Merge pull request #1765 from lnis-uofu/xt_clkntwk2

Multiple Enhancements on Clock Network v2.0
This commit is contained in:
tangxifan 2024-07-30 20:59:02 -07:00 committed by GitHub
commit 6a88e7befb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 968 additions and 44 deletions

View File

@ -54,7 +54,7 @@ static size_t estimate_clock_rr_graph_num_nodes(const DeviceGrid& grids,
chanx_bb.set_xmin(0);
chanx_bb.set_xmax(grids.width());
chanx_bb.set_ymin(0);
chanx_bb.set_ymax(grids.height());
chanx_bb.set_ymax(grids.height() - 1);
}
/* Check the number of CHANX nodes required */
for (size_t iy = chanx_bb.ymin(); iy < chanx_bb.ymax(); ++iy) {
@ -74,7 +74,7 @@ static size_t estimate_clock_rr_graph_num_nodes(const DeviceGrid& grids,
vtr::Rect<size_t> chany_bb(0, 1, grids.width() - 1, grids.height() - 1);
if (perimeter_cb) {
chany_bb.set_xmin(0);
chany_bb.set_xmax(grids.width());
chany_bb.set_xmax(grids.width() - 1);
chany_bb.set_ymin(0);
chany_bb.set_ymax(grids.height());
}
@ -179,7 +179,7 @@ static void add_rr_graph_clock_nodes(
chanx_bb.set_xmin(0);
chanx_bb.set_xmax(grids.width());
chanx_bb.set_ymin(0);
chanx_bb.set_ymax(grids.height());
chanx_bb.set_ymax(grids.height() - 1);
}
/* Add X-direction clock nodes */
for (size_t iy = chanx_bb.ymin(); iy < chanx_bb.ymax(); ++iy) {
@ -201,7 +201,7 @@ static void add_rr_graph_clock_nodes(
vtr::Rect<size_t> chany_bb(0, 1, grids.width() - 1, grids.height() - 1);
if (perimeter_cb) {
chany_bb.set_xmin(0);
chany_bb.set_xmax(grids.width());
chany_bb.set_xmax(grids.width() - 1);
chany_bb.set_ymin(0);
chany_bb.set_ymax(grids.height());
}
@ -418,6 +418,8 @@ static void try_find_and_add_clock_track2ipin_node(
const ClockTreePinId& clk_pin, const bool& verbose) {
t_physical_tile_type_ptr grid_type = grids.get_physical_type(
t_physical_tile_loc(grid_coord.x(), grid_coord.y(), layer));
VTR_LOGV(verbose, "Getting type of grid at (x=%d, y=%d)\n", grid_coord.x(),
grid_coord.y());
for (std::string tap_pin_name :
clk_ntwk.tree_flatten_tap_to_ports(clk_tree, clk_pin, grid_coord)) {
VTR_LOGV(verbose, "Checking tap pin name: %s\n", tap_pin_name.c_str());
@ -762,7 +764,7 @@ static void add_rr_graph_clock_edges(
chanx_bb.set_xmin(0);
chanx_bb.set_xmax(grids.width());
chanx_bb.set_ymin(0);
chanx_bb.set_ymax(grids.height());
chanx_bb.set_ymax(grids.height() - 1);
}
/* Add edges which is driven by X-direction clock routing tracks */
for (size_t iy = chanx_bb.ymin(); iy < chanx_bb.ymax(); ++iy) {
@ -784,7 +786,7 @@ static void add_rr_graph_clock_edges(
vtr::Rect<size_t> chany_bb(0, 1, grids.width() - 1, grids.height() - 1);
if (perimeter_cb) {
chany_bb.set_xmin(0);
chany_bb.set_xmax(grids.width());
chany_bb.set_xmax(grids.width() - 1);
chany_bb.set_ymin(0);
chany_bb.set_ymax(grids.height());
}

