Merge pull request #92 from LNIS-Projects/dev

Smart Configuration Support and Verilog Netlist Refactoring
This commit is contained in:
Laboratory for Nano Integrated Systems (LNIS) 2020-09-24 22:04:55 -06:00 committed by GitHub
commit 6262605556
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
153 changed files with 5745 additions and 13937 deletions

View File

@ -12,23 +12,49 @@ echo -e "Basic regression tests";
echo -e "Testing configuration chain of a K4N4 FPGA";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain_use_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain_use_resetb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain_use_setb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_chain_use_set_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_configuration_chain --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_configuration_chain_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/smart_fast_configuration_chain --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/preconfig_testbench/configuration_chain --debug --show_thread_logs
echo -e "Testing fram-based configuration protocol of a K4N4 FPGA";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/smart_fast_configuration_frame --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_configuration_frame --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_configuration_frame_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_ccff --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_scff --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_use_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_use_resetb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_use_setb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_frame_use_set_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/preconfig_testbench/configuration_frame --debug --show_thread_logs
echo -e "Testing memory bank configuration protocol of a K4N4 FPGA";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_resetb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_setb --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/memory_bank_use_set_reset --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/fast_memory_bank_use_set --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/smart_fast_memory_bank --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/preconfig_testbench/memory_bank --debug --show_thread_logs
echo -e "Testing standalone (flatten memory) configuration protocol of a K4N4 FPGA";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/flatten_memory --debug --show_thread_logs
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/preconfig_testbench/flatten_memory --debug --show_thread_logs
echo -e "Testing fixed device layout and routing channel width";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/fixed_device_support --debug --show_thread_logs
echo -e "Testing fabric Verilog generation only";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/generate_fabric --debug --show_thread_logs
@ -51,5 +77,7 @@ echo -e "Testing K4N4 with multiple lengths of routing segments";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n4_L124 --debug --show_thread_logs
echo -e "Testing K4N4 with 32-bit fracturable multiplier";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n4_frac_mult --debug --show_thread_logs
echo -e "Testing K4N5 with pattern based local routing";
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n5_pattern_local_routing --debug --show_thread_logs
end_section "OpenFPGA.TaskTun"

View File

@ -143,7 +143,8 @@ A circuit model may consist of a number of ports. The port list is mandatory in
.. option:: <port type="<string>" prefix="<string>" lib_name="<string>" size="<int>"
default_val="<int>" circuit_model_name="<string>" mode_select="<bool>"
is_global="<bool>" is_set="<bool>" is_reset="<bool>" is_config_enable="<bool>"/>
is_global="<bool>" is_set="<bool>" is_reset="<bool>"
is_edge_triggered="<bool>" is_config_enable="<bool>"/>
Define the attributes for a port of a circuit model.
@ -190,6 +191,8 @@ A circuit model may consist of a number of ports. The port list is mandatory in
- ``is_config_enable="true|false"`` Specify if this port controls a configuration-enable signal. Only valid when ``is_global`` is ``true``. This port is only enabled during FPGA configuration, and always disabled during FPGA operation. All the ``config_enable`` ports are connected to global configuration-enable voltage stimuli in testbenches.
- ``is_edge_triggered="true|false"`` Specify if this port is edge sensitive, like the clock port of a D-type flip-flop. This attribute is used to create stimuli in testbenches when flip-flops are used as configurable memory in frame-based configuration protocol.
.. note:: ``is_set``, ``is_reset`` and ``is_config_enable`` are only valid when ``is_global`` is ``true``.
.. note:: Different types of ``circuit_model`` have different XML syntax, with which users can highly customize their circuit topologies. See refer to examples of :ref:``circuit_model_example`` for more details.

View File

@ -33,6 +33,8 @@ write_verilog_testbench
- ``--fast_configuration`` Enable fast configuration phase for the top-level testbench in order to reduce runtime of simulations. It is applicable to configuration chain, memory bank and frame-based configuration protocols. For configuration chain, when enabled, the zeros at the head of the bitstream will be skipped. For memory bank and frame-based, when enabled, all the zero configuration bits will be skipped. So ensure that your memory cells can be correctly reset to zero with a reset signal.
.. note:: If both reset and set ports are defined in the circuit modeling for programming, OpenFPGA will pick the one that will bring largest benefit in speeding up configuration.
- ``--print_top_testbench`` Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
- ``--print_formal_verification_top_netlist`` Generate a top-level module which can be used in formal verification

View File

@ -942,6 +942,12 @@ bool CircuitLibrary::port_is_config_enable(const CircuitPortId& circuit_port_id)
return port_is_config_enable_[circuit_port_id];
}
bool CircuitLibrary::port_is_edge_triggered(const CircuitPortId& circuit_port_id) const {
/* validate the circuit_port_id */
VTR_ASSERT(valid_circuit_port_id(circuit_port_id));
return port_is_edge_triggered_[circuit_port_id];
}
/* Return a flag if the port is used during programming a FPGA in a circuit model */
bool CircuitLibrary::port_is_prog(const CircuitPortId& circuit_port_id) const {
/* validate the circuit_port_id */
@ -1374,6 +1380,7 @@ CircuitPortId CircuitLibrary::add_model_port(const CircuitModelId& model_id,
port_is_reset_.push_back(false);
port_is_set_.push_back(false);
port_is_config_enable_.push_back(false);
port_is_edge_triggered_.push_back(false);
port_is_prog_.push_back(false);
port_tri_state_model_names_.emplace_back();
port_tri_state_model_ids_.push_back(CircuitModelId::INVALID());
@ -1493,6 +1500,15 @@ void CircuitLibrary::set_port_is_config_enable(const CircuitPortId& circuit_port
return;
}
/* Set the is_edge_triggered for a port of a circuit model */
void CircuitLibrary::set_port_is_edge_triggered(const CircuitPortId& circuit_port_id,
const bool& is_edge_triggered) {
/* validate the circuit_port_id */
VTR_ASSERT(valid_circuit_port_id(circuit_port_id));
port_is_edge_triggered_[circuit_port_id] = is_edge_triggered;
return;
}
/* Set the is_prog for a port of a circuit model */
void CircuitLibrary::set_port_is_prog(const CircuitPortId& circuit_port_id,
const bool& is_prog) {

View File

@ -91,15 +91,16 @@
* 9. port_is_reset: specify if this port is a reset signal which needs special pulse widths in testbenches
* 10. port_is_set: specify if this port is a set signal which needs special pulse widths in testbenches
* 11. port_is_config_enable: specify if this port is a config_enable signal which needs special pulse widths in testbenches
* 12. port_is_prog: specify if this port is for FPGA programming use which needs special pulse widths in testbenches
* 13. port_tri_state_model_name: the name of circuit model linked to tri-state the port
* 14. port_tri_state_model_ids_: the Id of circuit model linked to tri-state the port
* 15. port_inv_model_names_: the name of inverter circuit model linked to the port
* 16. port_inv_model_ids_: the Id of inverter circuit model linked to the port
* 17. port_tri_state_map_: only applicable to inputs of LUTs, the tri-state map applied to each pin of this port
* 18. port_lut_frac_level_: only applicable to outputs of LUTs, indicate which level of outputs inside LUT multiplexing structure will be used
* 19. port_lut_output_mask_: only applicable to outputs of LUTs, indicate which output at an internal level of LUT multiplexing structure will be used
* 20. port_sram_orgz_: only applicable to SRAM ports, indicate how the SRAMs will be organized, either memory decoders or scan-chains
* 12. port_is_edge_triggered: specify if this port is triggerd by edges like the clock signal of a D-type flip-flop
* 13. port_is_prog: specify if this port is for FPGA programming use which needs special pulse widths in testbenches
* 14. port_tri_state_model_name: the name of circuit model linked to tri-state the port
* 15. port_tri_state_model_ids_: the Id of circuit model linked to tri-state the port
* 16. port_inv_model_names_: the name of inverter circuit model linked to the port
* 17. port_inv_model_ids_: the Id of inverter circuit model linked to the port
* 18. port_tri_state_map_: only applicable to inputs of LUTs, the tri-state map applied to each pin of this port
* 19. port_lut_frac_level_: only applicable to outputs of LUTs, indicate which level of outputs inside LUT multiplexing structure will be used
* 20. port_lut_output_mask_: only applicable to outputs of LUTs, indicate which output at an internal level of LUT multiplexing structure will be used
* 21. port_sram_orgz_: only applicable to SRAM ports, indicate how the SRAMs will be organized, either memory decoders or scan-chains
*
* ------ Delay information ------
* 1. delay_types_: type of pin-to-pin delay, either rising_edge of falling_edge
@ -284,6 +285,7 @@ class CircuitLibrary {
bool port_is_reset(const CircuitPortId& circuit_port_id) const;
bool port_is_set(const CircuitPortId& circuit_port_id) const;
bool port_is_config_enable(const CircuitPortId& circuit_port_id) const;
bool port_is_edge_triggered(const CircuitPortId& circuit_port_id) const;
bool port_is_prog(const CircuitPortId& circuit_port_id) const;
size_t port_lut_frac_level(const CircuitPortId& circuit_port_id) const;
std::vector<size_t> port_lut_output_mask(const CircuitPortId& circuit_port_id) const;
@ -364,6 +366,8 @@ class CircuitLibrary {
const bool& is_set);
void set_port_is_config_enable(const CircuitPortId& circuit_port_id,
const bool& is_config_enable);
void set_port_is_edge_triggered(const CircuitPortId& circuit_port_id,
const bool& is_edge_triggered);
void set_port_is_prog(const CircuitPortId& circuit_port_id,
const bool& is_prog);
void set_port_tri_state_model_name(const CircuitPortId& circuit_port_id,
@ -550,6 +554,7 @@ class CircuitLibrary {
vtr::vector<CircuitPortId, bool> port_is_reset_;
vtr::vector<CircuitPortId, bool> port_is_set_;
vtr::vector<CircuitPortId, bool> port_is_config_enable_;
vtr::vector<CircuitPortId, bool> port_is_edge_triggered_;
vtr::vector<CircuitPortId, bool> port_is_prog_;
vtr::vector<CircuitPortId, std::string> port_tri_state_model_names_;
vtr::vector<CircuitPortId, CircuitModelId> port_tri_state_model_ids_;

View File

@ -564,6 +564,9 @@ void read_xml_circuit_port(pugi::xml_node& xml_port,
/* Identify if the port is to enable programming for FPGAs, by default it is NOT */
circuit_lib.set_port_is_config_enable(port, get_attribute(xml_port, "is_config_enable", loc_data, pugiutil::ReqOpt::OPTIONAL).as_bool(false));
/* Identify if the port is to triggered by edges, by default it is NOT */
circuit_lib.set_port_is_edge_triggered(port, get_attribute(xml_port, "is_edge_triggered", loc_data, pugiutil::ReqOpt::OPTIONAL).as_bool(false));
/* Find the name of circuit model that this port is linked to */
circuit_lib.set_port_tri_state_model_name(port, get_attribute(xml_port, "circuit_model_name", loc_data, pugiutil::ReqOpt::OPTIONAL).as_string());

View File

@ -207,6 +207,10 @@ void write_xml_circuit_port(std::fstream& fp,
write_xml_attribute(fp, "is_config_enable", "true");
}
if (true == circuit_lib.port_is_edge_triggered(port)) {
write_xml_attribute(fp, "is_edge_triggered", "true");
}
/* Output the name of circuit model that this port is linked to */
if (!circuit_lib.port_tri_state_model_name(port).empty()) {
write_xml_attribute(fp, "circuit_model_name", circuit_lib.port_tri_state_model_name(port).c_str());

View File

@ -97,7 +97,7 @@ int write_verilog_testbench(OpenfpgaContext& openfpga_ctx,
openfpga_ctx.vpr_netlist_annotation(),
openfpga_ctx.arch().circuit_lib,
openfpga_ctx.simulation_setting(),
openfpga_ctx.arch().config_protocol.type(),
openfpga_ctx.arch().config_protocol,
options);
/* TODO: should identify the error code from internal function execution */

View File

@ -636,13 +636,13 @@ void build_frame_memory_module(ModuleManager& module_manager,
module_manager.add_configurable_child(mem_module, sram_mem_module, sram_instance);
/* Wire data_in port to SRAM BL port */
ModulePortId sram_bl_port = module_manager.find_module_port(sram_mem_module, circuit_lib.port_lib_name(sram_bl_ports[0]));
ModulePortId sram_bl_port = module_manager.find_module_port(sram_mem_module, circuit_lib.port_prefix(sram_bl_ports[0]));
add_module_bus_nets(module_manager, mem_module,
mem_module, 0, mem_data_port,
sram_mem_module, sram_instance, sram_bl_port);
/* Wire decoder data_out port to sram WL ports */
ModulePortId sram_wl_port = module_manager.find_module_port(sram_mem_module, circuit_lib.port_lib_name(sram_wl_ports[0]));
ModulePortId sram_wl_port = module_manager.find_module_port(sram_mem_module, circuit_lib.port_prefix(sram_wl_ports[0]));
ModulePortId decoder_data_port = module_manager.find_module_port(decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
ModuleNetId wl_net = module_manager.create_module_net(mem_module);
/* Source node of the input net is the input of memory module */

View File

@ -156,7 +156,7 @@ void fpga_verilog_testbench(const ModuleManager &module_manager,
const VprNetlistAnnotation &netlist_annotation,
const CircuitLibrary &circuit_lib,
const SimulationSetting &simulation_setting,
const e_config_protocol_type &config_protocol_type,
const ConfigProtocol &config_protocol,
const VerilogTestbenchOption &options) {
vtr::ScopedStartFinishTimer timer("Write Verilog testbenches for FPGA fabric\n");
@ -205,7 +205,7 @@ void fpga_verilog_testbench(const ModuleManager &module_manager,
std::string top_testbench_file_path = src_dir_path + netlist_name + std::string(AUTOCHECK_TOP_TESTBENCH_VERILOG_FILE_POSTFIX);
print_verilog_top_testbench(module_manager,
bitstream_manager, fabric_bitstream,
config_protocol_type,
config_protocol,
circuit_lib, global_ports,
atom_ctx, place_ctx, io_location_map,
netlist_annotation,
@ -225,7 +225,7 @@ void fpga_verilog_testbench(const ModuleManager &module_manager,
src_dir_path,
atom_ctx, place_ctx, io_location_map,
module_manager,
config_protocol_type,
config_protocol.type(),
bitstream_manager.num_bits(),
simulation_setting.num_clock_cycles(),
simulation_setting.programming_clock_frequency(),

View File

@ -10,6 +10,7 @@
#include "mux_library.h"
#include "decoder_library.h"
#include "circuit_library.h"
#include "config_protocol.h"
#include "vpr_context.h"
#include "vpr_device_annotation.h"
#include "device_rr_gsb.h"
@ -49,7 +50,7 @@ void fpga_verilog_testbench(const ModuleManager& module_manager,
const VprNetlistAnnotation& netlist_annotation,
const CircuitLibrary& circuit_lib,
const SimulationSetting& simulation_parameters,
const e_config_protocol_type& config_protocol_type,
const ConfigProtocol& config_protocol,
const VerilogTestbenchOption& options);

View File

@ -60,6 +60,54 @@ constexpr char* TOP_TB_CLOCK_REG_POSTFIX = "_reg";
constexpr char* AUTOCHECK_TOP_TESTBENCH_VERILOG_MODULE_POSTFIX = "_autocheck_top_tb";
/********************************************************************
* Identify global reset ports for programming
*******************************************************************/
static
std::vector<CircuitPortId> find_global_programming_reset_ports(const CircuitLibrary& circuit_lib,
const std::vector<CircuitPortId>& global_ports) {
/* Try to find global reset ports for programming */
std::vector<CircuitPortId> global_prog_reset_ports;
for (const CircuitPortId& global_port : global_ports) {
VTR_ASSERT(true == circuit_lib.port_is_global(global_port));
if (false == circuit_lib.port_is_prog(global_port)) {
continue;
}
VTR_ASSERT(true == circuit_lib.port_is_prog(global_port));
VTR_ASSERT( (false == circuit_lib.port_is_reset(global_port))
|| (false == circuit_lib.port_is_set(global_port)));
if (true == circuit_lib.port_is_reset(global_port)) {
global_prog_reset_ports.push_back(global_port);
}
}
return global_prog_reset_ports;
}
/********************************************************************
* Identify global set ports for programming
*******************************************************************/
static
std::vector<CircuitPortId> find_global_programming_set_ports(const CircuitLibrary& circuit_lib,
const std::vector<CircuitPortId>& global_ports) {
/* Try to find global set ports for programming */
std::vector<CircuitPortId> global_prog_set_ports;
for (const CircuitPortId& global_port : global_ports) {
VTR_ASSERT(true == circuit_lib.port_is_global(global_port));
if (false == circuit_lib.port_is_prog(global_port)) {
continue;
}
VTR_ASSERT(true == circuit_lib.port_is_prog(global_port));
VTR_ASSERT( (false == circuit_lib.port_is_reset(global_port))
|| (false == circuit_lib.port_is_set(global_port)));
if (true == circuit_lib.port_is_set(global_port)) {
global_prog_set_ports.push_back(global_port);
}
}
return global_prog_set_ports;
}
/********************************************************************
* Print local wires for flatten memory (standalone) configuration protocols
*******************************************************************/
@ -136,15 +184,15 @@ void print_verilog_top_testbench_memory_bank_port(std::fstream& fp,
BasicPort din_port = module_manager.module_port(top_module, din_port_id);
fp << generate_verilog_port(VERILOG_PORT_REG, din_port) << ";" << std::endl;
/* Wire the INVERTED programming clock to the enable signal !!! */
print_verilog_comment(fp, std::string("---- Wire enable port of frame-based decoder to inverted programming clock -----"));
/* Wire the INVERTED configuration done signal to the enable signal !!! */
print_verilog_comment(fp, std::string("---- Wire enable port of frame-based decoder to inverted configuration done signal -----"));
ModulePortId en_port_id = module_manager.find_module_port(top_module,
std::string(DECODER_ENABLE_PORT_NAME));
BasicPort en_port = module_manager.module_port(top_module, en_port_id);
BasicPort prog_clock_port(std::string(TOP_TB_PROG_CLOCK_PORT_NAME), 1);
BasicPort config_done_port(std::string(TOP_TB_CONFIG_DONE_PORT_NAME), 1);
fp << generate_verilog_port(VERILOG_PORT_WIRE, en_port) << ";" << std::endl;
print_verilog_wire_connection(fp, en_port, prog_clock_port, true);
print_verilog_wire_connection(fp, en_port, config_done_port, true);
}
@ -153,6 +201,8 @@ void print_verilog_top_testbench_memory_bank_port(std::fstream& fp,
*******************************************************************/
static
void print_verilog_top_testbench_frame_decoder_port(std::fstream& fp,
const ConfigProtocol& config_protocol,
const CircuitLibrary& circuit_lib,
const ModuleManager& module_manager,
const ModuleId& top_module) {
/* Validate the file stream */
@ -173,15 +223,33 @@ void print_verilog_top_testbench_frame_decoder_port(std::fstream& fp,
BasicPort din_port = module_manager.module_port(top_module, din_port_id);
fp << generate_verilog_port(VERILOG_PORT_REG, din_port) << ";" << std::endl;
/* Wire the INVERTED programming clock to the enable signal !!! */
print_verilog_comment(fp, std::string("---- Wire enable port of frame-based decoder to inverted programming clock -----"));
/* Wire the INVERTED configuration done signal to the enable signal !!! */
ModulePortId en_port_id = module_manager.find_module_port(top_module,
std::string(DECODER_ENABLE_PORT_NAME));
BasicPort en_port = module_manager.module_port(top_module, en_port_id);
BasicPort prog_clock_port(std::string(TOP_TB_PROG_CLOCK_PORT_NAME), 1);
/* Find the circuit model of configurable memory
* Spot its BL port and generate stimuli based on BL port's attribute:
* - If the BL port is triggered by edge, use the inverted programming clock signal
* - If the BL port is a regular port, use the inverted configuration done signal
*/
const CircuitModelId& mem_model = config_protocol.memory_model();
VTR_ASSERT(true == circuit_lib.valid_model_id(mem_model));
std::vector<CircuitPortId> mem_model_bl_ports = circuit_lib.model_ports_by_type(mem_model, CIRCUIT_MODEL_PORT_BL);
VTR_ASSERT(1 == mem_model_bl_ports.size());
if (true == circuit_lib.port_is_edge_triggered(mem_model_bl_ports[0])) {
VTR_ASSERT_SAFE(false == circuit_lib.port_is_edge_triggered(mem_model_bl_ports[0]));
BasicPort prog_clock_port(std::string(TOP_TB_PROG_CLOCK_PORT_NAME), 1);
print_verilog_comment(fp, std::string("---- Wire enable port of frame-based decoder to inverted programming clock signal -----"));
fp << generate_verilog_port(VERILOG_PORT_WIRE, en_port) << ";" << std::endl;
print_verilog_wire_connection(fp, en_port, prog_clock_port, true);
} else {
BasicPort config_done_port(std::string(TOP_TB_CONFIG_DONE_PORT_NAME), 1);
print_verilog_comment(fp, std::string("---- Wire enable port of frame-based decoder to inverted configuration done signal -----"));
fp << generate_verilog_port(VERILOG_PORT_WIRE, en_port) << ";" << std::endl;
print_verilog_wire_connection(fp, en_port, config_done_port, true);
}
}
/********************************************************************
@ -189,10 +257,11 @@ void print_verilog_top_testbench_frame_decoder_port(std::fstream& fp,
*******************************************************************/
static
void print_verilog_top_testbench_config_protocol_port(std::fstream& fp,
const e_config_protocol_type& sram_orgz_type,
const ConfigProtocol& config_protocol,
const CircuitLibrary& circuit_lib,
const ModuleManager& module_manager,
const ModuleId& top_module) {
switch(sram_orgz_type) {
switch(config_protocol.type()) {
case CONFIG_MEM_STANDALONE:
print_verilog_top_testbench_flatten_memory_port(fp, module_manager, top_module);
break;
@ -203,7 +272,8 @@ void print_verilog_top_testbench_config_protocol_port(std::fstream& fp,
print_verilog_top_testbench_memory_bank_port(fp, module_manager, top_module);
break;
case CONFIG_MEM_FRAME_BASED:
print_verilog_top_testbench_frame_decoder_port(fp, module_manager, top_module);
print_verilog_top_testbench_frame_decoder_port(fp, config_protocol, circuit_lib,
module_manager, top_module);
break;
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
@ -220,7 +290,9 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const std::vector<CircuitPortId>& global_ports) {
const std::vector<CircuitPortId>& global_ports,
const bool& active_global_prog_reset,
const bool& active_global_prog_set) {
/* Validate the file stream */
valid_file_stream(fp);
@ -302,10 +374,13 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
ModulePortId module_global_port = module_manager.find_module_port(top_module, circuit_lib.port_prefix(model_global_port));
VTR_ASSERT(true == module_manager.valid_module_port_id(top_module, module_global_port));
/* For global programming reset port, we will active only when specified */
BasicPort stimuli_reset_port;
bool activate = true;
if (true == circuit_lib.port_is_prog(model_global_port)) {
stimuli_reset_port.set_name(std::string(TOP_TB_PROG_RESET_PORT_NAME));
stimuli_reset_port.set_width(1);
activate = active_global_prog_reset;
} else {
VTR_ASSERT_SAFE(false == circuit_lib.port_is_prog(model_global_port));
stimuli_reset_port.set_name(std::string(TOP_TB_RESET_PORT_NAME));
@ -315,9 +390,15 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
* The wiring will be inverted if the default value of the global port is 1
* Otherwise, the wiring will not be inverted!
*/
if (true == activate) {
print_verilog_wire_connection(fp, module_manager.module_port(top_module, module_global_port),
stimuli_reset_port,
1 == circuit_lib.port_default_value(model_global_port));
} else {
VTR_ASSERT_SAFE(false == activate);
print_verilog_wire_constant_values(fp, module_manager.module_port(top_module, module_global_port),
std::vector<size_t>(1, circuit_lib.port_default_value(model_global_port)));
}
}
/* Connect global set ports to operating or programming set signal */
@ -344,10 +425,13 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
ModulePortId module_global_port = module_manager.find_module_port(top_module, circuit_lib.port_prefix(model_global_port));
VTR_ASSERT(true == module_manager.valid_module_port_id(top_module, module_global_port));
/* For global programming set port, we will active only when specified */
BasicPort stimuli_set_port;
bool activate = true;
if (true == circuit_lib.port_is_prog(model_global_port)) {
stimuli_set_port.set_name(std::string(TOP_TB_PROG_SET_PORT_NAME));
stimuli_set_port.set_width(1);
activate = active_global_prog_set;
} else {
VTR_ASSERT_SAFE(false == circuit_lib.port_is_prog(model_global_port));
stimuli_set_port.set_name(std::string(TOP_TB_SET_PORT_NAME));
@ -357,9 +441,15 @@ void print_verilog_top_testbench_global_ports_stimuli(std::fstream& fp,
* The wiring will be inverted if the default value of the global port is 1
* Otherwise, the wiring will not be inverted!
*/
if (true == activate) {
print_verilog_wire_connection(fp, module_manager.module_port(top_module, module_global_port),
stimuli_set_port,
1 == circuit_lib.port_default_value(model_global_port));
} else {
VTR_ASSERT_SAFE(false == activate);
print_verilog_wire_constant_values(fp, module_manager.module_port(top_module, module_global_port),
std::vector<size_t>(1, circuit_lib.port_default_value(model_global_port)));
}
}
/* For the rest of global ports, wire them to constant signals */
@ -434,7 +524,8 @@ void print_verilog_top_testbench_ports(std::fstream& fp,
const AtomContext& atom_ctx,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,
const e_config_protocol_type& sram_orgz_type,
const ConfigProtocol& config_protocol,
const CircuitLibrary& circuit_lib,
const std::string& circuit_name){
/* Validate the file stream */
valid_file_stream(fp);
@ -508,7 +599,7 @@ void print_verilog_top_testbench_ports(std::fstream& fp,
fp << generate_verilog_port(VERILOG_PORT_REG, set_port) << ";" << std::endl;
/* Configuration ports depend on the organization of SRAMs */
print_verilog_top_testbench_config_protocol_port(fp, sram_orgz_type,
print_verilog_top_testbench_config_protocol_port(fp, config_protocol, circuit_lib,
module_manager, top_module);
/* Create a clock port if the benchmark have one but not in the default name!
@ -561,6 +652,7 @@ void print_verilog_top_testbench_ports(std::fstream& fp,
static
size_t calculate_num_config_clock_cycles(const e_config_protocol_type& sram_orgz_type,
const bool& fast_configuration,
const bool& bit_value_to_skip,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream) {
size_t num_config_clock_cycles = 1 + fabric_bitstream.num_bits();
@ -579,7 +671,7 @@ size_t calculate_num_config_clock_cycles(const e_config_protocol_type& sram_orgz
size_t full_num_config_clock_cycles = num_config_clock_cycles;
size_t num_bits_to_skip = 0;
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) {
if (bit_value_to_skip != bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) {
break;
}
num_bits_to_skip++;
@ -600,7 +692,7 @@ size_t calculate_num_config_clock_cycles(const e_config_protocol_type& sram_orgz
size_t full_num_config_clock_cycles = num_config_clock_cycles;
num_config_clock_cycles = 1;
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (true == fabric_bitstream.bit_din(bit_id)) {
if (bit_value_to_skip != fabric_bitstream.bit_din(bit_id)) {
num_config_clock_cycles++;
}
}
@ -985,11 +1077,11 @@ void print_verilog_top_testbench_generic_stimulus(std::fstream& fp,
fp << std::endl;
/* Programming set signal for configuration circuit : always disabled */
print_verilog_comment(fp, "----- Begin programming set signal generation: always disabled -----");
print_verilog_comment(fp, "----- Begin programming set signal generation -----");
print_verilog_pulse_stimuli(fp, prog_set_port,
0, /* Initial value */
1, /* Initial value */
prog_clock_period / timescale, 0);
print_verilog_comment(fp, "----- End programming set signal generation: always disabled -----");
print_verilog_comment(fp, "----- End programming set signal generation -----");
fp << std::endl;
@ -1112,6 +1204,102 @@ void print_verilog_top_testbench_vanilla_bitstream(std::fstream& fp,
print_verilog_comment(fp, "----- End bitstream loading during configuration phase -----");
}
/********************************************************************
* Decide if we should use reset or set signal to acheive fast configuration
* - If only one type signal is specified, we use that type
* For example, only reset signal is defined, we will use reset
* - If both are defined, pick the one that will bring bigger reduction
* i.e., larger number of configuration bits can be skipped
*******************************************************************/
static
bool find_bit_value_to_skip_for_fast_configuration(const e_config_protocol_type& config_protocol_type,
const bool& fast_configuration,
const std::vector<CircuitPortId>& global_prog_reset_ports,
const std::vector<CircuitPortId>& global_prog_set_ports,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream) {
/* Early exit conditions */
if (!global_prog_reset_ports.empty() && global_prog_set_ports.empty()) {
return false;
} else if (!global_prog_set_ports.empty() && global_prog_reset_ports.empty()) {
return true;
} else if (global_prog_set_ports.empty() && global_prog_reset_ports.empty()) {
/* If both types of ports are not defined, the fast configuration should be turned off */
VTR_ASSERT(false == fast_configuration);
return false;
}
VTR_ASSERT(!global_prog_set_ports.empty() && !global_prog_reset_ports.empty());
bool bit_value_to_skip = false;
VTR_LOG("Both reset and set ports are defined for programming controls, selecting the best-fit one...\n");
size_t num_ones_to_skip = 0;
size_t num_zeros_to_skip = 0;
/* Branch on the type of configuration protocol */
switch (config_protocol_type) {
case CONFIG_MEM_STANDALONE:
break;
case CONFIG_MEM_SCAN_CHAIN: {
/* We can only skip the ones/zeros at the beginning of the bitstream */
/* Count how many logic '1' bits we can skip */
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (false == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) {
break;
}
VTR_ASSERT(true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)));
num_ones_to_skip++;
}
/* Count how many logic '0' bits we can skip */
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) {
break;
}
VTR_ASSERT(false == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)));
num_zeros_to_skip++;
}
break;
}
case CONFIG_MEM_MEMORY_BANK:
case CONFIG_MEM_FRAME_BASED: {
/* Count how many logic '1' and logic '0' bits we can skip */
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (false == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) {
num_zeros_to_skip++;
} else {
VTR_ASSERT(true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)));
num_ones_to_skip++;
}
}
break;
}
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid SRAM organization type!\n");
exit(1);
}
VTR_LOG("Using reset will skip %g% (%lu/%lu) of configuration bitstream.\n",
100. * (float) num_zeros_to_skip / (float) fabric_bitstream.num_bits(),
num_zeros_to_skip, fabric_bitstream.num_bits());
VTR_LOG("Using set will skip %g% (%lu/%lu) of configuration bitstream.\n",
100. * (float) num_ones_to_skip / (float) fabric_bitstream.num_bits(),
num_ones_to_skip, fabric_bitstream.num_bits());
/* By default, we prefer to skip zeros (when the numbers are the same */
if (num_ones_to_skip > num_zeros_to_skip) {
VTR_LOG("Will use set signal in fast configuration\n");
bit_value_to_skip = true;
} else {
VTR_LOG("Will use reset signal in fast configuration\n");
}
return bit_value_to_skip;
}
/********************************************************************
* Print stimulus for a FPGA fabric with a configuration chain protocol
* where configuration bits are programming in serial (one by one)
@ -1127,6 +1315,7 @@ void print_verilog_top_testbench_vanilla_bitstream(std::fstream& fp,
static
void print_verilog_top_testbench_configuration_chain_bitstream(std::fstream& fp,
const bool& fast_configuration,
const bool& bit_value_to_skip,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream) {
/* Validate the file stream */
@ -1151,13 +1340,14 @@ void print_verilog_top_testbench_configuration_chain_bitstream(std::fstream& fp,
fp << std::endl;
/* Attention: when the fast configuration is enabled, we will start from the first bit '1'
* This requires a reset signal (as we forced in the first clock cycle)
*/
bool start_config = false;
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if ( (false == start_config)
&& (true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)))) {
&& (bit_value_to_skip != bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)))) {
start_config = true;
}
@ -1198,6 +1388,7 @@ void print_verilog_top_testbench_configuration_chain_bitstream(std::fstream& fp,
static
void print_verilog_top_testbench_memory_bank_bitstream(std::fstream& fp,
const bool& fast_configuration,
const bool& bit_value_to_skip,
const ModuleManager& module_manager,
const ModuleId& top_module,
const FabricBitstream& fabric_bitstream) {
@ -1249,7 +1440,7 @@ void print_verilog_top_testbench_memory_bank_bitstream(std::fstream& fp,
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
/* When fast configuration is enabled, we skip zero data_in values */
if ((true == fast_configuration)
&& (false == fabric_bitstream.bit_din(bit_id))) {
&& (bit_value_to_skip == fabric_bitstream.bit_din(bit_id))) {
continue;
}
@ -1303,6 +1494,7 @@ void print_verilog_top_testbench_memory_bank_bitstream(std::fstream& fp,
static
void print_verilog_top_testbench_frame_decoder_bitstream(std::fstream& fp,
const bool& fast_configuration,
const bool& bit_value_to_skip,
const ModuleManager& module_manager,
const ModuleId& top_module,
const FabricBitstream& fabric_bitstream) {
@ -1345,7 +1537,7 @@ void print_verilog_top_testbench_frame_decoder_bitstream(std::fstream& fp,
for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
/* When fast configuration is enabled, we skip zero data_in values */
if ((true == fast_configuration)
&& (false == fabric_bitstream.bit_din(bit_id))) {
&& (bit_value_to_skip == fabric_bitstream.bit_din(bit_id))) {
continue;
}
@ -1401,14 +1593,16 @@ void print_verilog_top_testbench_frame_decoder_bitstream(std::fstream& fp,
*******************************************************************/
static
void print_verilog_top_testbench_bitstream(std::fstream& fp,
const e_config_protocol_type& sram_orgz_type,
const e_config_protocol_type& config_protocol_type,
const bool& fast_configuration,
const bool& bit_value_to_skip,
const ModuleManager& module_manager,
const ModuleId& top_module,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream) {
/* Branch on the type of configuration protocol */
switch (sram_orgz_type) {
switch (config_protocol_type) {
case CONFIG_MEM_STANDALONE:
print_verilog_top_testbench_vanilla_bitstream(fp,
module_manager, top_module,
@ -1416,15 +1610,18 @@ void print_verilog_top_testbench_bitstream(std::fstream& fp,
break;
case CONFIG_MEM_SCAN_CHAIN:
print_verilog_top_testbench_configuration_chain_bitstream(fp, fast_configuration,
bit_value_to_skip,
bitstream_manager, fabric_bitstream);
break;
case CONFIG_MEM_MEMORY_BANK:
print_verilog_top_testbench_memory_bank_bitstream(fp, fast_configuration,
bit_value_to_skip,
module_manager, top_module,
fabric_bitstream);
break;
case CONFIG_MEM_FRAME_BASED:
print_verilog_top_testbench_frame_decoder_bitstream(fp, fast_configuration,
bit_value_to_skip,
module_manager, top_module,
fabric_bitstream);
break;
@ -1458,7 +1655,7 @@ void print_verilog_top_testbench_bitstream(std::fstream& fp,
void print_verilog_top_testbench(const ModuleManager& module_manager,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream,
const e_config_protocol_type& sram_orgz_type,
const ConfigProtocol& config_protocol,
const CircuitLibrary& circuit_lib,
const std::vector<CircuitPortId>& global_ports,
const AtomContext& atom_ctx,
@ -1494,17 +1691,36 @@ void print_verilog_top_testbench(const ModuleManager& module_manager,
/* Preparation: find all the clock ports */
std::vector<std::string> clock_port_names = find_atom_netlist_clock_port_names(atom_ctx.nlist, netlist_annotation);
/* Preparation: find all the reset/set ports for programming usage */
std::vector<CircuitPortId> global_prog_reset_ports = find_global_programming_reset_ports(circuit_lib, global_ports);
std::vector<CircuitPortId> global_prog_set_ports = find_global_programming_set_ports(circuit_lib, global_ports);
/* Identify if we can apply fast configuration */
bool apply_fast_configuration = fast_configuration;
if ( (global_prog_set_ports.empty() && global_prog_reset_ports.empty())
&& (true == fast_configuration)) {
VTR_LOG_WARN("None of global reset and set ports are defined for programming purpose. Fast configuration is turned off\n");
apply_fast_configuration = false;
}
bool bit_value_to_skip = find_bit_value_to_skip_for_fast_configuration(config_protocol.type(),
apply_fast_configuration,
global_prog_reset_ports,
global_prog_set_ports,
bitstream_manager, fabric_bitstream);
/* Start of testbench */
print_verilog_top_testbench_ports(fp, module_manager, top_module,
atom_ctx, netlist_annotation, clock_port_names,
sram_orgz_type, circuit_name);
config_protocol, circuit_lib,
circuit_name);
/* Find the clock period */
float prog_clock_period = (1./simulation_parameters.programming_clock_frequency());
float op_clock_period = (1./simulation_parameters.operating_clock_frequency());
/* Estimate the number of configuration clock cycles */
size_t num_config_clock_cycles = calculate_num_config_clock_cycles(sram_orgz_type,
fast_configuration,
size_t num_config_clock_cycles = calculate_num_config_clock_cycles(config_protocol.type(),
apply_fast_configuration,
bit_value_to_skip,
bitstream_manager,
fabric_bitstream);
@ -1515,10 +1731,38 @@ void print_verilog_top_testbench(const ModuleManager& module_manager,
op_clock_period,
VERILOG_SIM_TIMESCALE);
/* Identify the stimulus for global reset/set for programming purpose:
* - If only reset port is seen we turn on Reset
* - If only set port is seen we turn on Reset
* - If both reset and set port is defined,
* we pick the one which is consistent with the bit value to be skipped
*/
bool active_global_prog_reset = false;
bool active_global_prog_set = false;
if (!global_prog_reset_ports.empty()) {
active_global_prog_reset = true;
}
if (!global_prog_set_ports.empty()) {
active_global_prog_set = true;
}
/* Ensure that at most only one of the two switches is activated */
if ( (true == active_global_prog_reset)
&& (true == active_global_prog_set) ) {
/* If we will skip logic '0', we will activate programming reset */
active_global_prog_reset = !bit_value_to_skip;
/* If we will skip logic '1', we will activate programming set */
active_global_prog_set = bit_value_to_skip;
}
/* Generate stimuli for global ports or connect them to existed signals */
print_verilog_top_testbench_global_ports_stimuli(fp,
module_manager, top_module,
circuit_lib, global_ports);
circuit_lib, global_ports,
active_global_prog_reset,
active_global_prog_set);
/* Instanciate FPGA top-level module */
print_verilog_testbench_fpga_instance(fp, module_manager, top_module,
@ -1542,12 +1786,13 @@ void print_verilog_top_testbench(const ModuleManager& module_manager,
/* Print tasks used for loading bitstreams */
print_verilog_top_testbench_load_bitstream_task(fp,
sram_orgz_type,
config_protocol.type(),
module_manager, top_module);
/* load bitstream to FPGA fabric in a configuration phase */
print_verilog_top_testbench_bitstream(fp, sram_orgz_type,
fast_configuration,
print_verilog_top_testbench_bitstream(fp, config_protocol.type(),
apply_fast_configuration,
bit_value_to_skip,
module_manager, top_module,
bitstream_manager, fabric_bitstream);

View File

@ -10,6 +10,7 @@
#include "bitstream_manager.h"
#include "fabric_bitstream.h"
#include "circuit_library.h"
#include "config_protocol.h"
#include "vpr_context.h"
#include "io_location_map.h"
#include "vpr_netlist_annotation.h"
@ -25,7 +26,7 @@ namespace openfpga {
void print_verilog_top_testbench(const ModuleManager& module_manager,
const BitstreamManager& bitstream_manager,
const FabricBitstream& fabric_bitstream,
const e_config_protocol_type& sram_orgz_type,
const ConfigProtocol& config_protocol,
const CircuitLibrary& circuit_lib,
const std::vector<CircuitPortId>& global_ports,
const AtomContext& atom_ctx,

View File

@ -1,3 +0,0 @@
a 0.5 0.5
b 0.5 0.5
c 0.25 0.25

View File

@ -1,8 +0,0 @@
.model top
.inputs a b
.outputs c
.names a b c
11 1
.end

View File

@ -1,14 +0,0 @@
`timescale 1ns / 1ps
module top(
a,
b,
c);
input wire a;
input wire b;
output wire c;
assign c = a & b;
endmodule

View File

@ -1,6 +0,0 @@
a 0.492800 0.201000
b 0.502000 0.197200
clk 0.500000 2.000000
d 0.240200 0.171200
c 0.240200 0.044100
n1 0.240200 0.044100

View File

@ -1,14 +0,0 @@
# Benchmark "top" written by ABC on Wed Mar 11 10:36:28 2020
.model top
.inputs a b clk
.outputs c d
.latch n1 d re clk 0
.names a b c
11 1
.names c n1
1 1
.end

View File

@ -1,23 +0,0 @@
`timescale 1ns / 1ps
module top(
clk,
a,
b,
c,
d);
input wire clk;
input wire a;
input wire b;
output wire c;
output reg d;
assign c = a & b;
always @(posedge clk) begin
d <= c;
end
endmodule

View File

@ -1,285 +0,0 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -1,302 +0,0 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpsram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="waddr" size="10"/>
<port type="input" prefix="raddr" size="10"/>
<port type="input" prefix="d_in" size="32"/>
<port type="input" prefix="wen" size="1"/>
<port type="input" prefix="ren" size="1"/>
<port type="output" prefix="d_out" size="32"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block clb -->
<!-- physical pb_type binding in complex block memory -->
<pb_type name="memory[mem_512x32_dp].mem_512x32_dp" circuit_model_name="dpram_512x32"/>
<!-- END physical pb_type binding in complex block memory -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -1,314 +0,0 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpsram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="waddr" size="10"/>
<port type="input" prefix="raddr" size="10"/>
<port type="input" prefix="d_in" size="32"/>
<port type="input" prefix="wen" size="1"/>
<port type="input" prefix="ren" size="1"/>
<port type="output" prefix="d_out" size="32"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"/>
</circuit_model>
<circuit_model type="iopad" name="aib" prefix="aib" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/aib.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/aib.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="tx_data" size="80"/>
<port type="output" prefix="rx_data" size="80"/>
<port type="clock" prefix="tx_clk" size="1" default_val="0"/>
<port type="clock" prefix="rx_clk" size="1" default_val="0"/>
<port type="inout" prefix="pad" size="80" is_global="true" is_io="true"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block AIB-->
<pb_type name="aib[physical].aib_core" circuit_model_name="aib"/>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block clb -->
<!-- physical pb_type binding in complex block memory -->
<pb_type name="memory[mem_512x32_dp].mem_512x32_dp" circuit_model_name="dpram_512x32"/>
<!-- END physical pb_type binding in complex block memory -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -1,288 +0,0 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
<direct name="shift_register" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- Binding operating pb_types in mode 'shift_register' -->
<pb_type name="clb.fle[shift_register].shift_reg.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -1,294 +0,0 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET>
This is flip-flop with scan-chain feature.
When the TESTEN is enabled, the data will be propagated form DI instead of D
-->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="DI" size="1"/>
<port type="input" prefix="TESTEN" size="1" is_global="true" default_val="0"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
<direct name="shift_register" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
<direct name="scan_chain" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- Binding operating pb_types in mode 'shift_register' -->
<pb_type name="clb.fle[shift_register].shift_reg.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges --verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/and.bitstream
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --hierarchical --file /var/tmp/xtang/openfpga_test_src/SDC_hie
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_adder_chain_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_adder_chain_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,64 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC \
--explicit_port_mapping --include_timing --include_signal_init \
--support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_aib_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_aib_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_multi_io_capacity_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_reduced_io_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_wide_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,63 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_register_scan_chain_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_register_scan_chain_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc \
--file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_spyio_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_stdcell_mux_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_thru_channel_adder_chain_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_tree_mux_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and_latch' design
vpr ./test_vpr_arch/k6_frac_N10_40nm.xml ./test_blif/and_latch.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack --verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,59 +0,0 @@
# Run VPR for the 'and_latch' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and_latch.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin #--verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack --verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_40nm.xml ./test_blif/and_latch.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,62 +0,0 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_40nm.xml ./test_blif/and_latch.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
# Finish and exit OpenFPGA
exit

View File

@ -1,299 +0,0 @@
<!--
Architecture with no fracturable LUTs
- 40 nm technology
- General purpose logic block:
K = 6, N = 10
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<clock name="clock" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad io.clock</loc>
<loc side="top">io.outpad io.inpad io.clock</loc>
<loc side="right">io.outpad io.inpad io.clock</loc>
<loc side="bottom">io.outpad io.inpad io.clock</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="false">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<clock name="clock" num_pins="1"/>
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" num_pins="1"/>
<!-- Describe basic logic element.
Each basic logic element has a 6-LUT that can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out" output="clb.O"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,441 +0,0 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="20" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="20" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 5-LUT mode definition begin -->
<mode name="n2_lut5">
<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
</interconnect>
</mode>
<!-- Dual 5-LUT mode definition end -->
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,644 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,739 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,441 +0,0 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="20" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="20" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 5-LUT mode definition begin -->
<mode name="n2_lut5">
<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
</interconnect>
</mode>
<!-- Dual 5-LUT mode definition end -->
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,644 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,739 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,805 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
<!-- AIB interface model -->
<model name="aib">
<input_ports>
<port name="tx_clk" is_clock="1"/>
<port name="rx_clk" is_clock="1"/>
<port name="tx_data" clock="tx_clk"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="rx_data" clock="rx_clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<!-- A mini AIB interface to be located at the right side of the FPGA
All the port will be accessible to the left side of the tile
TODO: add full control signals
TODO: add analog bus ports to the right side which should be GPIOs
-->
<tile name="aib" width="1" height="4" area="0">
<equivalent_sites>
<site pb_type="aib"/>
</equivalent_sites>
<clock name="tx_clk" num_pins="1"/>
<input name="tx_data" num_pins="80"/>
<clock name="rx_clk" num_pins="1"/>
<output name="rx_data" num_pins="80"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">aib.tx_clk aib.tx_data aib.rx_clk aib.rx_data</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="7" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="10"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="1"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
<!-- Single instance of an AIB interface -->
<single type="aib" x="6" y="1" priority="20"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define AIB begin -->
<pb_type name="aib">
<clock name="tx_clk" num_pins="1"/>
<input name="tx_data" num_pins="80"/>
<clock name="rx_clk" num_pins="1"/>
<output name="rx_data" num_pins="80"/>
<mode name="physical">
<pb_type name="aib_core" blif_model=".subckt aib" num_pb="1">
<clock name="tx_clk" num_pins="1"/>
<input name="tx_data" num_pins="80"/>
<clock name="rx_clk" num_pins="1"/>
<output name="rx_data" num_pins="80"/>
<T_setup value="509e-12" port="aib_core.tx_data" clock="tx_clk"/>
<T_clock_to_Q max="1.234e-9" port="aib_core.tx_data" clock="tx_clk"/>
<T_setup value="509e-12" port="aib_core.rx_data" clock="rx_clk"/>
<T_clock_to_Q max="1.234e-9" port="aib_core.rx_data" clock="rx_clk"/>
</pb_type>
<interconnect>
<direct name="tx_clk" input="aib.tx_clk" output="aib_core.tx_clk">
<delay_constant max="1.394e-11" in_port="aib.tx_clk" out_port="aib_core.tx_clk"/>
</direct>
<direct name="rx_clk" input="aib.rx_clk" output="aib_core.rx_clk">
<delay_constant max="1.394e-11" in_port="aib.rx_clk" out_port="aib_core.rx_clk"/>
</direct>
<direct name="tx_data" input="aib.tx_data" output="aib_core.tx_data">
<delay_constant max="1.394e-11" in_port="aib.tx_data" out_port="aib_core.tx_data"/>
</direct>
<direct name="rx_data" input="aib_core.rx_data" output="aib.rx_data">
<delay_constant max="4.243e-11" in_port="aib_core.rx_data" out_port="aib.rx_data"/>
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,773 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io_top" capacity="3" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="bottom">io_top.outpad io_top.inpad</loc>
</pinlocations>
</tile>
<tile name="io_right" capacity="2" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io_right.outpad io_right.inpad</loc>
</pinlocations>
</tile>
<tile name="io_bottom" capacity="1" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="top">io_bottom.outpad io_bottom.inpad</loc>
</pinlocations>
</tile>
<tile name="io_left" capacity="4" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="right">io_left.outpad io_left.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<row type="io_top" starty="H-1" priority="100"/>
<row type="io_bottom" starty="0" priority="100"/>
<col type="io_left" startx="0" priority="100"/>
<col type="io_right" startx="W-1" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,742 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="7" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="10"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="1"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
<row type="EMPTY" starty="H-1" priority="11"/>
<row type="EMPTY" starty="0" priority="11"/>
<!-- Single instance of an AIB interface -->
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,739 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" width="2" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="false">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0]" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0]" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1]" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1]" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,696 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin clb.regin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.regout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0] fabric.regin" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0] fabric.regin" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1] ff[0].Q" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1] ff[0].Q" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
<direct name="direct4" input="fabric.out" output="fle.out"/>
<direct name="direct5" input="fabric.cout" output="fle.cout"/>
<direct name="direct6" input="fabric.regout" output="fle.regout"/>
<direct name="direct7" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- Define n1_lut6 end -->
<!-- Define shift register begin -->
<mode name="shift_register">
<pb_type name="shift_reg" num_pb="1">
<input name="regin" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
</interconnect>
</mode>
<!-- Define shift register end -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
<!-- Shift register chain links -->
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
<pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/>
</direct>
<direct name="shift_register_out" input="fle[9:9].regout" output="clb.regout">
<pack_pattern name="chain" in_port="fle[9:9].regout" out_port="clb.regout"/>
</direct>
<direct name="shift_register_link" input="fle[8:0].regout" output="fle[9:1].regin">
<pack_pattern name="chain" in_port="fle[8:0].regout" out_port="fle[9:1].regin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,734 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for fractruable LUT to be used in the physical mode of LUT -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="scff">
<input_ports>
<port name="D" clock="clk"/>
<port name="DI" clock="clk"/>
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<input name="scin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<output name="scout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
<fc_override port_name="scin" fc_type="frac" fc_val="0"/>
<fc_override port_name="scout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin clb.regin clb.scin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.regout clb.scout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
<direct name="scan_chain" from_pin="clb.scout" to_pin="clb.scin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<input name="scin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<output name="scout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<input name="scin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<output name="scout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" packable="false">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<input name="regin" num_pins="1"/>
<input name="scin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<output name="regout" num_pins="1"/>
<output name="scout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input -->
<pb_type name="ff" blif_model=".subckt scff" num_pb="2">
<input name="D" num_pins="1"/>
<input name="DI" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_setup value="66e-12" port="ff.DI" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<direct name="direct9" input="fabric.scin" output="ff[0].DI"/>
<direct name="direct10" input="ff[0].Q" output="ff[1].DI"/>
<direct name="direct11" input="ff[1].Q" output="fabric.scout"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout frac_logic.out[0] fabric.regin" output="ff[0].D">
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0] fabric.regin" out_port="ff[0].D"/>
</mux>
<mux name="mux2" input="adder[1].sumout frac_logic.out[1] ff[0].Q" output="ff[1].D">
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1] ff[0].Q" out_port="ff[1].D"/>
</mux>
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
<direct name="direct4" input="fle.scin" output="fabric.scin"/>
<direct name="direct5" input="fabric.out" output="fle.out"/>
<direct name="direct6" input="fabric.cout" output="fle.cout"/>
<direct name="direct7" input="fabric.regout" output="fle.regout"/>
<direct name="direct8" input="fabric.scout" output="fle.scout"/>
<direct name="direct9" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- Define n1_lut6 end -->
<!-- Define shift register begin -->
<mode name="shift_register">
<pb_type name="shift_reg" num_pb="1">
<input name="regin" num_pins="1"/>
<output name="regout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
</interconnect>
</mode>
<!-- Define shift register end -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
<!-- Shift register chain links -->
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
<pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/>
</direct>
<direct name="shift_register_out" input="fle[9:9].regout" output="clb.regout">
<pack_pattern name="chain" in_port="fle[9:9].regout" out_port="clb.regout"/>
</direct>
<direct name="shift_register_link" input="fle[8:0].regout" output="fle[9:1].regin">
<pack_pattern name="chain" in_port="fle[8:0].regout" out_port="fle[9:1].regin"/>
</direct>
<!-- Scan chain links -->
<direct name="scan_chain_in" input="clb.scin" output="fle[0:0].scin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.scin" out_port="fle[0:0].scin"/>
</direct>
<direct name="scan_chain_out" input="fle[9:9].scout" output="clb.scout">
</direct>
<direct name="scan_chain_link" input="fle[8:0].scout" output="fle[9:1].scin">
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -1,734 +0,0 @@
<!--
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
with optionally registered outputs
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
Carry chain links to vertically adjacent logic blocks
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We match these parameters in this architecture.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
all pins except clock virtual) then measuring the delays in chip-planner,
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
inter-block carry delay = 0.327 ns. Given this data, I will approximate
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
overhead that we don't have, I'll approximate the delay of a simpler chain at
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
can be justified).
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut4_out"/>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" through_channel="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="4x4" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disabled_in_pack="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="20" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disabled_in_pack="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut4_out" num_pins="4"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<direct name="direct3" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct4" input="adder[0:0].cout" output="adder[1:1].cin"/>
<direct name="direct5" input="adder[1:1].cout" output="fabric.cout"/>
<direct name="direct6" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
<direct name="direct7" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
<direct name="direct8" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
<direct name="direct9" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
<complete name="direct10" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- BEGIN fle mode of dual lut5 -->
<mode name="n2_lut5">
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Regular LUT mode -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in" output="lut5.in"/>
<direct name="direct2" input="lut5.out" output="ff.D">
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
<direct name="direct4" input="ble5.out" output="fle.out"/>
</interconnect>
</mode>
<!-- END fle mode of dual lut5 -->
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="2">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
195e-12
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
</direct>
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- n2_lut5 -->
<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- n1_lut6 -->
</pb_type>
<interconnect>
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
</direct>
</interconnect>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="10"/>
<input name="raddr" num_pins="10"/>
<input name="d_in" num_pins="32"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="32"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 512x32=16Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 16K dual-port RAM
-->
<mode name="mem_512x32_dp">
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="10" port_class="address"/>
<input name="raddr" num_pins="10" port_class="address"/>
<input name="d_in" num_pins="32" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
</direct>
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -1,17 +1,16 @@
# Run VPR for the 'and' design
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling route --device ${OPENFPGA_VPR_DEVICE_LAYOUT} --route_chan_width ${OPENFPGA_VPR_ROUTE_CHAN_WIDTH}
# Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_column_chain_40nm_openfpga.xml
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
# Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml
# Read OpenFPGA simulation settings
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
# Write GSB to XML for debugging
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
# to debug use --verbose options
link_openfpga_arch --activity_file ${ACTIVITY_FILE} --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
@ -20,12 +19,16 @@ check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose
lut_truth_table_fixup
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing --duplicate_grid_pin --verbose
build_fabric --compress_routing #--verbose
# Write the fabric hierarchy of module graph to a file
# This is used by hierarchical PnR flows
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
@ -34,14 +37,17 @@ repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.xml --format xml
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
@ -49,14 +55,20 @@ write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --explicit_port_mapping
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
write_pnr_sdc --file ./SDC
# Write SDC to disable timing for configure ports
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory

View File

@ -1,19 +1,20 @@
//------ Module: sram6T_blwl -----//
//------ Verilog file: sram.v -----//
//------ Author: Xifan TANG -----//
module adder(
input [0:0] a, // Input a
input [0:0] b, // Input b
input [0:0] cin, // Input cin
output [0:0] cout, // Output carry
output [0:0] sumout // Output sum
);
//wire[1:0] int_calc;
//-----------------------------------------------------
// Design Name : Multi-bit Full Adder
// File Name : adder.v
// Coder : Xifan TANG
//-----------------------------------------------------
//assign int_calc = a + b + cin;
//assign cout = int_calc[1];
//assign sumout = int_calc[0];
assign sumout = a ^ b ^ cin;
assign cout = (a & b) | (a & cin) | (b & cin);
//-----------------------------------------------------
// Function : A 1-bit full adder
//-----------------------------------------------------
module ADDF(
input [0:0] A, // Input a
input [0:0] B, // Input b
input [0:0] CI, // Input cin
output [0:0] CO, // Output carry
output [0:0] SUM // Output sum
);
assign SUM = A ^ B ^ CI;
assign CO = (A & B) | (A & CI) | (B & CI);
endmodule

View File

@ -5,12 +5,12 @@
// Coder : Xifan Tang
//-----------------------------------------------------
module aib (
input tx_clk,
input rx_clk,
inout[0:79] pad,
input[0:79] tx_data,
output[0:79] rx_data);
module AIB (
input TX_CLK,
input RX_CLK,
inout[0:79] PAD,
input[0:79] TX_DATA,
output[0:79] RX_DATA);
// May add the logic function of a real AIB
// Refer to the offical AIB github

View File

@ -1,38 +0,0 @@
//-----------------------------------------------------
// Design Name : config_latch
// File Name : config_latch.v
// Function : A Configurable Latch where data storage
// can be updated at rising clock edge
// when wl is enabled
// Coder : Xifan TANG
//-----------------------------------------------------
module config_latch (
input reset, // Reset input
input clk, // Clock Input
input wl, // Data Enable
input bl, // Data Input
output Q, // Q output
output Qb // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge clk or posedge reset) begin
if (reset) begin
q_reg <= 1'b0;
end else if (1'b1 == wl) begin
q_reg <= bl;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = q_reg;
assign Qb = ~q_reg;
`else
assign Q = 1'bZ;
assign Qb = !Q;
`endif
endmodule

View File

@ -0,0 +1,311 @@
//-----------------------------------------------------
// Design Name : D-type Flip-flops
// File Name : ff.v
// Coder : Xifan TANG
//-----------------------------------------------------
//-----------------------------------------------------
// Function : A native D-type flip-flop
//-----------------------------------------------------
module DFF (
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (posedge CK) begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high reset
//-----------------------------------------------------
module DFFR (
input RST, // Reset input
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge RST)
if (RST) begin
q_reg <= 1'b0;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active low reset
//-----------------------------------------------------
module DFFRN (
input RSTN, // Reset input
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or negedge RSTN)
if (~RSTN) begin
q_reg <= 1'b0;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high set
//-----------------------------------------------------
module DFFS (
input SET, // Set input
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge SET)
if (SET) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active low set
//-----------------------------------------------------
module DFFSN (
input SETN, // Set input
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or negedge SETN)
if (~SETN) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high reset
// - asynchronous active high set
//-----------------------------------------------------
module DFFSR (
input SET, // set input
input RST, // Reset input
input CK, // Clock Input
input D, // Data Input
output Q, // Q output
output QN // QB output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge RST or posedge SET)
if (RST) begin
q_reg <= 1'b0;
end else if (SET) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high reset
// - asynchronous active high set
//-----------------------------------------------------
module DFFSRQ (
input SET, // set input
input RST, // Reset input
input CK, // Clock Input
input D, // Data Input
output Q // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge RST or posedge SET)
if (RST) begin
q_reg <= 1'b0;
end else if (SET) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
assign Q = q_reg;
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high reset
// - asynchronous active high set
// - scan-chain input
// - a scan-chain enable
//-----------------------------------------------------
module SDFFSR (
input SET, // Set input
input RST, // Reset input
input CK, // Clock Input
input SE, // Scan-chain Enable
input D, // Data Input
input SI, // Scan-chain input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge RST or posedge SET)
if (RST) begin
q_reg <= 1'b0;
end else if (SET) begin
q_reg <= 1'b1;
end else if (SE) begin
q_reg <= SI;
end else begin
q_reg <= D;
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = q_reg;
assign QN = !Q;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule //End Of Module
//-----------------------------------------------------
// Function : D-type flip-flop with
// - asynchronous active high reset
// - asynchronous active high set
// - scan-chain input
// - a scan-chain enable
//-----------------------------------------------------
module SDFFSRQ (
input SET, // Set input
input RST, // Reset input
input CK, // Clock Input
input SE, // Scan-chain Enable
input D, // Data Input
input SI, // Scan-chain input
output Q // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge CK or posedge RST or posedge SET)
if (RST) begin
q_reg <= 1'b0;
end else if (SET) begin
q_reg <= 1'b1;
end else if (SE) begin
q_reg <= SI;
end else begin
q_reg <= D;
end
assign Q = q_reg;
endmodule //End Of Module

View File

@ -1,146 +0,0 @@
//-----------------------------------------------------
// Design Name : static_dff
// File Name : ff.v
// Function : D flip-flop with asyn reset and set
// Coder : Xifan TANG
//-----------------------------------------------------
//------ Include defines: preproc flags -----
// `include "./SRC/fpga_defines.v"
module static_dff (
/* Global ports go first */
input set, // set input
input reset, // Reset input
input clk, // Clock Input
/* Local ports follow */
input D, // Data Input
output Q // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge clk or posedge reset or posedge set)
if (reset) begin
q_reg <= 1'b0;
end else if (set) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
assign Q = q_reg;
endmodule //End Of Module static_dff
module scan_chain_ff (
/* Global ports go first */
input set, // set input
input reset, // Reset input
input clk, // Clock Input
input TESTEN, // Clock Input
/* Local ports follow */
input D, // Data Input
input DI, // Scan Chain Data Input
output Q // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge clk or posedge reset or posedge set)
if (reset) begin
q_reg <= 1'b0;
end else if (set) begin
q_reg <= 1'b1;
end else if (TESTEN) begin
q_reg <= DI;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
assign Q = q_reg;
endmodule //End Of Module static_dff
//-----------------------------------------------------
// Design Name : scan_chain_dff
// File Name : ff.v
// Function : D flip-flop with asyn reset and set
// Coder : Xifan TANG
//-----------------------------------------------------
module sc_dff (
/* Global ports go first */
input set, // set input
input reset, // Reset input
input clk, // Clock Input
/* Local ports follow */
input D, // Data Input
output Q, // Q output
output Qb // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge clk or posedge reset or posedge set)
if (reset) begin
q_reg <= 1'b0;
end else if (set) begin
q_reg <= 1'b1;
end else begin
q_reg <= D;
end
// Wire q_reg to Q
assign Q = q_reg;
assign Qb = ~Q;
endmodule //End Of Module static_dff
//-----------------------------------------------------
// Design Name : scan_chain_dff compact
// File Name : ff.v
// Function : Scan-chain D flip-flop without reset and set //Modified to fit Edouards architecture
// Coder : Xifan TANG
//-----------------------------------------------------
module sc_dff_compact (
/* Global ports go first */
input reset, // Reset input
//input set, // set input
input clk, // Clock Input
/* Local ports follow */
input D, // Data Input
output Q, // Q output
output Qb // Q output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ ( posedge clk or posedge reset /*or posedge set*/)
if (reset) begin
q_reg <= 1'b0;
//end else if (set) begin
// q_reg <= 1'b1;
end else begin
q_reg <= D;
end
/*
// Wire q_reg to Q
assign Q = q_reg;
assign Qb = ~Q;
*/
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = q_reg;
assign Qb = ~q_reg;
`else
assign Q = 1'bZ;
assign Qb = !Q;
`endif
endmodule //End Of Module static_dff

View File

@ -0,0 +1,20 @@
//-----------------------------------------------------
// Design Name : General Purpose I/Os
// File Name : gpio.v
// Coder : Xifan TANG
//-----------------------------------------------------
//-----------------------------------------------------
// Function : A minimum general purpose I/O
//-----------------------------------------------------
module GPIO (
input A, // Data output
output Y, // Data input
inout PAD, // bi-directional pad
input DIR // direction control
);
//----- when direction enabled, the signal is propagated from PAD to data input
assign Y = DIR ? PAD : 1'bz;
//----- when direction is disabled, the signal is propagated from data out to pad
assign PAD = DIR ? 1'bz : A;
endmodule

View File

@ -1,16 +0,0 @@
//------ Module: iopad -----//
//------ Verilog file: io.v -----//
//------ Author: Xifan TANG -----//
module iopad(
//input zin, // Set output to be Z
input outpad, // Data output
output inpad, // Data input
inout pad, // bi-directional pad
input en // enable signal to control direction of iopad
//input direction_inv // enable signal to control direction of iopad
);
//----- when direction enabled, the signal is propagated from pad to din
assign inpad = en ? pad : 1'bz;
//----- when direction is disabled, the signal is propagated from dout to pad
assign pad = en ? 1'bz : outpad;
endmodule

View File

@ -0,0 +1,255 @@
//-----------------------------------------------------
// Design Name : config_latch
// File Name : config_latch.v
// Coder : Xifan TANG
//-----------------------------------------------------
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
//-----------------------------------------------------
module LATCH (
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (WE or D) begin
if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-high reset signal
//-----------------------------------------------------
module LATCHR (
input RST, // Reset signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (RST or WE or D) begin
if (RST) begin
q_reg <= 1'b0;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-low reset signal
//-----------------------------------------------------
module LATCHRN (
input RSTN, // Reset signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (RSTN or WE or D) begin
if (~RSTN) begin
q_reg <= 1'b0;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-high set signal
//-----------------------------------------------------
module LATCHS (
input SET, // Set signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (SET or WE or D) begin
if (SET) begin
q_reg <= 1'b1;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-low set signal
//-----------------------------------------------------
module LATCHSN (
input SETN, // Set signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (SETN or WE or D) begin
if (~SETN) begin
q_reg <= 1'b1;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-high reset signal
// - an active-high set signal
//-----------------------------------------------------
module LATCHSR (
input RST, // Reset signal
input SET, // Set signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (RST or SET or WE or D) begin
if (RST) begin
q_reg <= 1'b0;
end else if (SET) begin
q_reg <= 1'b1;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A Configurable Latch with
// - an active-high write enable signal
// - an active-high reset signal
// - an active-high set signal
//-----------------------------------------------------
module LATCHSNRN (
input RSTN, // Reset signal
input SETN, // Set signal
input WE, // Write enable
input D, // Data input
output Q, // Q output
output QN // Q negative output
);
//------------Internal Variables--------
reg q_reg;
//-------------Code Starts Here---------
always @ (RSTN or SETN or WE or D) begin
if (~RSTN) begin
q_reg <= 1'b0;
end else if (~SETN) begin
q_reg <= 1'b1;
end else if (1'b1 == WE) begin
q_reg <= D;
end
end
// Wire q_reg to Q
`ifndef ENABLE_FORMAL_VERIFICATION
assign Q = q_reg;
assign QN = ~q_reg;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule

View File

@ -1,199 +0,0 @@
//-----------------------------------------------------
// Design Name : testbench for logic blocks
// File Name : lb_tb.v
// Function : Configurable logic block
// Coder : Xifan TANG
//-----------------------------------------------------
//----- Time scale: simulation time step and accuracy -----
`timescale 1ns / 1ps
module lb_tb;
// Parameters
parameter SIZE_IN = 40; //---- MUX input size
parameter SIZE_OUT = 10; //---- MUX input size
parameter SIZE_RESERV_BLWL = 49 + 1; //---- MUX input size
parameter SIZE_BLWL = 1019 - 310 + 1; //---- MUX input size
parameter prog_clk_period = 1; // [ns] half clock period
parameter op_clk_period = 1; // [ns] half clock period
parameter config_period = 2 * prog_clk_period; // [ns] One full clock period
parameter operating_period = SIZE_IN * 2 * op_clk_period; // [ns] One full clock period
// Ports
wire [0:SIZE_IN-1] lb_in;
wire [0:SIZE_IN-1] lb_out;
wire lb_clk;
wire [0:SIZE_RESERV_BLWL-1] reserv_bl;
wire [0:SIZE_RESERV_BLWL-1] reserv_wl;
wire [0:SIZE_BLWL-1] bl;
wire [0:SIZE_BLWL-1] wl;
wire prog_EN;
wire prog_ENb;
wire zin;
wire nequalize;
wire read;
wire clk;
wire Reset;
wire Set;
// Clocks
wire prog_clock;
wire op_clock;
// Registered port
reg [0:SIZE_IN-1] lb_in_reg;
reg [0:SIZE_RESERV_BLWL-1] reserv_bl_reg;
reg [0:SIZE_RESERV_BLWL-1] reserv_wl_reg;
reg [0:SIZE_BLWL-1] bl_reg;
reg [0:SIZE_BLWL-1] wl_reg;
reg prog_clock_reg;
reg op_clock_reg;
// Config done signal;
reg config_done;
// Temp register for rotating shift
reg temp;
// Unit under test
grid_1__1_ U0 (
zin,
nequalize,
read,
clk,
Reset,
Set,
prog_ENb,
prog_EN,
// Top inputs
lb_in[0], lb_in[4], lb_in[8], lb_in[12], lb_in[16],
lb_in[20], lb_in[24], lb_in[28], lb_in[32], lb_in[36],
// Top outputs
lb_out[0], lb_out[4], lb_out[8],
// Right inputs
lb_in[1], lb_in[5], lb_in[9], lb_in[13], lb_in[17],
lb_in[21], lb_in[25], lb_in[29], lb_in[33], lb_in[37],
// Right outputs
lb_out[1], lb_out[5], lb_out[9],
// Bottom inputs
lb_in[2], lb_in[6], lb_in[10], lb_in[14], lb_in[18],
lb_in[22], lb_in[26], lb_in[30], lb_in[34], lb_in[38],
// Bottom outputs
lb_out[2], lb_out[6],
// Bottom inputs
lb_clk,
// left inputs
lb_in[3], lb_in[7], lb_in[11], lb_in[15], lb_in[19],
lb_in[23], lb_in[27], lb_in[31], lb_in[35], lb_in[39],
// left outputs
lb_out[3], lb_out[7],
reserv_bl, reserv_wl,
bl, wl
);
// Task: assign BL and WL values
task prog_lb_blwl;
begin
@(posedge prog_clock);
// Rotate left shift
temp = reserv_bl_reg[SIZE_RESERV_BLWL-1];
//bl_reg = bl_reg >> 1;
reserv_bl_reg[1:SIZE_RESERV_BLWL-1] = reserv_bl_reg[0:SIZE_RESERV_BLWL-2];
reserv_bl_reg[0] = temp;
end
endtask
// Task: assign inputs
task op_lb_in;
begin
@(posedge op_clock);
temp = lb_in_reg[SIZE_IN-1];
lb_in_reg[1:SIZE_IN-1] = lb_in_reg[0:SIZE_IN-2];
lb_in_reg[0] = temp;
end
endtask
// Configuration done signal
initial
begin
config_done = 1'b0;
end
// Enabled during config_period, Disabled during op_period
always
begin
#config_period config_done = ~config_done;
#operating_period config_done = ~config_done;
end
// Programming clocks
initial
begin
prog_clock_reg = 1'b0;
end
always
begin
#prog_clk_period prog_clock_reg = ~prog_clock_reg;
end
// Operating clocks
initial
begin
op_clock_reg = 1'b0;
end
always
begin
#op_clk_period op_clock_reg = ~op_clock_reg;
end
// Programming and Operating clocks
assign prog_clock = prog_clock_reg & (~config_done);
assign op_clock = op_clock_reg & config_done;
// Programming Enable signals
assign prog_EN = prog_clock & (~config_done);
assign prog_ENb = ~prog_EN;
// Programming phase: BL/WL
initial
begin
// Initialize BL/WL registers
reserv_bl_reg = {SIZE_RESERV_BLWL {1'b0}};
reserv_bl_reg[0] = 1'b1;
reserv_wl_reg = {SIZE_RESERV_BLWL {1'b0}};
// Reserved BL/WL
bl_reg = {SIZE_BLWL {1'b0}};
wl_reg = {SIZE_BLWL {1'b1}};
//wl_reg[SIZE_BLWL-1] = 1'b1;
end
always wait (~config_done) // Only invoked when config_done is 0
begin
// Propagate input 1 to the output
// BL[0] = 1, WL[4] = 1
prog_lb_blwl;
end
// Operating Phase
initial
begin
lb_in_reg = {SIZE_IN {1'b0}};
lb_in_reg[0] = 1'b1; // Last bit is 1 initially
end
always wait (config_done) // Only invoked when config_done is 1
begin
/* Update inputs */
op_lb_in;
end
// Wire ports
assign lb_in = lb_in_reg;
assign reserv_bl = reserv_bl_reg;
assign reserv_wl = reserv_wl_reg;
assign bl = bl_reg;
assign wl = wl_reg;
// Constant ports
assign zin = 1'b0;
assign nequalize = 1'b1;
assign read = 1'b0;
assign clk = op_clock;
assign Reset = ~config_done;
assign Set = 1'b0;
endmodule

View File

@ -1,31 +1,31 @@
//-----------------------------------------------------
// Design Name : sram_blwl
// File Name : sram.v
// Function : A SRAM cell is is accessible
// when wl is enabled
// Coder : Xifan TANG
//-----------------------------------------------------
module sram_blwl(
input reset, // Word line control signal
input wl, // Word line control signal
input bl, // Bit line control signal
output out, // Data output
output outb // Data output
//-----------------------------------------------------
// Function : A SRAM cell with write enable
//-----------------------------------------------------
module SRAM(
input WE, // Word line control signal as write enable
input D, // Bit line control signal
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(bl, wl)
always @(WE or D)
begin
if (1'b1 == reset) begin
data <= 1'b0;
end else if ((1'b1 == bl)&&(1'b1 == wl)) begin
if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == bl)&&(1'b1 == wl)) begin
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
@ -33,57 +33,276 @@ output outb // Data output
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign out = data;
assign outb = ~data;
assign Q = data;
assign QN = ~data;
`else
assign out = 1'bZ;
assign outb = !out;
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//------ Module: sram6T_blwl -----//
//------ Verilog file: sram.v -----//
//------ Author: Xifan TANG -----//
module sram6T_blwl(
//input read,
//input nequalize,
input din, // Data input
output dout, // Data output
output doutb, // Data output
input bl, // Bit line control signal
input wl, // Word line control signal
input blb // Inverted Bit line control signal
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-high set
// - a write-enable
//-----------------------------------------------------
module SRAMS(
input SET, // active-high set signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg a;
reg data;
//----- when wl is enabled, we can read in data from bl
always @(bl, wl)
always @(D or WE)
begin
if (1'b1 == SET) begin
data <= 1'b1;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
if ((1'b1 == bl)&&(1'b1 == wl)) begin
a <= 1'b1;
end
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
if ((1'b0 == bl)&&(1'b1 == wl)) begin
a <= 1'b0;
data <= 1'b0;
end
end
// dout is short-wired to din
assign dout = a;
//---- doutb is always opposite to dout
assign doutb = ~dout;
`ifdef ENABLE_SIGNAL_INITIALIZATION
initial begin
$deposit(a, $random);
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-low set
// - a write-enable
//-----------------------------------------------------
module SRAMSN(
input SETN, // active-low set signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(D or WE)
begin
if (1'b0 == SETN) begin
data <= 1'b1;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-high reset
// - a write-enable
//-----------------------------------------------------
module SRAMR(
input RST, // active-high reset signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(D or WE)
begin
if (1'b1 == RST) begin
data <= 1'b0;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-low reset
// - a write-enable
//-----------------------------------------------------
module SRAMRN(
input RSTN, // active-low reset signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(D or WE)
begin
if (1'b0 == RSTN) begin
data <= 1'b0;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-high reset
// - an active-high set
// - a write-enable
//-----------------------------------------------------
module SRAMSR(
input RST, // active-high reset signal
input SET, // active-high set signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(D or WE)
begin
if (1'b1 == RST) begin
data <= 1'b0;
end else if (1'b1 == SET) begin
data <= 1'b1;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
//-----------------------------------------------------
// Function : A SRAM cell with
// - an active-low reset
// - an active-low set
// - a write-enable
//-----------------------------------------------------
module SRAMSNRN(
input RSTN, // active-low reset signal
input SETN, // active-low set signal
input WE, // Word line control signal as write enable
input D, // Bit line control signal as data input
output Q, // Data output
output QN // Data output
);
//----- local variable need to be registered
reg data;
//----- when wl is enabled, we can read in data from bl
always @(D or WE)
begin
if (1'b0 == RSTN) begin
data <= 1'b0;
end else if (1'b0 == SETN) begin
data <= 1'b1;
end else if ((1'b1 == D)&&(1'b1 == WE)) begin
//----- Cases to program internal memory bit
//----- case 1: bl = 1, wl = 1, a -> 0
data <= 1'b1;
end else if ((1'b0 == D)&&(1'b1 == WE)) begin
//----- case 2: bl = 0, wl = 1, a -> 0
data <= 1'b0;
end
end
`ifndef ENABLE_FORMAL_VERIFICATION
// Wire q_reg to Q
assign Q = data;
assign QN = ~data;
`else
assign Q = 1'bZ;
assign QN = !Q;
`endif
endmodule
module sram6T_rram(
input read,
input nequalize,

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="input" prefix="D" lib_name="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,28 +146,27 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="sram_blwl" prefix="sram_blwl" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<circuit_model type="sram" name="SRAM" prefix="SRAM" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="output" prefix="outb" size="1"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sram_blwl" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAM" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="memory_bank" circuit_model_name="sram_blwl"/>
<organization type="memory_bank" circuit_model_name="SRAM"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -181,7 +180,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -193,7 +192,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -63,6 +66,7 @@
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
@ -120,50 +124,51 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut6" prefix="lut6" dump_structural_verilog="true">
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="sram" name="SRAMSR" prefix="SRAMSR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="memory_bank" circuit_model_name="SRAMSR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -177,7 +182,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -188,41 +193,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" circuit_model_name="lut6"/>
<pb_type name="clb.fle[n1_lut6].ble6.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -61,22 +64,9 @@
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
@ -134,53 +124,50 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="sram" name="SRAMR" prefix="SRAMR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="memory_bank" circuit_model_name="SRAMR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -194,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -205,56 +192,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -61,22 +64,9 @@
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
@ -134,57 +124,50 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="sram" name="SRAMRN" prefix="SRAMRN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RSTN" size="1" is_global="true" default_val="1" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true" />
<!-- A spypad for the direction port of the I/O pad, which can be visible in the fpga_top -->
<port type="input" prefix="din" size="1" is_global="true" is_io="true" default_value="0"/>
<port type="output" prefix="dout" size="1" is_global="true" is_io="true"/>
<port type="output" prefix="dir" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMRN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="memory_bank" circuit_model_name="SRAMRN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -198,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -209,56 +192,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="SRAMS" prefix="SRAMS" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMS" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="memory_bank" circuit_model_name="SRAMS"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="SRAMSN" prefix="SRAMSN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SETN" size="1" is_global="true" default_val="1" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="out" lib_name="Q" size="1"/>
<port type="output" prefix="outb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="memory_bank" circuit_model_name="SRAMSN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -115,15 +115,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -137,28 +137,27 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFF" prefix="DFF" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFF"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
@ -172,7 +171,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -184,7 +183,7 @@
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -61,22 +64,9 @@
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="MUX2" prefix="MUX2" is_default="true">
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
@ -106,72 +96,70 @@
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFSR" prefix="DFFSR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFSR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFSR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
@ -185,7 +173,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -196,56 +184,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -61,36 +64,22 @@
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<!-- Define a circuit model for the standard cell MUX2
OpenFPGA requires the following truth table for the MUX2
When the select signal sel is enabled, the first input, i.e., in0
will be propagated to the output, i.e., out
If your standard cell provider does not offer the exact truth table,
you can simply swap the inputs as shown in the example below
-->
<circuit_model type="gate" name="stdcell_mux2" prefix="stdcell_mux2" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sc_mux2.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sc_mux2.v">
<design_technology type="cmos" topology="MUX2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in0" lib_name="B" size="1"/>
<port type="input" prefix="in1" lib_name="A" size="1"/>
<port type="input" prefix="sel" lib_name="S" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
@ -107,72 +96,69 @@
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
@ -186,7 +172,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -197,56 +183,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -0,0 +1,190 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="DFFRN" prefix="DFFRN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RSTN" size="1" is_global="true" default_val="1" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFRN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="DFFRN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,190 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="DFFS" prefix="DFFS" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFS" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="DFFS"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,190 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="DFFSN" prefix="DFFSN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SETN" size="1" is_global="true" default_val="1" is_set="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFSN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="DFFSN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,28 +146,28 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -181,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -193,7 +193,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -30,6 +30,7 @@
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -41,6 +42,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -52,6 +54,7 @@
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -61,22 +64,9 @@
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
@ -134,64 +124,50 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2"/>
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="sram" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="CK" size="1" is_edge_triggered="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="frame_based" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -202,13 +178,10 @@
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="adder_carry" circuit_model_name="direct_interc"/>
</direct_connection>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -219,67 +192,8 @@
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'n2_lut5' -->
<pb_type name="clb.fle[n2_lut5].ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].arithmetic.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="11" physical_pb_type_index_factor="0.25">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[arithmetic].arithmetic.adder" physical_pb_type_name="clb.fle[physical].fabric.adder"/>
<pb_type name="clb.fle[arithmetic].arithmetic.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<!-- Binding operating pb_types in mode 'ble6' -->
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="00">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>
<openfpga_simulation_setting>
<clock_setting>
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
<programming frequency="10e6"/>
</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>
</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />
</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />
</input>
</stimulus>
</openfpga_simulation_setting>

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,29 +146,27 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCH" prefix="LATCH" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCH" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCH"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -182,7 +180,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -194,7 +192,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,202 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="SDFFSR" prefix="SDFFSR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="CK" size="1" is_edge_triggered="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
<port type="input" prefix="SE" lib_name="SE" size="1" is_global="true" default_val="0"/>
<port type="input" prefix="SI" lib_name="SI" size="1" is_global="true" default_val="0"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SDFFSR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="SDFFSR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,200 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHSR" prefix="LATCHSR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHSR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHSR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHRN" prefix="LATCHRN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RSTN" size="1" is_global="true" default_val="1" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHRN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHRN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHS" prefix="LATCHS" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHS" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHS"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,199 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHSN" prefix="LATCHSN" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pSet" lib_name="SETN" size="1" is_global="true" default_val="1" is_set="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHSN" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHSN"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -36,7 +36,7 @@
<design_technology type="cmos" power_gated="true" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="en" size="1" is_global="true" default_val="0" is_config_enable="true"/>
<port type="input" prefix="DIR" size="1" is_global="true" default_val="0" is_config_enable="true"/>
<port type="input" prefix="enb" size="1" is_global="true" default_val="1" is_config_enable="true"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
@ -130,15 +130,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -152,29 +152,28 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -188,7 +187,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -200,7 +199,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,29 +146,28 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="standalone" circuit_model_name="config_latch"/>
<organization type="standalone" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -182,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -194,7 +193,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,29 +146,28 @@
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -182,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -190,7 +189,7 @@
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,212 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 10, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar_fle0" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle1_in0" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle1" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle2_in0" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle2_in1" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle2" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle3_in0" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle3_in1" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle3_in2" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle3" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle4_in0" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle4_in1" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle4_in2" circuit_model_name="mux_2level"/>
<interconnect name="crossbar_fle4_in3" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -139,15 +139,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
@ -161,31 +161,31 @@
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -199,7 +199,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -212,7 +212,7 @@
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->

View File

@ -139,15 +139,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
@ -161,41 +161,41 @@
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="input" prefix="a" lib_name="A" size="1"/>
<port type="input" prefix="b" lib_name="B" size="1"/>
<port type="input" prefix="cin" lib_name="CI" size="1"/>
<port type="output" prefix="sumout" lib_name="SUM" size="1"/>
<port type="output" prefix="cout" lib_name="CO" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -212,7 +212,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -225,8 +225,8 @@
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="ADDF"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->

View File

@ -139,15 +139,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
@ -161,38 +161,37 @@
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="input" prefix="a" lib_name="A" size="1"/>
<port type="input" prefix="b" lib_name="B" size="1"/>
<port type="input" prefix="cin" lib_name="CI" size="1"/>
<port type="output" prefix="sumout" lib_name="SUM" size="1"/>
<port type="output" prefix="cout" lib_name="CO" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="dpram_128x8" prefix="dpram_128x8" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpram1k.v">
<design_technology type="cmos"/>
@ -208,7 +207,7 @@
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -225,7 +224,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -238,8 +237,8 @@
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="ADDF"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->

View File

@ -139,15 +139,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
@ -161,38 +161,37 @@
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="input" prefix="a" lib_name="A" size="1"/>
<port type="input" prefix="b" lib_name="B" size="1"/>
<port type="input" prefix="cin" lib_name="CI" size="1"/>
<port type="output" prefix="sumout" lib_name="SUM" size="1"/>
<port type="output" prefix="cout" lib_name="CO" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="dpram_128x8" prefix="dpram_128x8" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpram1k.v">
<design_technology type="cmos"/>
@ -208,7 +207,7 @@
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -229,7 +228,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -242,8 +241,8 @@
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="ADDF"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->

View File

@ -139,15 +139,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
@ -161,38 +161,37 @@
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sram" name="config_latch" prefix="config_latch" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/config_latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/config_latch.v">
<circuit_model type="sram" name="LATCHR" prefix="LATCHR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/latch.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/latch.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="bl" prefix="bl" lib_name="D" size="1"/>
<port type="wl" prefix="wl" lib_name="WE" size="1"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="output" prefix="Qb" lib_name="QN" size="1"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="adder" prefix="adder" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="sumout" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="input" prefix="a" lib_name="A" size="1"/>
<port type="input" prefix="b" lib_name="B" size="1"/>
<port type="input" prefix="cin" lib_name="CI" size="1"/>
<port type="output" prefix="sumout" lib_name="SUM" size="1"/>
<port type="output" prefix="cout" lib_name="CO" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="dpram_128x8" prefix="dpram_128x8" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpram1k.v">
<design_technology type="cmos"/>
@ -214,11 +213,11 @@
<port type="input" prefix="b" size="32"/>
<port type="output" prefix="out" size="64"/>
<!-- As a fracturable multiplier, it requires 2 configuration bits to operate in 4 different modes -->
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="config_latch" default_val="1"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>
<organization type="frame_based" circuit_model_name="LATCHR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -235,7 +234,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -248,8 +247,8 @@
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="DFFSRQ"/>
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="ADDF"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->

View File

@ -124,15 +124,15 @@
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut6" prefix="lut6" dump_structural_verilog="true">
<design_technology type="cmos"/>
@ -146,28 +146,28 @@
<port type="sram" prefix="sram" size="64"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<circuit_model type="ccff" name="DFFR" prefix="DFFR" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
<port type="input" prefix="outpad" lib_name="A" size="1"/>
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
<organization type="scan_chain" circuit_model_name="DFFR"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
@ -181,7 +181,7 @@
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
@ -193,7 +193,7 @@
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" circuit_model_name="lut6"/>
<pb_type name="clb.fle[n1_lut6].ble6.ff" circuit_model_name="static_dff"/>
<pb_type name="clb.fle[n1_lut6].ble6.ff" circuit_model_name="DFFSRQ"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

Some files were not shown because too many files have changed in this diff Show More