refactored RRAM MUX verilog generation

This commit is contained in:
tangxifan 2019-09-10 20:45:44 -06:00
parent 0711aa1bd6
commit 6a5b50facf
1 changed files with 407 additions and 9 deletions

View File

@ -608,6 +608,14 @@ void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager,
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Get the input ports from the mux */
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
/* Get the output ports from the mux */
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true);
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
@ -621,6 +629,11 @@ void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager,
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_input_ports.size());
VTR_ASSERT(1 == mux_output_ports.size());
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
@ -634,19 +647,23 @@ void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager,
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
BasicPort input_port("in", num_inputs);
BasicPort input_port(circuit_lib.port_lib_name(mux_input_ports[0]), num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Add each output port */
BasicPort output_port("out", num_outputs);
BasicPort output_port(circuit_lib.port_lib_name(mux_output_ports[0]), num_outputs);
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
/* Add RRAM programming ports,
* RRAM MUXes require one more pair of BLB and WL
* to configure the memories. See schematic for details
*/
BasicPort blb_port("blb", num_mems + 1);
BasicPort blb_port(circuit_lib.port_lib_name(mux_blb_ports[0]), num_mems + 1);
module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort wl_port("wl", num_mems + 1);
BasicPort wl_port(circuit_lib.port_lib_name(mux_wl_ports[0]), num_mems + 1);
module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT);
/* dump module definition + ports */
@ -929,7 +946,6 @@ void generate_verilog_cmos_mux_module_tgate_multiplexing_structure(ModuleManager
print_verilog_comment(fp, std::string("---- END Internal wires of a CMOS MUX module -----"));
fp << std::endl;
print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch CMOS MUX module -----"));
/* Iterate over all the internal nodes and output nodes in the mux graph */
for (const auto& node : mux_graph.non_input_nodes()) {
print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch CMOS MUX module -----"));
@ -1414,6 +1430,391 @@ void generate_verilog_cmos_mux_module(ModuleManager& module_manager,
print_verilog_module_end(fp, module_name);
}
/********************************************************************
* Generate the 4T1R-based internal logic
* (multiplexing structure) for a multiplexer in Verilog codes
* This function will :
* 1. build a multiplexing structure by instanciating the branch circuits
* generated before
* 2. add intermediate buffers between multiplexing stages if specified.
*******************************************************************/
static
void generate_verilog_rram_mux_module_multiplexing_structure(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const ModuleId& module_id,
const CircuitModelId& circuit_model,
const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Find the actual mux size */
size_t mux_size = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs());
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true);
/* MUX graph must have only 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Build the location map of intermediate buffers */
std::vector<bool> inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model, mux_graph.num_node_levels());
print_verilog_comment(fp, std::string("---- BEGIN Internal Logic of a RRAM-based MUX module -----"));
print_verilog_comment(fp, std::string("---- BEGIN Internal wires of a RRAM-based MUX module -----"));
/* Print local wires which are the nodes in the mux graph */
for (size_t level = 0; level < mux_graph.num_levels(); ++level) {
/* Print the internal wires located at this level */
BasicPort internal_wire_port(generate_verilog_mux_node_name(level, false), mux_graph.num_nodes_at_level(level));
fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_port) << ";" << std::endl;
/* Identify if an intermediate buffer is needed */
if (false == inter_buffer_location_map[level]) {
continue;
}
BasicPort internal_wire_buffered_port(generate_verilog_mux_node_name(level, true), mux_graph.num_nodes_at_level(level));
fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_buffered_port) << std::endl;
}
print_verilog_comment(fp, std::string("---- END Internal wires of a RRAM-based MUX module -----"));
fp << std::endl;
/* Iterate over all the internal nodes and output nodes in the mux graph */