View File

@ -45,19 +45,8 @@ const RRGSB& DeviceRRGSB::get_gsb(const size_t& x, const size_t& y) const {
/* Get a rr switch block in the array with a coordinate */
const RRGSB& DeviceRRGSB::get_gsb_by_cb_coordinate(
const t_rr_type& cb_type, const vtr::Point<size_t>& coordinate) const {
const vtr::Point<size_t>& coordinate) const {
vtr::Point<size_t> gsb_coord = coordinate;
/* TODO move the coordinate conversion to RRGSB */
switch (cb_type) {
case CHANX:
break;
case CHANY:
gsb_coord.set_y(gsb_coord.y() - 1);
break;
default:
VTR_LOG("Invalid type of connection block!\n");
exit(1);
}
VTR_ASSERT(validate_coordinate(gsb_coord));
return rr_gsb_[gsb_coord.x()][gsb_coord.y()];

View File

@ -40,7 +40,7 @@ class DeviceRRGSB {
const; /* Get a rr switch block in the array with a coordinate */
/* Get a gsb using its connection block coordinate */
const RRGSB& get_gsb_by_cb_coordinate(
const t_rr_type& cb_type, const vtr::Point<size_t>& coordinate) const;
const vtr::Point<size_t>& coordinate) const;
size_t get_num_gsb_unique_module()
const; /* get the number of unique mirrors of GSB */
size_t get_num_sb_unique_module()

View File

@ -1157,8 +1157,9 @@ static void organize_top_module_tile_based_memory_modules(
********************************************************************/
static ModulePinInfo find_tile_module_chan_port(
const ModuleManager& module_manager, const ModuleId& tile_module,
const vtr::Point<size_t>& cb_coord_in_tile, const RRGraphView& rr_graph,
const RRGSB& rr_gsb, const t_rr_type& cb_type, const RRNodeId& chan_rr_node) {
const vtr::Point<size_t>& cb_coord_in_tile, const size_t& cb_idx_in_tile,
const RRGraphView& rr_graph, const RRGSB& rr_gsb, const t_rr_type& cb_type,
const RRNodeId& chan_rr_node, const bool& name_module_using_index) {
ModulePinInfo input_port_info;
/* Generate the input port object */
switch (rr_graph.node_type(chan_rr_node)) {
@ -1170,9 +1171,15 @@ static ModulePinInfo find_tile_module_chan_port(
/* Create a port description for the middle output */
std::string input_port_name = generate_cb_module_track_port_name(
cb_type, IN_PORT, 0 == chan_node_track_id % 2);
std::string cb_instance_name_in_tile =
generate_connection_block_module_name(cb_type, cb_coord_in_tile);
if (name_module_using_index) {
cb_instance_name_in_tile =
generate_connection_block_module_name_using_index(cb_type,
cb_idx_in_tile);
}
std::string tile_input_port_name = generate_tile_module_port_name(
generate_connection_block_module_name(cb_type, cb_coord_in_tile),
input_port_name);
cb_instance_name_in_tile, input_port_name);
/* Must find a valid port id in the Switch Block module */
input_port_info.first =
module_manager.find_module_port(tile_module, tile_input_port_name);
@ -1199,7 +1206,8 @@ static int build_top_module_global_net_from_tile_clock_arch_tree(
const DeviceRRGSB& device_rr_gsb,
const vtr::Matrix<size_t>& tile_instance_ids, const FabricTile& fabric_tile,
const ClockNetwork& clk_ntwk, const std::string& clk_tree_name,
const RRClockSpatialLookup& rr_clock_lookup) {
const RRClockSpatialLookup& rr_clock_lookup,
const bool& name_module_using_index) {
int status = CMD_EXEC_SUCCESS;
/* Ensure the clock arch tree name is valid */
@ -1216,11 +1224,11 @@ static int build_top_module_global_net_from_tile_clock_arch_tree(
if (clk_ntwk.tree_width(clk_tree) !=
module_manager.module_port(top_module, top_module_port).get_width()) {
VTR_LOG(
"Clock tree '%s' does not have the same width '%lu' as the port '%'s of "
"Clock tree '%s' does not have the same width '%lu' as the port '%s' of "
"FPGA top module",
clk_tree_name.c_str(), clk_ntwk.tree_width(clk_tree),
module_manager.module_port(top_module, top_module_port)
.get_name()
.to_verilog_string()
.c_str());
return CMD_EXEC_FATAL_ERROR;
}
@ -1245,7 +1253,7 @@ static int build_top_module_global_net_from_tile_clock_arch_tree(
/* Get the tile module and instance at the entry point */
const RRGSB& rr_gsb = device_rr_gsb.get_gsb_by_cb_coordinate(
entry_track_type, vtr::Point<size_t>(entry_point.x(), entry_point.y()));
vtr::Point<size_t>(entry_point.x(), entry_point.y()));
vtr::Point<size_t> cb_coord_in_tile = rr_gsb.get_sb_coordinate();
FabricTileId curr_fabric_tile_id = fabric_tile.find_tile_by_cb_coordinate(
entry_track_type, cb_coord_in_tile);
@ -1268,8 +1276,9 @@ static int build_top_module_global_net_from_tile_clock_arch_tree(
fabric_tile.cb_coordinates(
unique_fabric_tile_id, entry_track_type)[cb_idx_in_curr_fabric_tile];
ModulePinInfo des_pin_info = find_tile_module_chan_port(
module_manager, tile_module, cb_coord_in_unique_fabric_tile, rr_graph,
rr_gsb, entry_track_type, entry_rr_node);
module_manager, tile_module, cb_coord_in_unique_fabric_tile,
cb_idx_in_curr_fabric_tile, rr_graph, rr_gsb, entry_track_type,
entry_rr_node, name_module_using_index);
/* Configure the net sink */
BasicPort sink_port =
@ -1601,7 +1610,7 @@ static int add_top_module_global_ports_from_tile_modules(
const DeviceRRGSB& device_rr_gsb,
const vtr::Matrix<size_t>& tile_instance_ids, const FabricTile& fabric_tile,
const ClockNetwork& clk_ntwk, const RRClockSpatialLookup& rr_clock_lookup,
const bool& perimeter_cb) {
const bool& perimeter_cb, const bool& name_module_using_index) {
int status = CMD_EXEC_SUCCESS;
/* Add the global ports which are NOT yet added to the top-level module
@ -1618,12 +1627,20 @@ static int add_top_module_global_ports_from_tile_modules(
BasicPort global_port_to_add;
global_port_to_add.set_name(
tile_annotation.global_port_name(tile_global_port));
size_t max_port_size = 0;
for (const BasicPort& tile_port :
tile_annotation.global_port_tile_ports(tile_global_port)) {
max_port_size = std::max(tile_port.get_width(), max_port_size);
if (tile_annotation.global_port_thru_dedicated_network(
tile_global_port)) {
std::string clk_tree_name =
tile_annotation.global_port_clock_arch_tree_name(tile_global_port);
ClockTreeId clk_tree = clk_ntwk.find_tree(clk_tree_name);
global_port_to_add.set_width(clk_ntwk.tree_width(clk_tree));
} else {
size_t max_port_size = 0;
for (const BasicPort& tile_port :
tile_annotation.global_port_tile_ports(tile_global_port)) {
max_port_size = std::max(tile_port.get_width(), max_port_size);
}
global_port_to_add.set_width(max_port_size);
}
global_port_to_add.set_width(max_port_size);
global_ports_to_add.push_back(global_port_to_add);
}
}
@ -1653,7 +1670,7 @@ static int add_top_module_global_ports_from_tile_modules(
module_manager, top_module, top_module_port, rr_graph, device_rr_gsb,
tile_instance_ids, fabric_tile, clk_ntwk,
tile_annotation.global_port_clock_arch_tree_name(tile_global_port),
rr_clock_lookup);
rr_clock_lookup, name_module_using_index);
} else {
status = build_top_module_global_net_from_tile_modules(
module_manager, top_module, top_module_port, tile_annotation,
@ -1943,7 +1960,7 @@ int build_top_module_tile_child_instances(
status = add_top_module_global_ports_from_tile_modules(
module_manager, top_module, tile_annotation, vpr_device_annotation, grids,
layer, rr_graph, device_rr_gsb, tile_instance_ids, fabric_tile, clk_ntwk,
rr_clock_lookup, perimeter_cb);
rr_clock_lookup, perimeter_cb, name_module_using_index);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}

View File

@ -1287,12 +1287,15 @@ static int build_top_module_global_net_from_clock_arch_tree(
clk_ntwk.spine_level(spine), pin, entry_dir);
/* Get the connection block module and instance at the entry point */
const RRGSB& rr_gsb = device_rr_gsb.get_gsb_by_cb_coordinate(
entry_track_type, vtr::Point<size_t>(entry_point.x(), entry_point.y()));
ModuleId cb_module =
module_manager.find_module(generate_connection_block_module_name(
entry_track_type,
vtr::Point<size_t>(entry_point.x(), entry_point.y())));
vtr::Point<size_t> entry_cb_coord(entry_point.x(), entry_point.y());
const RRGSB& rr_gsb =
device_rr_gsb.get_gsb_by_cb_coordinate(entry_cb_coord);
vtr::Point<size_t> entry_unique_cb_coord =
device_rr_gsb.get_cb_unique_module(entry_track_type, entry_cb_coord)
.get_cb_coordinate(entry_track_type);
std::string cb_module_name = generate_connection_block_module_name(
entry_track_type, entry_unique_cb_coord);
ModuleId cb_module = module_manager.find_module(cb_module_name);
size_t cb_instance =
cb_instance_ids.at(entry_track_type)[entry_point.x()][entry_point.y()];
ModulePinInfo des_pin_info = find_connection_block_module_chan_port(

View File

@ -73,7 +73,7 @@ write_preconfigured_testbench --file ./SRC --reference_benchmark_file_path ${REF
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file ./SDC_analysis
#write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -220,6 +220,7 @@ run-task basic_tests/group_config_block/group_config_block_homo_fabric_tile_glob
echo -e "Module naming";
run-task basic_tests/module_naming/using_index $@
run-task basic_tests/module_naming/fabric_tile_clkntwk_io_subtile_using_index $@
run-task basic_tests/module_naming/renaming_rules $@
run-task basic_tests/module_naming/renaming_rules_strong $@
run-task basic_tests/module_naming/renaming_rules_on_indexed_names $@
@ -234,12 +235,14 @@ run-task basic_tests/global_tile_ports/global_tile_4clock --default_tool_path ${
run-task basic_tests/global_tile_ports/global_tile_4clock_pin $@
echo -e "Testing programmable clock architecture";
run-task basic_tests/clock_network/homo_1clock_1reset_1layer_2entry $@
run-task basic_tests/clock_network/homo_1clock_2layer $@
run-task basic_tests/clock_network/homo_1clock_2layer_full_tb $@
run-task basic_tests/clock_network/homo_2clock_2layer $@
run-task basic_tests/clock_network/homo_2clock_2layer_disable_unused $@
run-task basic_tests/clock_network/homo_2clock_2layer_disable_unused_tree $@
run-task basic_tests/clock_network/homo_1clock_1reset_2layer $@
run-task basic_tests/clock_network/homo_1clock_1reset_2layer_y_entry $@
run-task basic_tests/clock_network/homo_1clock_1reset_2layer_on_lut $@
run-task basic_tests/clock_network/homo_1clock_1reset_2layer_syntax $@
run-task basic_tests/clock_network/homo_1clock_1reset_2layer_disable_unused_spines $@

View File

@ -0,0 +1,20 @@
<clock_networks default_segment="L1" default_tap_switch="ipin_cblock" default_driver_switch="0">
<clock_network name="clk_tree_2lvl" global_port="op_clk[0:0]">
<spine name="clk_rib_lvl1_sw0_upper" start_x="1" start_y="2" end_x="1" end_y="2" type="CHANY" direction="INC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw0_lower" start_x="1" start_y="1" end_x="1" end_y="1" type="CHANY" direction="DEC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw1_upper" start_x="2" start_y="2" end_x="2" end_y="2" type="CHANY" direction="INC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw1_lower" start_x="2" start_y="1" end_x="2" end_y="1" type="CHANY" direction="DEC_DIRECTION"/>
<taps>
<all from_pin="op_clk[0:0]" to_pin="clb[0:0].clk[0:0]"/>
</taps>
</clock_network>
<clock_network name="rst_tree_2lvl" global_port="op_reset[0:0]">
<spine name="rst_rib_lvl1_sw0_upper" start_x="1" start_y="2" end_x="1" end_y="2" type="CHANY" direction="INC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw0_lower" start_x="1" start_y="1" end_x="1" end_y="1" type="CHANY" direction="DEC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw1_upper" start_x="2" start_y="2" end_x="2" end_y="2" type="CHANY" direction="INC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw1_lower" start_x="2" start_y="1" end_x="2" end_y="1" type="CHANY" direction="DEC_DIRECTION"/>
<taps>
<all from_pin="op_reset[0:0]" to_pin="clb[0:0].reset[0:0]"/>
</taps>
</clock_network>
</clock_networks>

View File

@ -0,0 +1,8 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="reset"/>
<set_io pin="op_clk[0]" net="clk"/>
</pin_constraints>

View File

@ -0,0 +1,8 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="resetb" default_value="1"/>
<set_io pin="op_clk[0]" net="clk"/>
</pin_constraints>

View File

@ -0,0 +1,4 @@
<repack_design_constraints>
<!-- Intended to be dummy -->
</repack_design_constraints>

View File

@ -0,0 +1,54 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 3*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/example_clkntwk_no_ace_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_Ntwk1clk1rst2lvl_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_repack_constraints_file=${PATH:TASK_DIR}/config/repack_pin_constraints.xml
openfpga_vpr_device_layout=2x2
openfpga_vpr_route_chan_width=32
openfpga_clock_arch_file=${PATH:TASK_DIR}/config/clk_arch_1clk_1rst_2layer.xml
openfpga_verilog_testbench_port_mapping=--explicit_port_mapping
openfpga_route_clock_options=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_fracff_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_resetb/counter.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_sim.v
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_map.v
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = counter
bench0_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_reset.xml
bench0_openfpga_verilog_testbench_port_mapping=
bench1_top = counter
bench1_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_resetb.xml
bench1_openfpga_verilog_testbench_port_mapping=
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -0,0 +1,32 @@
<clock_networks default_segment="L1" default_tap_switch="ipin_cblock" default_driver_switch="0">
<clock_network name="clk_tree_2lvl" global_port="op_clk[0:0]">
<spine name="clk_spine_lvl0" start_x="1" start_y="1" end_x="1" end_y="2">
<switch_point tap="clk_rib_lvl1_sw0_upper" x="1" y="1"/>
<switch_point tap="clk_rib_lvl1_sw0_lower" x="1" y="1"/>
<switch_point tap="clk_rib_lvl1_sw1_upper" x="1" y="2"/>
<switch_point tap="clk_rib_lvl1_sw1_lower" x="1" y="2"/>
</spine>
<spine name="clk_rib_lvl1_sw0_upper" start_x="2" start_y="1" end_x="2" end_y="1" type="CHANX" direction="INC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw0_lower" start_x="1" start_y="1" end_x="1" end_y="1" type="CHANX" direction="DEC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw1_upper" start_x="2" start_y="2" end_x="2" end_y="2" type="CHANX" direction="INC_DIRECTION"/>
<spine name="clk_rib_lvl1_sw1_lower" start_x="1" start_y="2" end_x="1" end_y="2" type="CHANX" direction="DEC_DIRECTION"/>
<taps>
<all from_pin="op_clk[0:0]" to_pin="clb[0:0].clk[0:0]"/>
</taps>
</clock_network>
<clock_network name="rst_tree_2lvl" global_port="op_reset[0:0]">
<spine name="rst_spine_lvl0" start_x="1" start_y="1" end_x="1" end_y="2">
<switch_point tap="rst_rib_lvl1_sw0_upper" x="1" y="1"/>
<switch_point tap="rst_rib_lvl1_sw0_lower" x="1" y="1"/>
<switch_point tap="rst_rib_lvl1_sw1_upper" x="1" y="2"/>
<switch_point tap="rst_rib_lvl1_sw1_lower" x="1" y="2"/>
</spine>
<spine name="rst_rib_lvl1_sw0_upper" start_x="2" start_y="1" end_x="2" end_y="1" type="CHANX" direction="INC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw0_lower" start_x="1" start_y="1" end_x="1" end_y="1" type="CHANX" direction="DEC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw1_upper" start_x="2" start_y="2" end_x="2" end_y="2" type="CHANX" direction="INC_DIRECTION"/>
<spine name="rst_rib_lvl1_sw1_lower" start_x="1" start_y="2" end_x="1" end_y="2" type="CHANX" direction="DEC_DIRECTION"/>
<taps>
<all from_pin="op_reset[0:0]" to_pin="clb[0:0].reset[0:0]"/>
</taps>
</clock_network>
</clock_networks>

