Merge branch 'master' into master
This commit is contained in:
commit
7ffadb7bda
|
@ -130,7 +130,7 @@ int fpga_fabric_verilog(
|
||||||
if (!fabric_tile.empty()) {
|
if (!fabric_tile.empty()) {
|
||||||
status_code = print_verilog_tiles(
|
status_code = print_verilog_tiles(
|
||||||
netlist_manager, const_cast<const ModuleManager &>(module_manager),
|
netlist_manager, const_cast<const ModuleManager &>(module_manager),
|
||||||
tile_dir_path, fabric_tile, options);
|
tile_dir_path, fabric_tile, std::string(DEFAULT_TILE_DIR_NAME), options);
|
||||||
if (status_code != CMD_EXEC_SUCCESS) {
|
if (status_code != CMD_EXEC_SUCCESS) {
|
||||||
return CMD_EXEC_FATAL_ERROR;
|
return CMD_EXEC_FATAL_ERROR;
|
||||||
}
|
}
|
||||||
|
|
|
@ -27,7 +27,8 @@ namespace openfpga {
|
||||||
static int print_verilog_tile_module_netlist(
|
static int print_verilog_tile_module_netlist(
|
||||||
NetlistManager& netlist_manager, const ModuleManager& module_manager,
|
NetlistManager& netlist_manager, const ModuleManager& module_manager,
|
||||||
const std::string& verilog_dir, const FabricTile& fabric_tile,
|
const std::string& verilog_dir, const FabricTile& fabric_tile,
|
||||||
const FabricTileId& fabric_tile_id, const FabricVerilogOption& options) {
|
const FabricTileId& fabric_tile_id, const std::string& subckt_dir_name,
|
||||||
|
const FabricVerilogOption& options) {
|
||||||
/* Create a module as the top-level fabric, and add it to the module manager
|
/* Create a module as the top-level fabric, and add it to the module manager
|
||||||
*/
|
*/
|
||||||
vtr::Point<size_t> tile_coord = fabric_tile.tile_coordinate(fabric_tile_id);
|
vtr::Point<size_t> tile_coord = fabric_tile.tile_coordinate(fabric_tile_id);
|
||||||
|
@ -69,10 +70,11 @@ static int print_verilog_tile_module_netlist(
|
||||||
/* Add fname to the netlist name list */
|
/* Add fname to the netlist name list */
|
||||||
NetlistId nlist_id = NetlistId::INVALID();
|
NetlistId nlist_id = NetlistId::INVALID();
|
||||||
if (options.use_relative_path()) {
|
if (options.use_relative_path()) {
|
||||||
nlist_id = netlist_manager.add_netlist(verilog_fname);
|
nlist_id = netlist_manager.add_netlist(subckt_dir_name + verilog_fname);
|
||||||
} else {
|
} else {
|
||||||
nlist_id = netlist_manager.add_netlist(verilog_fpath);
|
nlist_id = netlist_manager.add_netlist(verilog_fpath);
|
||||||
}
|
}
|
||||||
|
|
||||||
VTR_ASSERT(nlist_id);
|
VTR_ASSERT(nlist_id);
|
||||||
netlist_manager.set_netlist_type(nlist_id,
|
netlist_manager.set_netlist_type(nlist_id,
|
||||||
NetlistManager::TILE_MODULE_NETLIST);
|
NetlistManager::TILE_MODULE_NETLIST);
|
||||||
|
@ -89,6 +91,7 @@ int print_verilog_tiles(NetlistManager& netlist_manager,
|
||||||
const ModuleManager& module_manager,
|
const ModuleManager& module_manager,
|
||||||
const std::string& verilog_dir,
|
const std::string& verilog_dir,
|
||||||
const FabricTile& fabric_tile,
|
const FabricTile& fabric_tile,
|
||||||
|
const std::string& subckt_dir_name,
|
||||||
const FabricVerilogOption& options) {
|
const FabricVerilogOption& options) {
|
||||||
vtr::ScopedStartFinishTimer timer("Build tile modules for the FPGA fabric");
|
vtr::ScopedStartFinishTimer timer("Build tile modules for the FPGA fabric");
|
||||||
|
|
||||||
|
@ -98,7 +101,7 @@ int print_verilog_tiles(NetlistManager& netlist_manager,
|
||||||
for (FabricTileId fabric_tile_id : fabric_tile.unique_tiles()) {
|
for (FabricTileId fabric_tile_id : fabric_tile.unique_tiles()) {
|
||||||
status_code = print_verilog_tile_module_netlist(
|
status_code = print_verilog_tile_module_netlist(
|
||||||
netlist_manager, module_manager, verilog_dir, fabric_tile, fabric_tile_id,
|
netlist_manager, module_manager, verilog_dir, fabric_tile, fabric_tile_id,
|
||||||
options);
|
subckt_dir_name, options);
|
||||||
if (status_code != CMD_EXEC_SUCCESS) {
|
if (status_code != CMD_EXEC_SUCCESS) {
|
||||||
return CMD_EXEC_FATAL_ERROR;
|
return CMD_EXEC_FATAL_ERROR;
|
||||||
}
|
}
|
||||||
|
|
|
@ -22,6 +22,7 @@ int print_verilog_tiles(NetlistManager& netlist_manager,
|
||||||
const ModuleManager& module_manager,
|
const ModuleManager& module_manager,
|
||||||
const std::string& verilog_dir,
|
const std::string& verilog_dir,
|
||||||
const FabricTile& fabric_tile,
|
const FabricTile& fabric_tile,
|
||||||
|
const std::string& subckt_dir_name,
|
||||||
const FabricVerilogOption& options);
|
const FabricVerilogOption& options);
|
||||||
|
|
||||||
} /* end namespace openfpga */
|
} /* end namespace openfpga */
|
||||||
|
|
|
@ -0,0 +1,277 @@
|
||||||
|
<?xml version="1.0"?>
|
||||||
|
<!-- Architecture annotation for OpenFPGA framework
|
||||||
|
This annotation supports the k6_N10_40nm.xml
|
||||||
|
- General purpose logic block
|
||||||
|
- K = 6, N = 10, I = 40
|
||||||
|
- Single mode
|
||||||
|
- Routing architecture
|
||||||
|
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||||
|
-->
|
||||||
|
<openfpga_architecture>
|
||||||
|
<technology_library>
|
||||||
|
<device_library>
|
||||||
|
<device_model name="logic" type="transistor">
|
||||||
|
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||||
|
<design vdd="0.9" pn_ratio="2"/>
|
||||||
|
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||||
|
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||||
|
</device_model>
|
||||||
|
<device_model name="io" type="transistor">
|
||||||
|
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||||
|
<design vdd="2.5" pn_ratio="3"/>
|
||||||
|
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||||
|
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||||
|
</device_model>
|
||||||
|
</device_library>
|
||||||
|
<variation_library>
|
||||||
|
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||||
|
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||||
|
</variation_library>
|
||||||
|
</technology_library>
|
||||||
|
<circuit_library>
|
||||||
|
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
|
||||||
|
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||||
|
<device_technology device_model_name="logic"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
|
||||||
|
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||||
|
<device_technology device_model_name="logic"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
|
||||||
|
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
|
||||||
|
<device_technology device_model_name="logic"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||||
|
10e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
|
||||||
|
<design_technology type="cmos" topology="OR"/>
|
||||||
|
<device_technology device_model_name="logic"/>
|
||||||
|
<input_buffer exist="false"/>
|
||||||
|
<output_buffer exist="false"/>
|
||||||
|
<port type="input" prefix="a" size="1"/>
|
||||||
|
<port type="input" prefix="b" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<delay_matrix type="rise" in_port="a b" out_port="out">
|
||||||
|
10e-12 5e-12
|
||||||
|
</delay_matrix>
|
||||||
|
<delay_matrix type="fall" in_port="a b" out_port="out">
|
||||||
|
10e-12 5e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
|
||||||
|
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||||
|
<device_technology device_model_name="logic"/>
|
||||||
|
<input_buffer exist="false"/>
|
||||||
|
<output_buffer exist="false"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="input" prefix="sel" size="1"/>
|
||||||
|
<port type="input" prefix="selb" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||||
|
10e-12 5e-12 5e-12
|
||||||
|
</delay_matrix>
|
||||||
|
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||||
|
10e-12 5e-12 5e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="false"/>
|
||||||
|
<output_buffer exist="false"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/>
|
||||||
|
<!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="false"/>
|
||||||
|
<output_buffer exist="false"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<wire_param model_type="pi" R="0" C="0" num_level="1"/>
|
||||||
|
<!-- model_type could be T, res_val cap_val should be defined -->
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
|
||||||
|
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<port type="sram" prefix="sram" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
|
||||||
|
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||||
|
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<port type="sram" prefix="sram" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
|
||||||
|
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||||
|
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||||
|
<port type="input" prefix="in" size="1"/>
|
||||||
|
<port type="output" prefix="out" size="1"/>
|
||||||
|
<port type="sram" prefix="sram" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||||
|
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<port type="input" prefix="D" size="1"/>
|
||||||
|
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||||
|
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||||
|
<port type="output" prefix="Q" size="1"/>
|
||||||
|
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
|
||||||
|
<design_technology type="cmos" fracturable_lut="true"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
|
||||||
|
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-"/>
|
||||||
|
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||||
|
<port type="input" prefix="in" size="4" tri_state_map="---1" circuit_model_name="OR2"/>
|
||||||
|
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
|
||||||
|
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
|
||||||
|
<port type="sram" prefix="sram" size="16"/>
|
||||||
|
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||||
|
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/latch.v">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
|
||||||
|
<port type="bl" prefix="bl" lib_name="D" size="1"/>
|
||||||
|
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
|
||||||
|
<port type="output" prefix="Q" lib_name="Q" size="1"/>
|
||||||
|
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||||
|
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||||
|
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||||
|
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/adder.v">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<port type="input" prefix="a" lib_name="A" size="1"/>
|
||||||
|
<port type="input" prefix="b" lib_name="B" size="1"/>
|
||||||
|
<port type="input" prefix="cin" lib_name="CI" size="1"/>
|
||||||
|
<port type="output" prefix="sumout" lib_name="SUM" size="1"/>
|
||||||
|
<port type="output" prefix="cout" lib_name="CO" size="1"/>
|
||||||
|
</circuit_model>
|
||||||
|
<circuit_model type="hard_logic" name="dpram_128x8" prefix="dpram_128x8" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dpram1k.v">
|
||||||
|
<design_technology type="cmos"/>
|
||||||
|
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||||
|
<port type="input" prefix="waddr" size="7"/>
|
||||||
|
<port type="input" prefix="raddr" size="7"/>
|
||||||
|
<port type="input" prefix="d_in" size="8"/>
|
||||||
|
<port type="input" prefix="wen" size="1"/>
|
||||||
|
<port type="input" prefix="ren" size="1"/>
|
||||||
|
<port type="output" prefix="d_out" size="8"/>
|
||||||
|
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"/>
|
||||||
|
</circuit_model>
|
||||||
|
</circuit_library>
|
||||||
|
<configuration_protocol>
|
||||||
|
<organization type="frame_based" circuit_model_name="LATCHR"/>
|
||||||
|
</configuration_protocol>
|
||||||
|
<connection_block>
|
||||||
|
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
|
||||||
|
</connection_block>
|
||||||
|
<switch_block>
|
||||||
|
<switch name="L1" circuit_model_name="mux_2level_tapbuf"/>
|
||||||
|
<switch name="L2" circuit_model_name="mux_2level_tapbuf"/>
|
||||||
|
<switch name="L4" circuit_model_name="mux_2level_tapbuf"/>
|
||||||
|
</switch_block>
|
||||||
|
<routing_segment>
|
||||||
|
<segment name="L1x" circuit_model_name="chan_segment"/>
|
||||||
|
<segment name="L2x" circuit_model_name="chan_segment"/>
|
||||||
|
<segment name="L4x" circuit_model_name="chan_segment"/>
|
||||||
|
<segment name="L1y" circuit_model_name="chan_segment"/>
|
||||||
|
<segment name="L2y" circuit_model_name="chan_segment"/>
|
||||||
|
</routing_segment>
|
||||||
|
<direct_connection>
|
||||||
|
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
|
||||||
|
</direct_connection>
|
||||||
|
<pb_type_annotations>
|
||||||
|
<!-- physical pb_type binding in complex block IO -->
|
||||||
|
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
|
||||||
|
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
|
||||||
|
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
|
||||||
|
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
|
||||||
|
<!-- End physical pb_type binding in complex block IO -->
|
||||||
|
<!-- physical pb_type binding in complex block CLB -->
|
||||||
|
<!-- physical mode will be the default mode if not specified -->
|
||||||
|
<pb_type name="clb">
|
||||||
|
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
|
||||||
|
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||||
|
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
|
||||||
|
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
|
||||||
|
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="ADDF"/>
|
||||||
|
<!-- Binding operating pb_type to physical pb_type -->
|
||||||
|
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||||
|
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->
|
||||||
|
<port name="in" physical_mode_port="in[0:2]"/>
|
||||||
|
<port name="out" physical_mode_port="lut3_out[0:0]" physical_mode_pin_rotate_offset="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||||
|
<!-- Binding operating pb_types in mode 'arithmetic' -->
|
||||||
|
<pb_type name="clb.fle[arithmetic].arithmetic.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||||
|
<!-- Binding the lut4 to the first 3 inputs of fracturable lut6 -->
|
||||||
|
<port name="in" physical_mode_port="in[0:2]"/>
|
||||||
|
<port name="out" physical_mode_port="lut3_out[0:0]" physical_mode_pin_rotate_offset="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
|
||||||
|
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||||
|
<!-- Binding operating pb_types in mode 'ble4' -->
|
||||||
|
<pb_type name="clb.fle[n1_lut4].ble4.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="0">
|
||||||
|
<!-- Binding the lut4 to the first 4 inputs of fracturable lut4 -->
|
||||||
|
<port name="in" physical_mode_port="in[0:3]"/>
|
||||||
|
<port name="out" physical_mode_port="lut4_out"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="clb.fle[n1_lut4].ble4.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
|
||||||
|
<!-- End physical pb_type binding in complex block IO -->
|
||||||
|
<!-- physical pb_type binding in complex block memory -->
|
||||||
|
<pb_type name="memory[mem_128x8_dp].mem_128x8_dp" circuit_model_name="dpram_128x8"/>
|
||||||
|
<!-- END physical pb_type binding in complex block memory -->
|
||||||
|
</pb_type_annotations>
|
||||||
|
</openfpga_architecture>
|
|
@ -147,6 +147,10 @@ echo -e "Testing K4N4 with LUTRAM";
|
||||||
run-task basic_tests/k4_series/k4n4_lutram $@
|
run-task basic_tests/k4_series/k4n4_lutram $@
|
||||||
echo -e "Testing K4N4 with multiple lengths of routing segments";
|
echo -e "Testing K4N4 with multiple lengths of routing segments";
|
||||||
run-task basic_tests/k4_series/k4n4_L124 $@
|
run-task basic_tests/k4_series/k4n4_L124 $@
|
||||||
|
echo -e "Testing K4N4 with routing channel width distribution: x = 0.8, y = 1.0";
|
||||||
|
run-task basic_tests/k4_series/k4n4_chandistr $@
|
||||||
|
echo -e "Testing K4N4 with routing channel width distribution: x = 0.8, y = 1.0 and wire segment distribution: x=L124, Y=L12";
|
||||||
|
run-task basic_tests/k4_series/k4n4_chandistr_segdist $@
|
||||||
echo -e "Testing K4N4 with 32-bit fracturable multiplier";
|
echo -e "Testing K4N4 with 32-bit fracturable multiplier";
|
||||||
run-task basic_tests/k4_series/k4n4_frac_mult $@
|
run-task basic_tests/k4_series/k4n4_frac_mult $@
|
||||||
echo -e "Testing K4N5 with pattern based local routing";
|
echo -e "Testing K4N5 with pattern based local routing";
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
# Configuration file for running experiments
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||||
|
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||||
|
# timeout_each_job is timeout for each job
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
|
||||||
|
[GENERAL]
|
||||||
|
run_engine=openfpga_shell
|
||||||
|
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||||
|
power_analysis = true
|
||||||
|
spice_output=false
|
||||||
|
verilog_output=true
|
||||||
|
timeout_each_job = 20*60
|
||||||
|
fpga_flow=vpr_blif
|
||||||
|
|
||||||
|
[OpenFPGA_SHELL]
|
||||||
|
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/fix_device_route_chan_width_example_script.openfpga
|
||||||
|
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_adder_chain_mem1K_L124_40nm_frame_openfpga.xml
|
||||||
|
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||||
|
openfpga_vpr_device_layout=4x4
|
||||||
|
openfpga_vpr_route_chan_width=40
|
||||||
|
|
||||||
|
[ARCHITECTURES]
|
||||||
|
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_adder_chain_mem1K_L124_ChanWidth0p8_40nm.xml
|
||||||
|
|
||||||
|
[BENCHMARKS]
|
||||||
|
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||||
|
|
||||||
|
[SYNTHESIS_PARAM]
|
||||||
|
bench0_top = and2
|
||||||
|
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||||
|
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||||
|
|
||||||
|
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||||
|
end_flow_with_test=
|
||||||
|
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,38 @@
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
# Configuration file for running experiments
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||||
|
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||||
|
# timeout_each_job is timeout for each job
|
||||||
|
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||||
|
|
||||||
|
[GENERAL]
|
||||||
|
run_engine=openfpga_shell
|
||||||
|
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||||
|
power_analysis = true
|
||||||
|
spice_output=false
|
||||||
|
verilog_output=true
|
||||||
|
timeout_each_job = 20*60
|
||||||
|
fpga_flow=vpr_blif
|
||||||
|
|
||||||
|
[OpenFPGA_SHELL]
|
||||||
|
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/fix_device_route_chan_width_example_script.openfpga
|
||||||
|
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_adder_chain_mem1K_L124X_L12Y_40nm_frame_openfpga.xml
|
||||||
|
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||||
|
openfpga_vpr_device_layout=4x4
|
||||||
|
openfpga_vpr_route_chan_width=60
|
||||||
|
|
||||||
|
[ARCHITECTURES]
|
||||||
|
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_adder_chain_mem1K_L124X_L12Y_ChanWidth0p8_40nm.xml
|
||||||
|
|
||||||
|
[BENCHMARKS]
|
||||||
|
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||||
|
|
||||||
|
[SYNTHESIS_PARAM]
|
||||||
|
bench0_top = and2
|
||||||
|
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||||
|
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||||
|
|
||||||
|
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||||
|
end_flow_with_test=
|
||||||
|
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,733 @@
|
||||||
|
<?xml version="1.0"?>
|
||||||
|
<!--
|
||||||
|
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
|
||||||
|
|
||||||
|
- 40 nm technology
|
||||||
|
- General purpose logic block:
|
||||||
|
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
|
||||||
|
with optionally registered outputs
|
||||||
|
- Routing architecture:
|
||||||
|
25% L = 1, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
25% L = 2, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
50% L = 4, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
|
||||||
|
Details on Modelling:
|
||||||
|
|
||||||
|
Based on flagship k4_frac_N4_mem32K_40nm.xml architecture.
|
||||||
|
|
||||||
|
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||||
|
-->
|
||||||
|
<architecture>
|
||||||
|
<!--
|
||||||
|
ODIN II specific config begins
|
||||||
|
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||||
|
".model [type_of_block]") that this architecture supports.
|
||||||
|
|
||||||
|
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||||
|
already special structures in blif (.names, .input, .output, and .latch)
|
||||||
|
that describe them.
|
||||||
|
-->
|
||||||
|
<models>
|
||||||
|
<model name="adder">
|
||||||
|
<input_ports>
|
||||||
|
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||||
|
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||||
|
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="cout"/>
|
||||||
|
<port name="sumout"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||||
|
<model name="io">
|
||||||
|
<input_ports>
|
||||||
|
<port name="outpad"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="inpad"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||||
|
<model name="frac_lut4">
|
||||||
|
<input_ports>
|
||||||
|
<port name="in"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="lut3_out"/>
|
||||||
|
<port name="lut4_out"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<model name="dual_port_ram">
|
||||||
|
<input_ports>
|
||||||
|
<!-- write address lines -->
|
||||||
|
<port name="waddr" clock="clk"/>
|
||||||
|
<!-- read address lines -->
|
||||||
|
<port name="raddr" clock="clk"/>
|
||||||
|
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
|
||||||
|
<port name="d_in" clock="clk"/>
|
||||||
|
<!-- write enable -->
|
||||||
|
<port name="wen" clock="clk"/>
|
||||||
|
<!-- read enable -->
|
||||||
|
<port name="ren" clock="clk"/>
|
||||||
|
<!-- memories are often clocked -->
|
||||||
|
<port name="clk" is_clock="1"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<!-- output can be broken down into smaller bit widths minimum size 1 -->
|
||||||
|
<port name="d_out" clock="clk"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
</models>
|
||||||
|
<tiles>
|
||||||
|
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||||
|
If you need to register the I/O, define clocks in the circuit models
|
||||||
|
These clocks can be handled in back-end
|
||||||
|
-->
|
||||||
|
<tile name="io" area="0">
|
||||||
|
<sub_tile name="io" capacity="8">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="io"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20"/>
|
||||||
|
<pinlocations pattern="custom">
|
||||||
|
<loc side="left">io.outpad io.inpad</loc>
|
||||||
|
<loc side="top">io.outpad io.inpad</loc>
|
||||||
|
<loc side="right">io.outpad io.inpad</loc>
|
||||||
|
<loc side="bottom">io.outpad io.inpad</loc>
|
||||||
|
</pinlocations>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
<tile name="clb" area="53894">
|
||||||
|
<sub_tile name="clb">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="clb"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="I" num_pins="12" equivalent="full"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="O" num_pins="8" equivalent="none"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20">
|
||||||
|
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||||
|
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||||
|
</fc>
|
||||||
|
<!--pinlocations pattern="spread"/-->
|
||||||
|
<pinlocations pattern="custom">
|
||||||
|
<loc side="left">clb.clk</loc>
|
||||||
|
<loc side="top">clb.cin</loc>
|
||||||
|
<loc side="right">clb.O[3:0] clb.I[5:0]</loc>
|
||||||
|
<loc side="bottom">clb.cout clb.O[7:4] clb.I[11:6]</loc>
|
||||||
|
</pinlocations>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
<tile name="memory" height="2" area="548000">
|
||||||
|
<sub_tile name="memory">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="memory"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="waddr" num_pins="7"/>
|
||||||
|
<input name="raddr" num_pins="7"/>
|
||||||
|
<input name="d_in" num_pins="8"/>
|
||||||
|
<input name="wen" num_pins="1"/>
|
||||||
|
<input name="ren" num_pins="1"/>
|
||||||
|
<output name="d_out" num_pins="8"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20"/>
|
||||||
|
<pinlocations pattern="spread"/>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
</tiles>
|
||||||
|
<!-- ODIN II specific config ends -->
|
||||||
|
<!-- Physical descriptions begin -->
|
||||||
|
<layout tileable="true">
|
||||||
|
<auto_layout aspect_ratio="1.0">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</auto_layout>
|
||||||
|
<fixed_layout name="3x2" width="5" height="4">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</fixed_layout>
|
||||||
|
<fixed_layout name="4x4" width="6" height="6">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</fixed_layout>
|
||||||
|
</layout>
|
||||||
|
<device>
|
||||||
|
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||||
|
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||||
|
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||||
|
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||||
|
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||||
|
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||||
|
lined up with Stratix IV.
|
||||||
|
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||||
|
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||||
|
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||||
|
by 2.5x when looking up in Jeff's tables.
|
||||||
|
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||||
|
proposed FPGA, and which is also 40 nm
|
||||||
|
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||||
|
4x minimum drive strength buffer. -->
|
||||||
|
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||||
|
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||||
|
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||||
|
-->
|
||||||
|
<area grid_logic_tile_area="0"/>
|
||||||
|
<chan_width_distr>
|
||||||
|
<x distr="uniform" peak="0.800000"/>
|
||||||
|
<y distr="uniform" peak="1.000000"/>
|
||||||
|
</chan_width_distr>
|
||||||
|
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||||
|
<connection_block input_switch_name="ipin_cblock"/>
|
||||||
|
</device>
|
||||||
|
<switchlist>
|
||||||
|
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||||
|
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||||
|
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||||
|
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||||
|
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||||
|
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||||
|
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||||
|
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||||
|
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||||
|
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||||
|
2.5x when looking up in Jeff's tables.
|
||||||
|
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||||
|
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||||
|
<switch type="mux" name="L1" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<switch type="mux" name="L2" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<switch type="mux" name="L4" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||||
|
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||||
|
</switchlist>
|
||||||
|
<segmentlist>
|
||||||
|
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||||
|
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||||
|
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||||
|
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||||
|
<segment axis="x" name="L1x" freq="1.000000" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L1"/>
|
||||||
|
<sb type="pattern">1 1</sb>
|
||||||
|
<cb type="pattern">1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment axis="x" name="L2x" freq="1.000000" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L2"/>
|
||||||
|
<sb type="pattern">1 1 1</sb>
|
||||||
|
<cb type="pattern">1 1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment axis="x" name="L4x" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L4"/>
|
||||||
|
<sb type="pattern">1 1 1 1 1</sb>
|
||||||
|
<cb type="pattern">1 1 1 1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment axis="y" name="L1y" freq="1.000000" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L1"/>
|
||||||
|
<sb type="pattern">1 1</sb>
|
||||||
|
<cb type="pattern">1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment axis="y" name="L2y" freq="1.000000" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L2"/>
|
||||||
|
<sb type="pattern">1 1 1</sb>
|
||||||
|
<cb type="pattern">1 1</cb>
|
||||||
|
</segment>
|
||||||
|
</segmentlist>
|
||||||
|
<directlist>
|
||||||
|
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||||
|
</directlist>
|
||||||
|
<complexblocklist>
|
||||||
|
<!-- Define I/O pads begin -->
|
||||||
|
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||||
|
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||||
|
<pb_type name="io">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||||
|
If you need to register the I/O, define clocks in the circuit models
|
||||||
|
These clocks can be handled in back-end
|
||||||
|
-->
|
||||||
|
<!-- A mode denotes the physical implementation of an I/O
|
||||||
|
This mode will be not packable but is mainly used for fabric verilog generation
|
||||||
|
-->
|
||||||
|
<mode name="physical" disable_packing="true">
|
||||||
|
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||||
|
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||||
|
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- IOs can operate as either inputs or outputs.
|
||||||
|
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||||
|
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||||
|
today and that is when you timing analyze them.
|
||||||
|
-->
|
||||||
|
<mode name="inpad">
|
||||||
|
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||||
|
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<mode name="outpad">
|
||||||
|
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||||
|
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||||
|
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||||
|
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||||
|
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||||
|
-->
|
||||||
|
<!-- Place I/Os on the sides of the FPGA -->
|
||||||
|
<power method="ignore"/>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define I/O pads ends -->
|
||||||
|
<!-- Define general purpose logic block (CLB) begin -->
|
||||||
|
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||||
|
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||||
|
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||||
|
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||||
|
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||||
|
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||||
|
assume, but note that the total routing area really includes the crossbar, which would push
|
||||||
|
routing area up significantly, we estimate into the ~70% range.
|
||||||
|
-->
|
||||||
|
<pb_type name="clb">
|
||||||
|
<input name="I" num_pins="12" equivalent="full"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="O" num_pins="8" equivalent="none"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Describe fracturable logic element.
|
||||||
|
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||||
|
The outputs of the fracturable logic element can be optionally registered
|
||||||
|
-->
|
||||||
|
<pb_type name="fle" num_pb="4">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||||
|
<mode name="physical" disable_packing="true">
|
||||||
|
<pb_type name="fabric" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<pb_type name="frac_logic" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<!-- Define LUT -->
|
||||||
|
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="lut3_out" num_pins="2"/>
|
||||||
|
<output name="lut4_out" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
|
||||||
|
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
|
||||||
|
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||||
|
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define adders -->
|
||||||
|
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||||
|
<input name="a" num_pins="1"/>
|
||||||
|
<input name="b" num_pins="1"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<output name="sumout" num_pins="1"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||||
|
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
|
||||||
|
<direct name="direct3" input="adder[0:0].cout" output="fabric.cout"/>
|
||||||
|
<direct name="direct4" input="frac_logic.out[0:0]" output="adder[0:0].a"/>
|
||||||
|
<direct name="direct5" input="frac_logic.out[1:1]" output="adder[0:0].b"/>
|
||||||
|
<complete name="direct6" input="fabric.clk" output="ff[1:0].clk"/>
|
||||||
|
<mux name="mux1" input="frac_logic.out[0:0] adder[0].cout" output="ff[0:0].D">
|
||||||
|
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
|
||||||
|
<delay_constant max="45e-12" in_port="adder[0].cout" out_port="ff[0:0].D"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux2" input="frac_logic.out[1:1] adder[0].sumout" output="ff[1:1].D">
|
||||||
|
<delay_constant max="25e-12" in_port="frac_logic.out[1:1]" out_port="ff[1:1].D"/>
|
||||||
|
<delay_constant max="45e-12" in_port="adder[0].sumout" out_port="ff[1:1].D"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux3" input="adder[0].cout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="adder[0].cout frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux4" input="adder[0].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||||
|
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||||
|
<direct name="direct3" input="fabric.out" output="fle.out"/>
|
||||||
|
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
|
||||||
|
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||||
|
<!-- Dual 3-LUT mode definition begin -->
|
||||||
|
<mode name="n2_lut3">
|
||||||
|
<pb_type name="lut3inter" num_pb="1">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<pb_type name="ble3" num_pb="2">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<output name="out" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Define the LUT -->
|
||||||
|
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
|
||||||
|
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
398e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||||
|
235e-12
|
||||||
|
235e-12
|
||||||
|
235e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define the flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||||
|
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
|
||||||
|
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||||
|
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
|
||||||
|
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
|
||||||
|
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
|
||||||
|
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
|
||||||
|
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
|
||||||
|
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
|
||||||
|
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Dual 3-LUT mode definition end -->
|
||||||
|
<!-- BEGIN arithmetic mode of dual lut3 + adders -->
|
||||||
|
<mode name="arithmetic">
|
||||||
|
<pb_type name="arithmetic" num_pb="1">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Special dual-LUT mode that drives adder only -->
|
||||||
|
<pb_type name="lut3" blif_model=".names" num_pb="2" class="lut">
|
||||||
|
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||||
|
195e-12
|
||||||
|
195e-12
|
||||||
|
195e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||||
|
<input name="a" num_pins="1"/>
|
||||||
|
<input name="b" num_pins="1"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<output name="sumout" num_pins="1"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<complete name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||||
|
<direct name="lut_in1" input="arithmetic.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||||
|
<direct name="lut_in2" input="arithmetic.in[2:0]" output="lut3[1:1].in[2:0]"/>
|
||||||
|
<direct name="lut_to_add1" input="lut3[0:0].out" output="adder.a">
|
||||||
|
</direct>
|
||||||
|
<direct name="lut_to_add2" input="lut3[1:1].out" output="adder.b">
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||||
|
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||||
|
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||||
|
</direct>
|
||||||
|
<mux name="cout" input="ff[0:0].Q adder.cout" output="arithmetic.out[0:0]">
|
||||||
|
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[0:0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="arithmetic.out[0:0]"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="sumout" input="ff[1:1].Q adder.sumout" output="arithmetic.out[1:1]">
|
||||||
|
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[1:1]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[1:1].Q" out_port="arithmetic.out[1:1]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in[2:0]" output="arithmetic[0:0].in"/>
|
||||||
|
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||||
|
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="arithmetic[0:0].cout" output="fle.cout">
|
||||||
|
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||||
|
</direct>
|
||||||
|
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||||
|
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- 4-LUT mode definition begin -->
|
||||||
|
<mode name="n1_lut4">
|
||||||
|
<!-- Define 4-LUT mode -->
|
||||||
|
<pb_type name="ble4" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="out" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Define LUT -->
|
||||||
|
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||||
|
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
398e-12
|
||||||
|
397e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||||
|
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||||
|
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||||
|
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||||
|
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||||
|
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||||
|
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- 4-LUT mode definition end -->
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||||
|
The delays below come from Stratix IV. the delay through a connection block
|
||||||
|
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||||
|
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||||
|
delay within the crossbar is 95 ps.
|
||||||
|
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||||
|
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||||
|
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||||
|
to get the part that should be marked on the crossbar. -->
|
||||||
|
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||||
|
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||||
|
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||||
|
</complete>
|
||||||
|
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||||
|
</complete>
|
||||||
|
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||||
|
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||||
|
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||||
|
naive specification).
|
||||||
|
-->
|
||||||
|
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
|
||||||
|
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
|
||||||
|
<!-- Carry chain links -->
|
||||||
|
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||||
|
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||||
|
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||||
|
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="fle[3:3].cout" output="clb.cout">
|
||||||
|
<pack_pattern name="chain" in_port="fle[3:3].cout" out_port="clb.cout"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_link" input="fle[2:0].cout" output="fle[3:1].cin">
|
||||||
|
<pack_pattern name="chain" in_port="fle[2:0].cout" out_port="fle[3:1].cin"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||||
|
<!-- Place this general purpose logic block in any unspecified column -->
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define general purpose logic block (CLB) ends -->
|
||||||
|
<!-- Define single-mode dual-port memory begin -->
|
||||||
|
<pb_type name="memory">
|
||||||
|
<input name="waddr" num_pins="7"/>
|
||||||
|
<input name="raddr" num_pins="7"/>
|
||||||
|
<input name="d_in" num_pins="8"/>
|
||||||
|
<input name="wen" num_pins="1"/>
|
||||||
|
<input name="ren" num_pins="1"/>
|
||||||
|
<output name="d_out" num_pins="8"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Specify the 128x8=1Kbit memory block
|
||||||
|
Note: the delay numbers are extracted from VPR flagship XML without modification
|
||||||
|
Should align to the process technology we using to create the 1K dual-port RAM
|
||||||
|
-->
|
||||||
|
<mode name="mem_128x8_dp">
|
||||||
|
<pb_type name="mem_128x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
|
||||||
|
<input name="waddr" num_pins="7" port_class="address"/>
|
||||||
|
<input name="raddr" num_pins="7" port_class="address"/>
|
||||||
|
<input name="d_in" num_pins="8" port_class="data_in"/>
|
||||||
|
<input name="wen" num_pins="1" port_class="write_en"/>
|
||||||
|
<input name="ren" num_pins="1" port_class="write_en"/>
|
||||||
|
<output name="d_out" num_pins="8" port_class="data_out"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.waddr" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.raddr" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.d_in" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.wen" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.ren" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="1.234e-9" port="mem_128x8_dp.d_out" clock="clk"/>
|
||||||
|
<power method="pin-toggle">
|
||||||
|
<port name="clk" energy_per_toggle="17.9e-12"/>
|
||||||
|
<static_power power_per_instance="0.0"/>
|
||||||
|
</power>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="waddress" input="memory.waddr" output="mem_128x8_dp.waddr">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_128x8_dp.waddr"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="raddress" input="memory.raddr" output="mem_128x8_dp.raddr">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_128x8_dp.raddr"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="data_input" input="memory.d_in" output="mem_128x8_dp.d_in">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_128x8_dp.d_in"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="writeen" input="memory.wen" output="mem_128x8_dp.wen">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_128x8_dp.wen"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="readen" input="memory.ren" output="mem_128x8_dp.ren">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_128x8_dp.ren"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="dataout" input="mem_128x8_dp.d_out" output="memory.d_out">
|
||||||
|
<delay_constant max="40e-12" in_port="mem_128x8_dp.d_out" out_port="memory.d_out"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="clk" input="memory.clk" output="mem_128x8_dp.clk">
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define single-mode dual-port memory end -->
|
||||||
|
</complexblocklist>
|
||||||
|
</architecture>
|
|
@ -0,0 +1,723 @@
|
||||||
|
<?xml version="1.0"?>
|
||||||
|
<!--
|
||||||
|
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
|
||||||
|
|
||||||
|
- 40 nm technology
|
||||||
|
- General purpose logic block:
|
||||||
|
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
|
||||||
|
with optionally registered outputs
|
||||||
|
- Routing architecture:
|
||||||
|
25% L = 1, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
25% L = 2, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
50% L = 4, fc_in = 0.25, Fc_out = 0.2
|
||||||
|
|
||||||
|
Details on Modelling:
|
||||||
|
|
||||||
|
Based on flagship k4_frac_N4_mem32K_40nm.xml architecture.
|
||||||
|
|
||||||
|
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||||
|
-->
|
||||||
|
<architecture>
|
||||||
|
<!--
|
||||||
|
ODIN II specific config begins
|
||||||
|
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||||
|
".model [type_of_block]") that this architecture supports.
|
||||||
|
|
||||||
|
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||||
|
already special structures in blif (.names, .input, .output, and .latch)
|
||||||
|
that describe them.
|
||||||
|
-->
|
||||||
|
<models>
|
||||||
|
<model name="adder">
|
||||||
|
<input_ports>
|
||||||
|
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||||
|
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||||
|
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="cout"/>
|
||||||
|
<port name="sumout"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||||
|
<model name="io">
|
||||||
|
<input_ports>
|
||||||
|
<port name="outpad"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="inpad"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||||
|
<model name="frac_lut4">
|
||||||
|
<input_ports>
|
||||||
|
<port name="in"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<port name="lut3_out"/>
|
||||||
|
<port name="lut4_out"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
<model name="dual_port_ram">
|
||||||
|
<input_ports>
|
||||||
|
<!-- write address lines -->
|
||||||
|
<port name="waddr" clock="clk"/>
|
||||||
|
<!-- read address lines -->
|
||||||
|
<port name="raddr" clock="clk"/>
|
||||||
|
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
|
||||||
|
<port name="d_in" clock="clk"/>
|
||||||
|
<!-- write enable -->
|
||||||
|
<port name="wen" clock="clk"/>
|
||||||
|
<!-- read enable -->
|
||||||
|
<port name="ren" clock="clk"/>
|
||||||
|
<!-- memories are often clocked -->
|
||||||
|
<port name="clk" is_clock="1"/>
|
||||||
|
</input_ports>
|
||||||
|
<output_ports>
|
||||||
|
<!-- output can be broken down into smaller bit widths minimum size 1 -->
|
||||||
|
<port name="d_out" clock="clk"/>
|
||||||
|
</output_ports>
|
||||||
|
</model>
|
||||||
|
</models>
|
||||||
|
<tiles>
|
||||||
|
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||||
|
If you need to register the I/O, define clocks in the circuit models
|
||||||
|
These clocks can be handled in back-end
|
||||||
|
-->
|
||||||
|
<tile name="io" area="0">
|
||||||
|
<sub_tile name="io" capacity="8">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="io"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20"/>
|
||||||
|
<pinlocations pattern="custom">
|
||||||
|
<loc side="left">io.outpad io.inpad</loc>
|
||||||
|
<loc side="top">io.outpad io.inpad</loc>
|
||||||
|
<loc side="right">io.outpad io.inpad</loc>
|
||||||
|
<loc side="bottom">io.outpad io.inpad</loc>
|
||||||
|
</pinlocations>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
<tile name="clb" area="53894">
|
||||||
|
<sub_tile name="clb">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="clb"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="I" num_pins="12" equivalent="full"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="O" num_pins="8" equivalent="none"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20">
|
||||||
|
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||||
|
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||||
|
</fc>
|
||||||
|
<!--pinlocations pattern="spread"/-->
|
||||||
|
<pinlocations pattern="custom">
|
||||||
|
<loc side="left">clb.clk</loc>
|
||||||
|
<loc side="top">clb.cin</loc>
|
||||||
|
<loc side="right">clb.O[3:0] clb.I[5:0]</loc>
|
||||||
|
<loc side="bottom">clb.cout clb.O[7:4] clb.I[11:6]</loc>
|
||||||
|
</pinlocations>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
<tile name="memory" height="2" area="548000">
|
||||||
|
<sub_tile name="memory">
|
||||||
|
<equivalent_sites>
|
||||||
|
<site pb_type="memory"/>
|
||||||
|
</equivalent_sites>
|
||||||
|
<input name="waddr" num_pins="7"/>
|
||||||
|
<input name="raddr" num_pins="7"/>
|
||||||
|
<input name="d_in" num_pins="8"/>
|
||||||
|
<input name="wen" num_pins="1"/>
|
||||||
|
<input name="ren" num_pins="1"/>
|
||||||
|
<output name="d_out" num_pins="8"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<fc in_type="frac" in_val="0.25" out_type="frac" out_val="0.20"/>
|
||||||
|
<pinlocations pattern="spread"/>
|
||||||
|
</sub_tile>
|
||||||
|
</tile>
|
||||||
|
</tiles>
|
||||||
|
<!-- ODIN II specific config ends -->
|
||||||
|
<!-- Physical descriptions begin -->
|
||||||
|
<layout tileable="true">
|
||||||
|
<auto_layout aspect_ratio="1.0">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</auto_layout>
|
||||||
|
<fixed_layout name="3x2" width="5" height="4">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</fixed_layout>
|
||||||
|
<fixed_layout name="4x4" width="6" height="6">
|
||||||
|
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||||
|
<perimeter type="io" priority="100"/>
|
||||||
|
<corners type="EMPTY" priority="101"/>
|
||||||
|
<!--Fill with 'clb'-->
|
||||||
|
<fill type="clb" priority="10"/>
|
||||||
|
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||||
|
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||||
|
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||||
|
</fixed_layout>
|
||||||
|
</layout>
|
||||||
|
<device>
|
||||||
|
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||||
|
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||||
|
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||||
|
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||||
|
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||||
|
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||||
|
lined up with Stratix IV.
|
||||||
|
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||||
|
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||||
|
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||||
|
by 2.5x when looking up in Jeff's tables.
