Merge pull request #325 from lnis-uofu/testbench_external_bitstream

Support flatten configuration protocol in bitstream writer and full testbench that reads external bitstream file
This commit is contained in:
tangxifan 2021-06-08 09:24:16 -06:00 committed by GitHub
commit 72f2742846
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 117 additions and 79 deletions

View File

@ -40,65 +40,6 @@ void write_fabric_bitstream_text_file_head(std::fstream& fp) {
fp << "// Date: " << std::ctime(&end_time);
}
/********************************************************************
* Write a configuration bit into a plain text file
* The format depends on the type of configuration protocol
* - Vanilla (standalone): just put down pure 0|1 bitstream
* - Configuration chain: just put down pure 0|1 bitstream
* - Memory bank : <BL address> <WL address> <bit>
* - Frame-based configuration protocol : <address> <bit>
*
* Return:
* - 0 if succeed
* - 1 if critical errors occured
*******************************************************************/
static
int write_fabric_config_bit_to_text_file(std::fstream& fp,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream,
const FabricBitId& fabric_bit,
const e_config_protocol_type& config_type) {
if (false == valid_file_stream(fp)) {
return 1;
}
switch (config_type) {
case CONFIG_MEM_STANDALONE:
case CONFIG_MEM_SCAN_CHAIN:
fp << bitstream_manager.bit_value(fabric_bitstream.config_bit(fabric_bit));
break;
case CONFIG_MEM_MEMORY_BANK: {
for (const char& addr_bit : fabric_bitstream.bit_bl_address(fabric_bit)) {
fp << addr_bit;
}
write_space_to_file(fp, 1);
for (const char& addr_bit : fabric_bitstream.bit_wl_address(fabric_bit)) {
fp << addr_bit;
}
write_space_to_file(fp, 1);
fp << bitstream_manager.bit_value(fabric_bitstream.config_bit(fabric_bit));
fp << "\n";
break;
}
case CONFIG_MEM_FRAME_BASED: {
for (const char& addr_bit : fabric_bitstream.bit_address(fabric_bit)) {
fp << addr_bit;
}
write_space_to_file(fp, 1);
fp << bitstream_manager.bit_value(fabric_bitstream.config_bit(fabric_bit));
fp << "\n";
break;
}
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid configuration protocol type!\n");
return 1;
}
return 0;
}
/********************************************************************
* Write the flatten fabric bitstream to a plain text file
*
@ -109,20 +50,20 @@ int write_fabric_config_bit_to_text_file(std::fstream& fp,
static
int write_flatten_fabric_bitstream_to_text_file(std::fstream& fp,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream,
const ConfigProtocol& config_protocol) {
int status = 0;
for (const FabricBitId& fabric_bit : fabric_bitstream.bits()) {
status = write_fabric_config_bit_to_text_file(fp, bitstream_manager,
fabric_bitstream,
fabric_bit,
config_protocol.type());
if (1 == status) {
return status;
}
const FabricBitstream& fabric_bitstream) {
if (false == valid_file_stream(fp)) {
return 1;
}
return status;
/* Output bitstream size information */
fp << "// Bitstream length: " << fabric_bitstream.num_bits() << std::endl;
/* Output bitstream data */
for (const FabricBitId& fabric_bit : fabric_bitstream.bits()) {
fp << bitstream_manager.bit_value(fabric_bitstream.config_bit(fabric_bit));
}
return 0;
}
/********************************************************************
@ -356,8 +297,7 @@ int write_fabric_bitstream_to_text_file(const BitstreamManager& bitstream_manage
case CONFIG_MEM_STANDALONE:
status = write_flatten_fabric_bitstream_to_text_file(fp,
bitstream_manager,
fabric_bitstream,
config_protocol);
fabric_bitstream);
break;
case CONFIG_MEM_SCAN_CHAIN:
status = write_config_chain_fabric_bitstream_to_text_file(fp,