View File

@ -0,0 +1,8 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="reset"/>
<set_io pin="op_clk[0]" net="clk"/>
</pin_constraints>

View File

@ -0,0 +1,8 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="resetb" default_value="1"/>
<set_io pin="op_clk[0]" net="clk"/>
</pin_constraints>

View File

@ -0,0 +1,4 @@
<repack_design_constraints>
<!-- Intended to be dummy -->
</repack_design_constraints>

View File

@ -0,0 +1,54 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 3*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/example_clkntwk_no_ace_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_Ntwk1clk1rst2lvl_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_repack_constraints_file=${PATH:TASK_DIR}/config/repack_pin_constraints.xml
openfpga_vpr_device_layout=2x2
openfpga_vpr_route_chan_width=32
openfpga_clock_arch_file=${PATH:TASK_DIR}/config/clk_arch_1clk_1rst_2layer.xml
openfpga_verilog_testbench_port_mapping=--explicit_port_mapping
openfpga_route_clock_options=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_TileOrgzTr_fracff_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_resetb/counter.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_sim.v
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_map.v
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = counter
bench0_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_reset.xml
bench0_openfpga_verilog_testbench_port_mapping=
bench1_top = counter
bench1_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_resetb.xml
bench1_openfpga_verilog_testbench_port_mapping=
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -0,0 +1,25 @@
<clock_networks default_segment="L1" default_tap_switch="ipin_cblock" default_driver_switch="0">
<clock_network name="clk_tree_2lvl" global_port="clk[0:0]">
<spine name="spine_lvl0" start_x="0" start_y="1" end_x="2" end_y="1">
<switch_point tap="rib_lvl1_sw0_upper" x="0" y="1"/>
<switch_point tap="rib_lvl1_sw0_lower" x="0" y="1"/>
<switch_point tap="rib_lvl1_sw1_upper" x="1" y="1"/>
<switch_point tap="rib_lvl1_sw1_lower" x="1" y="1"/>
<switch_point tap="rib_lvl1_sw2_upper" x="2" y="1"/>
<switch_point tap="rib_lvl1_sw2_lower" x="2" y="1"/>
</spine>
<spine name="rib_lvl1_sw0_upper" start_x="0" start_y="2" end_x="0" end_y="2" type="CHANY" direction="INC_DIRECTION"/>
<spine name="rib_lvl1_sw0_lower" start_x="0" start_y="1" end_x="0" end_y="1" type="CHANY" direction="DEC_DIRECTION"/>
<spine name="rib_lvl1_sw1_upper" start_x="1" start_y="2" end_x="1" end_y="3" type="CHANY" direction="INC_DIRECTION"/>
<spine name="rib_lvl1_sw1_lower" start_x="1" start_y="1" end_x="1" end_y="0" type="CHANY" direction="DEC_DIRECTION"/>
<spine name="rib_lvl1_sw2_upper" start_x="2" start_y="2" end_x="2" end_y="3" type="CHANY" direction="INC_DIRECTION"/>
<spine name="rib_lvl1_sw2_lower" start_x="2" start_y="1" end_x="2" end_y="0" type="CHANY" direction="DEC_DIRECTION"/>
<taps>
<all from_pin="clk[0:0]" to_pin="clb[0:0].clk[0:0]"/>
<all from_pin="clk[0:0]" to_pin="io_top[0:5].clk[0:0]"/>
<all from_pin="clk[0:0]" to_pin="io_right[0:2].clk[0:0]"/>
<all from_pin="clk[0:0]" to_pin="io_bottom[0:3].clk[0:0]"/>
<all from_pin="clk[0:0]" to_pin="io_left[0:3].clk[0:0]"/>
</taps>
</clock_network>
</clock_networks>

View File

@ -0,0 +1,42 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/group_tile_clkntwk_preconfig_testbench_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_ClkNtwk_registerable_io_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_vpr_extra_options=
openfpga_pb_pin_fixup_command=
openfpga_vpr_device=2x2
openfpga_vpr_route_chan_width=40
openfpga_group_tile_config_file=${PATH:TASK_DIR}/config/tile_config.xml --name_module_using_index
openfpga_verilog_testbench_options=--explicit_port_mapping
openfpga_clock_arch_file=${PATH:TASK_DIR}/config/clk_arch_1clk_2layer.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_PerimeterCb_ClkNtwk_registerable_io_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2_pipelined/and2_pipelined.v
[SYNTHESIS_PARAM]
bench_read_verilog_options_common = -nolatches
bench0_top = and2_pipelined
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -0,0 +1,642 @@
<?xml version="1.0"?>
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Authors: Xifan Tang
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut4">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut3_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dff">
<input_ports>
<port name="D" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffr">
<input_ports>
<port name="D" clock="C"/>
<port name="R" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffrn">
<input_ports>
<port name="D" clock="C"/>
<port name="RN" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" area="0">
<sub_tile name="io" capacity="8">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<tile name="clb" area="53894">
<sub_tile name="clb">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1" is_non_clock_global="true"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
<fc_override port_name="reset" fc_type="frac" fc_val="0"/>
</fc>
<!-- Note that clb.I[0:5] are assigned on right side for clock pins of programmable clock network to access. The clb.I[6:11] may not be accessible through programmable clock network. This is a limitation in current clock network -->
<pinlocations pattern="custom">
<loc side="left"/>
<loc side="bottom"/>
<loc side="right">clb.O[0:3] clb.I[0:5]</loc>
<loc side="top">clb.reset clb.clk clb.O[4:7] clb.I[6:11]</loc>
</pinlocations>
</sub_tile>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="48x48" width="50" height="50">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L1" freq="0.000000" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1</sb>
<cb type="pattern">1</cb>
</segment>
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disable_packing="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut3_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".subckt dffr" num_pb="2">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="C"/>
<T_setup value="66e-12" port="ff.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].C"/>
<complete name="direct4" input="fabric.reset" output="ff[1:0].R"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
<direct name="direct4" input="fle.reset" output="fabric.reset"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 3-LUT mode definition begin -->
<mode name="n2_lut3">
<pb_type name="lut3inter" num_pb="1">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble3" num_pb="2">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble3.clk" output="ff[0:0].C"/>
<direct name="direct4" input="ble3.reset" output="ff[0:0].R"/>
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
<complete name="complete2" input="lut3inter.reset" output="ble3[1:0].reset"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
<direct name="direct4" input="fle.reset" output="lut3inter.reset"/>
</interconnect>
</mode>
<!-- Dual 3-LUT mode definition end -->
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.C"/>
<direct name="direct4" input="ble4.reset" output="ff.R"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
<direct name="direct4" input="fle.reset" output="ble4.reset"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<complete name="resets" input="clb.reset" output="fle[3:0].reset">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>