|
||||||
|
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||||
|
proposed FPGA, and which is also 40 nm
|
||||||
|
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||||
|
4x minimum drive strength buffer. -->
|
||||||
|
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||||
|
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||||
|
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||||
|
-->
|
||||||
|
<area grid_logic_tile_area="0"/>
|
||||||
|
<chan_width_distr>
|
||||||
|
<x distr="uniform" peak="0.800000"/>
|
||||||
|
<y distr="uniform" peak="1.000000"/>
|
||||||
|
</chan_width_distr>
|
||||||
|
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||||
|
<connection_block input_switch_name="ipin_cblock"/>
|
||||||
|
</device>
|
||||||
|
<switchlist>
|
||||||
|
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||||
|
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||||
|
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||||
|
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||||
|
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||||
|
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||||
|
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||||
|
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||||
|
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||||
|
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||||
|
2.5x when looking up in Jeff's tables.
|
||||||
|
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||||
|
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||||
|
<switch type="mux" name="L1" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<switch type="mux" name="L2" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<switch type="mux" name="L4" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||||
|
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||||
|
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||||
|
</switchlist>
|
||||||
|
<segmentlist>
|
||||||
|
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||||
|
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||||
|
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||||
|
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||||
|
<segment name="L1" freq="1.000000" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L1"/>
|
||||||
|
<sb type="pattern">1 1</sb>
|
||||||
|
<cb type="pattern">1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment name="L2" freq="1.000000" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L2"/>
|
||||||
|
<sb type="pattern">1 1 1</sb>
|
||||||
|
<cb type="pattern">1 1</cb>
|
||||||
|
</segment>
|
||||||
|
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||||
|
<mux name="L4"/>
|
||||||
|
<sb type="pattern">1 1 1 1 1</sb>
|
||||||
|
<cb type="pattern">1 1 1 1</cb>
|
||||||
|
</segment>
|
||||||
|
</segmentlist>
|
||||||
|
<directlist>
|
||||||
|
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||||
|
</directlist>
|
||||||
|
<complexblocklist>
|
||||||
|
<!-- Define I/O pads begin -->
|
||||||
|
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||||
|
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||||
|
<pb_type name="io">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||||
|
If you need to register the I/O, define clocks in the circuit models
|
||||||
|
These clocks can be handled in back-end
|
||||||
|
-->
|
||||||
|
<!-- A mode denotes the physical implementation of an I/O
|
||||||
|
This mode will be not packable but is mainly used for fabric verilog generation
|
||||||
|
-->
|
||||||
|
<mode name="physical" disable_packing="true">
|
||||||
|
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||||
|
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||||
|
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- IOs can operate as either inputs or outputs.
|
||||||
|
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||||
|
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||||
|
today and that is when you timing analyze them.
|
||||||
|
-->
|
||||||
|
<mode name="inpad">
|
||||||
|
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||||
|
<output name="inpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||||
|
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<mode name="outpad">
|
||||||
|
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||||
|
<input name="outpad" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||||
|
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||||
|
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||||
|
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||||
|
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||||
|
-->
|
||||||
|
<!-- Place I/Os on the sides of the FPGA -->
|
||||||
|
<power method="ignore"/>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define I/O pads ends -->
|
||||||
|
<!-- Define general purpose logic block (CLB) begin -->
|
||||||
|
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||||
|
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||||
|
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||||
|
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||||
|
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||||
|
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||||
|
assume, but note that the total routing area really includes the crossbar, which would push
|
||||||
|
routing area up significantly, we estimate into the ~70% range.
|
||||||
|
-->
|
||||||
|
<pb_type name="clb">
|
||||||
|
<input name="I" num_pins="12" equivalent="full"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="O" num_pins="8" equivalent="none"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Describe fracturable logic element.
|
||||||
|
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||||
|
The outputs of the fracturable logic element can be optionally registered
|
||||||
|
-->
|
||||||
|
<pb_type name="fle" num_pb="4">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||||
|
<mode name="physical" disable_packing="true">
|
||||||
|
<pb_type name="fabric" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<pb_type name="frac_logic" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<!-- Define LUT -->
|
||||||
|
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="lut3_out" num_pins="2"/>
|
||||||
|
<output name="lut4_out" num_pins="1"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
|
||||||
|
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
|
||||||
|
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||||
|
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define adders -->
|
||||||
|
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||||
|
<input name="a" num_pins="1"/>
|
||||||
|
<input name="b" num_pins="1"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<output name="sumout" num_pins="1"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||||
|
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
|
||||||
|
<direct name="direct3" input="adder[0:0].cout" output="fabric.cout"/>
|
||||||
|
<direct name="direct4" input="frac_logic.out[0:0]" output="adder[0:0].a"/>
|
||||||
|
<direct name="direct5" input="frac_logic.out[1:1]" output="adder[0:0].b"/>
|
||||||
|
<complete name="direct6" input="fabric.clk" output="ff[1:0].clk"/>
|
||||||
|
<mux name="mux1" input="frac_logic.out[0:0] adder[0].cout" output="ff[0:0].D">
|
||||||
|
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
|
||||||
|
<delay_constant max="45e-12" in_port="adder[0].cout" out_port="ff[0:0].D"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux2" input="frac_logic.out[1:1] adder[0].sumout" output="ff[1:1].D">
|
||||||
|
<delay_constant max="25e-12" in_port="frac_logic.out[1:1]" out_port="ff[1:1].D"/>
|
||||||
|
<delay_constant max="45e-12" in_port="adder[0].sumout" out_port="ff[1:1].D"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux3" input="adder[0].cout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="adder[0].cout frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="mux4" input="adder[0].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||||
|
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||||
|
<direct name="direct3" input="fabric.out" output="fle.out"/>
|
||||||
|
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
|
||||||
|
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||||
|
<!-- Dual 3-LUT mode definition begin -->
|
||||||
|
<mode name="n2_lut3">
|
||||||
|
<pb_type name="lut3inter" num_pb="1">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<pb_type name="ble3" num_pb="2">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<output name="out" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Define the LUT -->
|
||||||
|
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
|
||||||
|
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
398e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||||
|
235e-12
|
||||||
|
235e-12
|
||||||
|
235e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define the flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||||
|
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
|
||||||
|
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||||
|
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
|
||||||
|
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
|
||||||
|
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
|
||||||
|
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
|
||||||
|
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
|
||||||
|
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
|
||||||
|
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- Dual 3-LUT mode definition end -->
|
||||||
|
<!-- BEGIN arithmetic mode of dual lut3 + adders -->
|
||||||
|
<mode name="arithmetic">
|
||||||
|
<pb_type name="arithmetic" num_pb="1">
|
||||||
|
<input name="in" num_pins="3"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="out" num_pins="2"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Special dual-LUT mode that drives adder only -->
|
||||||
|
<pb_type name="lut3" blif_model=".names" num_pb="2" class="lut">
|
||||||
|
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||||
|
195e-12
|
||||||
|
195e-12
|
||||||
|
195e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||||
|
<input name="a" num_pins="1"/>
|
||||||
|
<input name="b" num_pins="1"/>
|
||||||
|
<input name="cin" num_pins="1"/>
|
||||||
|
<output name="cout" num_pins="1"/>
|
||||||
|
<output name="sumout" num_pins="1"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||||
|
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||||
|
</pb_type>
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<complete name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||||
|
<direct name="lut_in1" input="arithmetic.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||||
|
<direct name="lut_in2" input="arithmetic.in[2:0]" output="lut3[1:1].in[2:0]"/>
|
||||||
|
<direct name="lut_to_add1" input="lut3[0:0].out" output="adder.a">
|
||||||
|
</direct>
|
||||||
|
<direct name="lut_to_add2" input="lut3[1:1].out" output="adder.b">
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||||
|
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||||
|
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||||
|
</direct>
|
||||||
|
<mux name="cout" input="ff[0:0].Q adder.cout" output="arithmetic.out[0:0]">
|
||||||
|
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[0:0]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="arithmetic.out[0:0]"/>
|
||||||
|
</mux>
|
||||||
|
<mux name="sumout" input="ff[1:1].Q adder.sumout" output="arithmetic.out[1:1]">
|
||||||
|
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[1:1]"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff[1:1].Q" out_port="arithmetic.out[1:1]"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in[2:0]" output="arithmetic[0:0].in"/>
|
||||||
|
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||||
|
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="arithmetic[0:0].cout" output="fle.cout">
|
||||||
|
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||||
|
</direct>
|
||||||
|
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||||
|
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- 4-LUT mode definition begin -->
|
||||||
|
<mode name="n1_lut4">
|
||||||
|
<!-- Define 4-LUT mode -->
|
||||||
|
<pb_type name="ble4" num_pb="1">
|
||||||
|
<input name="in" num_pins="4"/>
|
||||||
|
<output name="out" num_pins="1"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Define LUT -->
|
||||||
|
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||||
|
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||||
|
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||||
|
<!-- LUT timing using delay matrix -->
|
||||||
|
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||||
|
we instead take the average of these numbers to get more stable results
|
||||||
|
82e-12
|
||||||
|
173e-12
|
||||||
|
261e-12
|
||||||
|
263e-12
|
||||||
|
398e-12
|
||||||
|
397e-12
|
||||||
|
-->
|
||||||
|
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
261e-12
|
||||||
|
</delay_matrix>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define flip-flop -->
|
||||||
|
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||||
|
<input name="D" num_pins="1" port_class="D"/>
|
||||||
|
<output name="Q" num_pins="1" port_class="Q"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||||
|
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||||
|
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||||
|
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||||
|
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||||
|
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||||
|
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||||
|
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||||
|
</mux>
|
||||||
|
</interconnect>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||||
|
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||||
|
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
<!-- 4-LUT mode definition end -->
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||||
|
The delays below come from Stratix IV. the delay through a connection block
|
||||||
|
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||||
|
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||||
|
delay within the crossbar is 95 ps.
|
||||||
|
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||||
|
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||||
|
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||||
|
to get the part that should be marked on the crossbar. -->
|
||||||
|
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||||
|
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||||
|
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||||
|
</complete>
|
||||||
|
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||||
|
</complete>
|
||||||
|
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||||
|
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||||
|
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||||
|
naive specification).
|
||||||
|
-->
|
||||||
|
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
|
||||||
|
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
|
||||||
|
<!-- Carry chain links -->
|
||||||
|
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||||
|
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||||
|
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||||
|
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_out" input="fle[3:3].cout" output="clb.cout">
|
||||||
|
<pack_pattern name="chain" in_port="fle[3:3].cout" out_port="clb.cout"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="carry_link" input="fle[2:0].cout" output="fle[3:1].cin">
|
||||||
|
<pack_pattern name="chain" in_port="fle[2:0].cout" out_port="fle[3:1].cin"/>
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||||
|
<!-- Place this general purpose logic block in any unspecified column -->
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define general purpose logic block (CLB) ends -->
|
||||||
|
<!-- Define single-mode dual-port memory begin -->
|
||||||
|
<pb_type name="memory">
|
||||||
|
<input name="waddr" num_pins="7"/>
|
||||||
|
<input name="raddr" num_pins="7"/>
|
||||||
|
<input name="d_in" num_pins="8"/>
|
||||||
|
<input name="wen" num_pins="1"/>
|
||||||
|
<input name="ren" num_pins="1"/>
|
||||||
|
<output name="d_out" num_pins="8"/>
|
||||||
|
<clock name="clk" num_pins="1"/>
|
||||||
|
<!-- Specify the 128x8=1Kbit memory block
|
||||||
|
Note: the delay numbers are extracted from VPR flagship XML without modification
|
||||||
|
Should align to the process technology we using to create the 1K dual-port RAM
|
||||||
|
-->
|
||||||
|
<mode name="mem_128x8_dp">
|
||||||
|
<pb_type name="mem_128x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
|
||||||
|
<input name="waddr" num_pins="7" port_class="address"/>
|
||||||
|
<input name="raddr" num_pins="7" port_class="address"/>
|
||||||
|
<input name="d_in" num_pins="8" port_class="data_in"/>
|
||||||
|
<input name="wen" num_pins="1" port_class="write_en"/>
|
||||||
|
<input name="ren" num_pins="1" port_class="write_en"/>
|
||||||
|
<output name="d_out" num_pins="8" port_class="data_out"/>
|
||||||
|
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.waddr" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.raddr" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.d_in" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.wen" clock="clk"/>
|
||||||
|
<T_setup value="509e-12" port="mem_128x8_dp.ren" clock="clk"/>
|
||||||
|
<T_clock_to_Q max="1.234e-9" port="mem_128x8_dp.d_out" clock="clk"/>
|
||||||
|
<power method="pin-toggle">
|
||||||
|
<port name="clk" energy_per_toggle="17.9e-12"/>
|
||||||
|
<static_power power_per_instance="0.0"/>
|
||||||
|
</power>
|
||||||
|
</pb_type>
|
||||||
|
<interconnect>
|
||||||
|
<direct name="waddress" input="memory.waddr" output="mem_128x8_dp.waddr">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_128x8_dp.waddr"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="raddress" input="memory.raddr" output="mem_128x8_dp.raddr">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_128x8_dp.raddr"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="data_input" input="memory.d_in" output="mem_128x8_dp.d_in">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_128x8_dp.d_in"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="writeen" input="memory.wen" output="mem_128x8_dp.wen">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_128x8_dp.wen"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="readen" input="memory.ren" output="mem_128x8_dp.ren">
|
||||||
|
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_128x8_dp.ren"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="dataout" input="mem_128x8_dp.d_out" output="memory.d_out">
|
||||||
|
<delay_constant max="40e-12" in_port="mem_128x8_dp.d_out" out_port="memory.d_out"/>
|
||||||
|
</direct>
|
||||||
|
<direct name="clk" input="memory.clk" output="mem_128x8_dp.clk">
|
||||||
|
</direct>
|
||||||
|
</interconnect>
|
||||||
|
</mode>
|
||||||
|
</pb_type>
|
||||||
|
<!-- Define single-mode dual-port memory end -->
|
||||||
|
</complexblocklist>
|
||||||
|
</architecture>
|
|
@ -1 +1 @@
|
||||||
Subproject commit 62fa48399eabb8788844ad852fca6cdec800accf
|
Subproject commit ec634df07a5be186a0e7b66f2789c4daf2e4b44c
|
|
@ -1 +1 @@
|
||||||
Subproject commit f8daf6da2ccaac239fd07aaf4207bdb30087c9e7
|
Subproject commit 17519a6ac96b649112a331364f59b416fe2d6874
|
Loading…
Reference in New Issue