for (const auto& node : mux_graph.non_input_nodes()) {
print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch RRAM-based MUX module -----"));
/* Get the size of branch circuit
* Instanciate an branch circuit by the size (fan-in) of the node
*/
size_t branch_size = mux_graph.node_in_edges(node).size();
/* Get the node level and index in the current level */
size_t output_node_level = mux_graph.node_level(node);
size_t output_node_index_at_level = mux_graph.node_index_at_level(node);
/* Get the nodes which drive the root_node */
std::vector<MuxNodeId> input_nodes;
for (const auto& edge : mux_graph.node_in_edges(node)) {
/* Get the nodes drive the edge */
for (const auto& src_node : mux_graph.edge_src_nodes(edge)) {
input_nodes.push_back(src_node);
}
}
/* Number of inputs should match the branch_input_size!!! */
VTR_ASSERT(input_nodes.size() == branch_size);
/* Get the mems in the branch circuits */
std::vector<MuxMemId> mems;
for (const auto& edge : mux_graph.node_in_edges(node)) {
/* Get the mem control the edge */
MuxMemId mem = mux_graph.find_edge_mem(edge);
/* Add the mem if it is not in the list */
if (mems.end() == std::find(mems.begin(), mems.end(), mem)) {
mems.push_back(mem);
}
}
/* Instanciate the branch module which is a tgate-based module
*/
std::string branch_module_name= generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, branch_size, verilog_mux_basis_posfix);
/* Get the moduleId for the submodule */
ModuleId branch_module_id = module_manager.find_module(branch_module_name);
/* We must have one */
VTR_ASSERT(ModuleId::INVALID() != branch_module_id);
/* Create a port-to-port map */
std::map<std::string, BasicPort> port2port_name_map;
/* TODO: the branch module name should NOT be hard-coded. Use the port lib_name given by users! */
/* All the input node names organized in bus */
std::vector<BasicPort> branch_node_input_ports;
for (const auto& input_node : input_nodes) {
/* Generate the port info of each input node */
size_t input_node_level = mux_graph.node_level(input_node);
size_t input_node_index_at_level = mux_graph.node_index_at_level(input_node);
BasicPort branch_node_input_port(generate_verilog_mux_node_name(input_node_level, inter_buffer_location_map[input_node_level]), input_node_index_at_level, input_node_index_at_level);
branch_node_input_ports.push_back(branch_node_input_port);
}
/* Create the port info for the input */
/* TODO: the naming could be more flexible? */
BasicPort instance_input_port = generate_verilog_bus_port(branch_node_input_ports, std::string(generate_verilog_mux_node_name(output_node_level, false) + "_in"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_input_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t" << generate_verilog_local_wire(instance_input_port, branch_node_input_ports) << std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_input_ports).size());
}
/* Link nodes to input ports for the branch module */
ModulePortId module_input_port_id = module_manager.find_module_port(branch_module_id, "in");
VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id);
/* Get the port from module */
BasicPort module_input_port = module_manager.module_port(branch_module_id, module_input_port_id);
port2port_name_map[module_input_port.get_name()] = instance_input_port;
/* Link nodes to output ports for the branch module */
BasicPort instance_output_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level);
ModulePortId module_output_port_id = module_manager.find_module_port(branch_module_id, "out");
VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id);
/* Get the port from module */
BasicPort module_output_port = module_manager.module_port(branch_module_id, module_output_port_id);
port2port_name_map[module_output_port.get_name()] = instance_output_port;
/* All the mem node names organized in bus
* RRAM-based MUX uses BLB and WL to control memories
*/
std::vector<BasicPort> branch_node_blb_ports;
for (const auto& mem : mems) {
/* Generate the port info of each mem node:
*/
BasicPort branch_node_blb_port(circuit_lib.port_lib_name(mux_blb_ports[0]), size_t(mem), size_t(mem));
branch_node_blb_ports.push_back(branch_node_blb_port);
}
/* Every stage, we have an additonal BLB and WL in controlling purpose
* The additional BLB is arranged at the tail of BLB port
* For example:
* The total port width is BLB[0 ... <num_mem> + <num_levels> - 1]
* The regular BLB used by branches are BLB[0 .. <num_mem> - 1]
* The additional BLB used by branches are BLB[<num_mem> .. <num_mem> + <num_levels> - 1]
*
* output_node_level is always larger than the mem_level by 1
*/
branch_node_blb_ports.push_back(BasicPort(circuit_lib.port_lib_name(mux_blb_ports[0]),
mux_graph.num_memory_bits() + output_node_level - 1,
mux_graph.num_memory_bits() + output_node_level - 1)
);
/* Create the port info for the input */
/* TODO: the naming could be more flexible? */
BasicPort instance_blb_port = generate_verilog_bus_port(branch_node_blb_ports, std::string(generate_verilog_mux_node_name(output_node_level, false) + "_blb"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_blb_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t" << generate_verilog_local_wire(instance_blb_port, branch_node_blb_ports) << std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_blb_ports).size());
}
/* Link nodes to BLB ports for the branch module */
ModulePortId module_blb_port_id = module_manager.find_module_port(branch_module_id, circuit_lib.port_lib_name(mux_blb_ports[0]));
VTR_ASSERT(ModulePortId::INVALID() != module_blb_port_id);
/* Get the port from module */
BasicPort module_blb_port = module_manager.module_port(branch_module_id, module_blb_port_id);
port2port_name_map[module_blb_port.get_name()] = instance_blb_port;
std::vector<BasicPort> branch_node_wl_ports;
for (const auto& mem : mems) {
/* Generate the port info of each mem node:
*/
BasicPort branch_node_blb_port(circuit_lib.port_lib_name(mux_wl_ports[0]), size_t(mem), size_t(mem));
branch_node_wl_ports.push_back(branch_node_blb_port);
}
/* Every stage, we have an additonal BLB and WL in controlling purpose
* The additional BLB is arranged at the tail of BLB port
* For example:
* The total port width is WL[0 ... <num_mem> + <num_levels> - 1]
* The regular BLB used by branches are WL[0 .. <num_mem> - 1]
* The additional BLB used by branches are WL[<num_mem> .. <num_mem> + <num_levels> - 1]
*
* output_node_level is always larger than the mem_level by 1
*/
branch_node_wl_ports.push_back(BasicPort(circuit_lib.port_lib_name(mux_wl_ports[0]),
mux_graph.num_memory_bits() + output_node_level - 1,
mux_graph.num_memory_bits() + output_node_level - 1)
);
/* Create the port info for the WL */
/* TODO: the naming could be more flexible? */
BasicPort instance_wl_port = generate_verilog_bus_port(branch_node_wl_ports, std::string(generate_verilog_mux_node_name(output_node_level, false) + "_wl"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_wl_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t" << generate_verilog_local_wire(instance_wl_port, branch_node_wl_ports) << std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_wl_ports).size());
}
/* Link nodes to BLB ports for the branch module */
ModulePortId module_wl_port_id = module_manager.find_module_port(branch_module_id, circuit_lib.port_lib_name(mux_wl_ports[0]));
VTR_ASSERT(ModulePortId::INVALID() != module_wl_port_id);
/* Get the port from module */
BasicPort module_wl_port = module_manager.module_port(branch_module_id, module_wl_port_id);
port2port_name_map[module_wl_port.get_name()] = instance_wl_port;
/* Output an instance of the module */
print_verilog_module_instance(fp, module_manager, module_id, branch_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and child modules
*/
module_manager.add_child_module(module_id, branch_module_id);
print_verilog_comment(fp, std::string("---- END Instanciation of a branch RRAM-based MUX module -----"));
fp << std::endl;
if (false == inter_buffer_location_map[output_node_level]) {
continue; /* No need for intermediate buffers */
}
print_verilog_comment(fp, std::string("---- BEGIN Instanciation of an intermediate buffer modules -----"));
/* Now we need to add intermediate buffers by instanciating the modules */
CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(circuit_model);
/* We must have a valid model id */
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
BasicPort buffer_instance_input_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level);
BasicPort buffer_instance_output_port(generate_verilog_mux_node_name(output_node_level, true), output_node_index_at_level, output_node_index_at_level);
print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id, buffer_model, buffer_instance_input_port, buffer_instance_output_port);
print_verilog_comment(fp, std::string("---- END Instanciation of an intermediate buffer module -----"));
fp << std::endl;
}
print_verilog_comment(fp, std::string("---- END Internal Logic of a RRAM-based MUX module -----"));
fp << std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling a RRAM-based multiplexer with the given size
* The Verilog module will consist of three parts:
* 1. instances of the branch circuits of multiplexers which are generated before
* This builds up the 4T1R-based multiplexing structure
*
* BLB WL
* | | ...
* v v
* +--------+
* in[0]-->| | BLB WL
* ...| Branch |-----+ | |
* in -->| 0 | | v v
* [N-1] +--------+ | +--------+
* ... -->| |
* BLBs WLs ...| Branch |
* | | ... -->| X |
* v v +--------+
* +--------+ |
* -->| | |
* ...| Branch |----+
* -->| i |
* +--------+
*
* 2. Input buffers/inverters
* 3. Output buffers/inverters
*********************************************************************/
static
void generate_verilog_rram_mux_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph) {
/* Error out for the conditions where we are not yet supported! */
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
/* RRAM LUT is not supported now... */
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])RRAM-based LUT is not supported (Circuit model: %s)!\n",
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
/* Get the global ports required by MUX (and any submodules) */
std::vector<CircuitPortId> mux_global_ports = circuit_lib.model_global_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
/* Get the input ports from the mux */
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
/* Get the output ports from the mux */
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true);
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_WL, true);
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of data-path inputs */
size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs());
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_input_ports.size());
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : mux_global_ports) {
/* Configure each global port */
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
size_t input_port_cnt = 0;
for (const auto& port : mux_input_ports) {
BasicPort input_port(circuit_lib.port_lib_name(port), num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Update counter */
input_port_cnt++;
}
/* Double check: We should have only 1 input port generated here! */
VTR_ASSERT(1 == input_port_cnt);
for (const auto& port : mux_output_ports) {
BasicPort output_port(circuit_lib.port_lib_name(port), num_outputs);
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
output_port.set_width(circuit_lib.port_size(port));
}
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
}
/* BLB port */
for (const auto& port : mux_blb_ports) {
/* IMPORTANT: RRAM-based MUX has an additional BLB pin per level
* So, the actual port width of BLB should be added by the number of levels of the MUX graph
*/
BasicPort blb_port(circuit_lib.port_lib_name(port), num_mems + mux_graph.num_levels());
module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT);
}
/* WL port */
for (const auto& port : mux_wl_ports) {
/* IMPORTANT: RRAM-based MUX has an additional WL pin per level
* So, the actual port width of WL should be added by the number of levels of the MUX graph
*/
BasicPort wl_port(circuit_lib.port_lib_name(port), num_mems + mux_graph.num_levels());
module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT);
}
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* TODO: Print the internal logic in Verilog codes */
generate_verilog_rram_mux_module_multiplexing_structure(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
/* Print the input and output buffers in Verilog codes */
/* TODO, we should rename the follow functions to a generic name? Since they are applicable to both MUXes */
generate_verilog_cmos_mux_module_input_buffers(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
generate_verilog_cmos_mux_module_output_buffers(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***********************************************
* Generate Verilog codes modeling a multiplexer
* with the given graph-level description
@ -1436,10 +1837,7 @@ void generate_verilog_mux_module(ModuleManager& module_manager,
break;
case SPICE_MODEL_DESIGN_RRAM:
/* TODO: RRAM-based Multiplexer Verilog module generation */
/*
generate_verilog_rram_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph,
circuit_lib.dump_structural_verilog(circuit_model));
*/
generate_verilog_rram_mux_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,