View File

@ -1937,6 +1937,101 @@ void print_verilog_top_testbench_bitstream(std::fstream& fp,
}
}
/********************************************************************
* Print stimulus for a FPGA fabric with a flatten memory (standalone) configuration protocol
* We will load the bitstream in the second clock cycle, right after the first reset cycle
*******************************************************************/
static
void print_verilog_full_testbench_vanilla_bitstream(std::fstream& fp,
const std::string& bitstream_file,
const ModuleManager& module_manager,
const ModuleId& top_module,
const FabricBitstream& fabric_bitstream) {
/* Validate the file stream */
valid_file_stream(fp);
/* Find Bit-Line and Word-Line port */
BasicPort prog_clock_port(std::string(TOP_TB_PROG_CLOCK_PORT_NAME), 1);
/* Find Bit-Line and Word-Line port */
ModulePortId bl_port_id = module_manager.find_module_port(top_module, std::string(MEMORY_BL_PORT_NAME));
BasicPort bl_port = module_manager.module_port(top_module, bl_port_id);
ModulePortId wl_port_id = module_manager.find_module_port(top_module, std::string(MEMORY_WL_PORT_NAME));
BasicPort wl_port = module_manager.module_port(top_module, wl_port_id);
/* Define a constant for the bitstream length */
print_verilog_define_flag(fp, std::string(TOP_TB_BITSTREAM_LENGTH_VARIABLE), fabric_bitstream.num_bits());
/* Declare local variables for bitstream loading in Verilog */
print_verilog_comment(fp, "----- Virtual memory to store the bitstream from external file -----");
fp << "reg [0:`" << TOP_TB_BITSTREAM_LENGTH_VARIABLE << " - 1] ";
fp << TOP_TB_BITSTREAM_MEM_REG_NAME << "[0:0];";
fp << std::endl;
/* Initial value should be the first configuration bits
* In the rest of programming cycles,
* configuration bits are fed at the falling edge of programming clock.
* We do not care the value of scan_chain head during the first programming cycle
* It is reset anyway
*/
std::vector<size_t> initial_bl_values(bl_port.get_width(), 0);
std::vector<size_t> initial_wl_values(wl_port.get_width(), 0);
print_verilog_comment(fp, "----- Begin bitstream loading during configuration phase -----");
fp << "initial" << std::endl;
fp << "\tbegin" << std::endl;
print_verilog_comment(fp, "----- Configuration chain default input -----");
fp << "\t\t";
fp << generate_verilog_port_constant_values(bl_port, initial_bl_values);
fp << ";" << std::endl;
fp << "\t\t";
fp << generate_verilog_port_constant_values(wl_port, initial_wl_values);
fp << ";" << std::endl;
print_verilog_comment(fp, "----- Preload bitstream file to a virtual memory -----");
fp << "\t";
fp << "$readmemb(\"" << bitstream_file << "\", " << TOP_TB_BITSTREAM_MEM_REG_NAME << ");";
fp << std::endl;
fp << "\t\t@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, prog_clock_port) << ") begin" << std::endl;
/* Enable all the WLs */
std::vector<size_t> enabled_wl_values(wl_port.get_width(), 1);
fp << "\t\t\t";
fp << generate_verilog_port_constant_values(wl_port, enabled_wl_values);
fp << ";" << std::endl;
fp << "\t\t\t";
fp << generate_verilog_port(VERILOG_PORT_CONKT, bl_port);
fp << " <= ";
fp << TOP_TB_BITSTREAM_MEM_REG_NAME << "[0]";
fp << ";" << std::endl;
fp << "\t\tend" << std::endl;
/* Disable all the WLs */
fp << "\t\t@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, prog_clock_port) << ");" << std::endl;
fp << "\t\t\t";
fp << generate_verilog_port_constant_values(wl_port, initial_wl_values);
fp << ";" << std::endl;
/* Raise the flag of configuration done when bitstream loading is complete */
fp << "\t\t@(negedge " << generate_verilog_port(VERILOG_PORT_CONKT, prog_clock_port) << ");" << std::endl;
BasicPort config_done_port(std::string(TOP_TB_CONFIG_DONE_PORT_NAME), 1);
fp << "\t\t\t";
fp << generate_verilog_port(VERILOG_PORT_CONKT, config_done_port);
fp << " <= ";
std::vector<size_t> config_done_enable_values(config_done_port.get_width(), 1);
fp << generate_verilog_constant_values(config_done_enable_values);
fp << ";" << std::endl;
fp << "\tend" << std::endl;
print_verilog_comment(fp, "----- End bitstream loading during configuration phase -----");
}
/********************************************************************
* Print stimulus for a FPGA fabric with a configuration chain protocol
* where configuration bits are programming in serial (one by one)
@ -2411,6 +2506,12 @@ void print_verilog_full_testbench_bitstream(std::fstream& fp,
/* Branch on the type of configuration protocol */
switch (config_protocol_type) {
case CONFIG_MEM_STANDALONE:
print_verilog_full_testbench_vanilla_bitstream(fp,
bitstream_file,
module_manager,
top_module,
fabric_bitstream);
break;
case CONFIG_MEM_SCAN_CHAIN:
print_verilog_full_testbench_configuration_chain_bitstream(fp, bitstream_file,
@ -2962,11 +3063,6 @@ int print_verilog_full_testbench(const ModuleManager& module_manager,
netlist_annotation,
explicit_port_mapping);
/* Print tasks used for loading bitstreams */
print_verilog_top_testbench_load_bitstream_task(fp,
config_protocol.type(),
module_manager, top_module);
/* load bitstream to FPGA fabric in a configuration phase */
print_verilog_full_testbench_bitstream(fp,
bitstream_file,

View File

@ -16,9 +16,11 @@ timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/full_testbench_example_script.openfpga
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/write_full_testbench_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_standalone_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_vpr_device_layout=
openfpga_fast_configuration=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml