FILE* fp,
@ -3903,6 +4261,43 @@ void dump_verilog_connection_box_mux(t_sram_orgz_info* cur_sram_orgz_info,
return;
}
/********************************************************************
* Print internal connections of a connection block
* For a IPIN node that is driven by only 1 fan-in,
* a short wire will be created
* For a IPIN node that is driven by more than two fan-ins,
* a routing multiplexer will be instanciated
********************************************************************/
static
void print_verilog_connection_box_interc(ModuleManager& module_manager,
std::fstream& fp,
t_sram_orgz_info* cur_sram_orgz_info,
BasicPort& config_bus,
const ModuleId& cb_module,
const RRGSB& rr_gsb,
const t_rr_type& cb_type,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
const std::vector<t_switch_inf>& rr_switches,
t_rr_node* src_rr_node,
const bool& use_explicit_mapping) {
if (1 > src_rr_node->fan_in) {
return; /* This port has no driver, skip it */
} else if (1 == src_rr_node->fan_in) {
/* Print a direct connection */
print_verilog_connection_box_short_interc(fp, rr_gsb, cb_type, src_rr_node);
} else if (1 < src_rr_node->fan_in) {
/* Print the multiplexer, fan_in >= 2 */
print_verilog_connection_box_mux(module_manager, fp, cur_sram_orgz_info, config_bus,
cb_module, rr_gsb, cb_type,
circuit_lib, mux_lib, rr_switches,
src_rr_node, use_explicit_mapping);
} /*Nothing should be done else*/
return;
}
static
void dump_verilog_connection_box_interc(t_sram_orgz_info* cur_sram_orgz_info,
FILE* fp,
@ -4050,6 +4445,279 @@ int count_verilog_connection_box_reserved_conf_bits(t_sram_orgz_info* cur_sram_o
return num_reserved_conf_bits;
}
/********************************************************************
* Print the sub-circuit of a connection Box (Type: [CHANX|CHANY])
* Actually it is very similiar to switch box but
* the difference is connection boxes connect Grid INPUT Pins to channels
* NOTE: direct connection between CLBs should NOT be included inside this
* module! They should be added in the top-level module as their connection
* is not limited to adjacent CLBs!!!
*
* Location of a X- and Y-direction Connection Block in FPGA fabric
* +------------+ +-------------+
* | |------>| |
* | CLB |<------| Y-direction |
* | | ... | Connection |
* | |------>| Block |
* +------------+ +-------------+
* | ^ ... | | ^ ... |
* v | v v | v
* +-------------------+ +-------------+
* --->| |--->| |
* <---| X-direction |<---| Switch |
* ...| Connection block |... | Block |
* --->| |--->| |
* +-------------------+ +-------------+
*
* Internal structure:
* This is an example of a X-direction connection block
* Note that middle output ports are shorted wire from inputs of routing tracks,
* which are also the inputs of routing multiplexer of the connection block
*
* CLB Input Pins
* (IPINs)
* ^ ^ ^
* | | ... |
* +--------------------------+
* | ^ ^ ^ |
* | | | ... | |
* | +--------------------+ |
* | | routing | |
* | | multiplexers | |
* | +--------------------+ |
* | middle outputs |
* | of routing channel |
* | ^ ^ ^ ^ ^ ^ ^ ^ |
* | | | | | ... | | | | |
* in[0] -->|------------------------->|---> out[0]
* out[1] <--|<-------------------------|<--- in[1]
* | ... |
* in[W-2] -->|------------------------->|---> out[W-2]
* out[W-1] <--|<-------------------------|<--- in[W-1]
* +--------------------------+
*
* W: routing channel width
*
********************************************************************/
static
void print_verilog_routing_connection_box_unique_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
const std::vector<t_switch_inf>& rr_switches,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& subckt_dir,
const RRGSB& rr_cb,
const t_rr_type& cb_type,
const bool& use_explicit_mapping) {
RRGSB rr_gsb = rr_cb; /* IMPORTANT: this copy will be removed when the config ports are initialized when created!!! */
/* TODO: These should be done when initializing the tool */
/* Count the number of configuration bits to be consumed by this Switch block */
int num_conf_bits = count_verilog_connection_box_conf_bits(cur_sram_orgz_info, rr_gsb, cb_type);
/* Count the number of reserved configuration bits to be consumed by this Switch block */
int num_reserved_conf_bits = count_verilog_connection_box_reserved_conf_bits(cur_sram_orgz_info, rr_gsb, cb_type);
/* Estimate the sram_verilog_model->cnt */
int cur_num_sram = get_sram_orgz_info_num_mem_bit(cur_sram_orgz_info);
/* Record index */
rr_gsb.set_cb_num_reserved_conf_bits(cb_type, num_reserved_conf_bits);
rr_gsb.set_cb_conf_bits_lsb(cb_type, cur_num_sram);
rr_gsb.set_cb_conf_bits_msb(cb_type, cur_num_sram + num_conf_bits - 1);
/* Create the netlist */
vtr::Point<size_t> gsb_coordinate(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
std::string verilog_fname(subckt_dir + generate_connection_block_netlist_name(cb_type, gsb_coordinate, std::string(verilog_netlist_file_postfix)));
/* TODO: remove the bak file when the file is ready */
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
print_verilog_file_header(fp, std::string("Verilog modules for Unique Connection Blocks[" + std::to_string(rr_gsb.get_cb_x(cb_type)) + "]["+ std::to_string(rr_gsb.get_cb_y(cb_type)) + "]"));
/* Print preprocessing flags */
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(generate_connection_block_module_name(cb_type, gsb_coordinate));
/* Add ports to the module */
/* Global ports:
* In the circuit_library, find all the circuit models that may be included in the Connection Block
* Collect the global ports from the circuit_models and merge with the same name
*/
std::vector<CircuitPortId> global_ports = find_connection_block_global_ports(rr_gsb, cb_type, circuit_lib, rr_switches);
for (const auto& port : global_ports) {
BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, module_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add the input and output ports of routing tracks in the channel
* Routing tracks pass through the connection blocks
*/
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type); ++itrack) {
vtr::Point<size_t> port_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
std::string port_name = generate_routing_track_port_name(cb_type,
port_coord, itrack,
IN_PORT);
BasicPort module_port(port_name, 1); /* Every track has a port size of 1 */
module_manager.add_port(module_id, module_port, ModuleManager::MODULE_INPUT_PORT);
}
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type); ++itrack) {
vtr::Point<size_t> port_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
std::string port_name = generate_routing_track_port_name(cb_type,
port_coord, itrack,
OUT_PORT);
BasicPort module_port(port_name, 1); /* Every track has a port size of 1 */
module_manager.add_port(module_id, module_port, ModuleManager::MODULE_OUTPUT_PORT);
}
/* Add the input pins of grids, which are output ports of the connection block */
std::vector<enum e_side> cb_ipin_sides = rr_gsb.get_cb_ipin_sides(cb_type);
for (size_t iside = 0; iside < cb_ipin_sides.size(); ++iside) {
enum e_side cb_ipin_side = cb_ipin_sides[iside];
for (size_t inode = 0; inode < rr_gsb.get_num_ipin_nodes(cb_ipin_side); ++inode) {
t_rr_node* ipin_node = rr_gsb.get_ipin_node(cb_ipin_side, inode);
vtr::Point<size_t> port_coord(ipin_node->xlow, ipin_node->ylow);
std::string port_name = generate_grid_side_port_name(port_coord,
rr_gsb.get_ipin_node_grid_side(cb_ipin_side, inode),
ipin_node->ptc_num);
BasicPort module_port(port_name, 1); /* Every grid output has a port size of 1 */
/* Grid outputs are inputs of switch blocks */
module_manager.add_port(module_id, module_port, ModuleManager::MODULE_OUTPUT_PORT);
}
}
/* Add configuration ports */
/* Reserved sram ports */
if (0 < rr_gsb.get_cb_num_reserved_conf_bits(cb_type)) {
/* Check: this SRAM organization type must be memory-bank ! */
VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type );
/* Generate a list of ports */
add_reserved_sram_ports_to_module_manager(module_manager, module_id,
rr_gsb.get_cb_num_reserved_conf_bits(cb_type));
}
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model* mem_model = NULL;
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
/* Normal sram ports */
if (0 < rr_gsb.get_cb_num_conf_bits(cb_type)) {
add_sram_ports_to_module_manager(module_manager, module_id,
circuit_lib, sram_model, cur_sram_orgz_info->type,
rr_gsb.get_cb_num_conf_bits(cb_type));
/* Add ports only visible during formal verification to the module */
add_formal_verification_sram_ports_to_module_manager(module_manager, module_id, circuit_lib, sram_model,
std::string(verilog_formal_verification_preproc_flag),
rr_gsb.get_cb_num_conf_bits(cb_type));
}
/* Print module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish printing ports */
/* Print an empty line a splitter */
fp << std::endl;
/* Print local wires, which are middle outputs of routing tracks */
print_verilog_comment(fp, std::string("---- BEGIN local wires for middle output ports of routing tracks ----"));
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type); ++itrack) {
vtr::Point<size_t> port_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
/* Create a port description for the middle output */
std::string port_name = generate_routing_track_middle_output_port_name(cb_type,
port_coord, itrack);
BasicPort middle_output_port(port_name, 1);
fp << generate_verilog_port(VERILOG_PORT_WIRE, middle_output_port) << ";" << std::endl;
}
print_verilog_comment(fp, std::string("---- END local wires for middle output ports of routing tracks ----"));
/* Print an empty line a splitter */
fp << std::endl;
/* Print short-wire connection for each routing track :
* Each input port is short-wired to its output port and middle output port
*
* in[i] ----------> out[i]
* |
* +-----> mid_out[i]
*/
print_verilog_comment(fp, std::string("---- BEGIN wire connection between inputs, outputs and middle outputs of routing tracks ----"));
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type); ++itrack) {
vtr::Point<size_t> port_coord(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type));
/* Create a port description for the input */
std::string input_port_name = generate_routing_track_port_name(cb_type,
port_coord, itrack,
IN_PORT);
BasicPort input_port(input_port_name, 1); /* Every track has a port size of 1 */
/* Create a port description for the output */
std::string output_port_name = generate_routing_track_port_name(cb_type,
port_coord, itrack,
OUT_PORT);
BasicPort output_port(output_port_name, 1); /* Every track has a port size of 1 */
/* Create a port description for the middle output */
std::string middle_output_port_name = generate_routing_track_middle_output_port_name(cb_type, port_coord, itrack);
BasicPort middle_output_port(middle_output_port_name, 1);
/* Print short-wires: input port ---> output port */
print_verilog_wire_connection(fp, output_port, input_port, false);
/* Print short-wires: input port ---> middle output port */
print_verilog_wire_connection(fp, middle_output_port, input_port, false);
}
print_verilog_comment(fp, std::string("---- END wire connection between inputs, outputs and middle outputs of routing tracks ----"));
/* Print an empty line a splitter */
fp << std::endl;
print_verilog_comment(fp, std::string("---- BEGIN local wires for SRAM data ports ----"));
/* Print local wires for memory configurations */
print_verilog_connection_block_local_sram_wires(fp, rr_gsb, cb_type, circuit_lib, sram_model, cur_sram_orgz_info->type,
rr_gsb.get_cb_num_conf_bits(cb_type));
print_verilog_comment(fp, std::string("---- END local wires for SRAM data ports ----"));
/* Print an empty line a splitter */
fp << std::endl;
/* Create a counter for the configuration bus */
BasicPort config_bus;
/* Counter start from 0 */
config_bus.set_width(0, 0);
/* TODO: Print routing multiplexers or direct interconnect*/
for (size_t iside = 0; iside < cb_ipin_sides.size(); ++iside) {
enum e_side cb_ipin_side = cb_ipin_sides[iside];
for (size_t inode = 0; inode < rr_gsb.get_num_ipin_nodes(cb_ipin_side); ++inode) {
print_verilog_connection_box_interc(module_manager, fp, cur_sram_orgz_info,
config_bus, module_id, rr_gsb, cb_type,
circuit_lib, mux_lib, rr_switches,
rr_gsb.get_ipin_node(cb_ipin_side, inode),
use_explicit_mapping);
}
}
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_manager.module_name(module_id));
/* Add an empty line as a splitter */
fp << std::endl;
/* Close file handler */
fp.close();
/* Add fname to the linked list */
/*
routing_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(routing_verilog_subckt_file_path_head, fname);
*/
}
/* Print connection boxes
* Print the sub-circuit of a connection Box (Type: [CHANX|CHANY])
* Actually it is very similiar to switch box but
@ -4632,6 +5300,15 @@ void print_verilog_routing_resources(ModuleManager& module_manager,
dump_verilog_routing_connection_box_unique_module(cur_sram_orgz_info,
verilog_dir, subckt_dir, unique_mirror, CHANX,
explicit_port_mapping);
print_verilog_routing_connection_box_unique_module(module_manager,
arch.spice->circuit_lib, mux_lib,
rr_switches,
cur_sram_orgz_info,
std::string(verilog_dir),
std::string(subckt_dir),
unique_mirror, CHANX,
explicit_port_mapping);
}
/* Y - channels [1...ny][0..nx]*/
@ -4640,6 +5317,15 @@ void print_verilog_routing_resources(ModuleManager& module_manager,
dump_verilog_routing_connection_box_unique_module(cur_sram_orgz_info,
verilog_dir, subckt_dir, unique_mirror, CHANY,
explicit_port_mapping);
print_verilog_routing_connection_box_unique_module(module_manager,
arch.spice->circuit_lib, mux_lib,
rr_switches,
cur_sram_orgz_info,
std::string(verilog_dir),
std::string(subckt_dir),
unique_mirror, CHANY,
explicit_port_mapping);
}
/* Restore sram_orgz_info to the base */