Add scan-chain and timed architecture + update simulation script script (add script for autochecked testbench)
This commit is contained in:
parent
10866d1852
commit
5e94b7093d
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,882 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
the cluster and a full crossbar, leading to 53:1 multiplexers in front of each BLE input.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
& delay of the Stratix IV crossbar as a rough approximation of our crossbar.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
|
||||
|
||||
<architecture>
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a"/>
|
||||
<port name="b"/>
|
||||
<port name="cin"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut6_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut4_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<!-- ODIN II specific config ends -->
|
||||
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout width="2" height="2"/>
|
||||
<spice_settings>
|
||||
<parameters>
|
||||
<options sim_temp="25" post="off" captab="off" fast="on"/>
|
||||
<monte_carlo mc_sim="off" num_mc_points="2" cmos_variation="off" rram_variation="off">
|
||||
<cmos abs_variation="0.1" num_sigma="3"/>
|
||||
<rram abs_variation="0.1" num_sigma="3"/>
|
||||
</monte_carlo>
|
||||
<measure sim_num_clock_cycle="auto" accuracy="1e-13" accuracy_type="abs">
|
||||
<slew>
|
||||
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
|
||||
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
|
||||
</slew>
|
||||
<delay>
|
||||
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
</delay>
|
||||
</measure>
|
||||
<stimulate>
|
||||
<clock op_freq="auto" sim_slack="0.2" prog_freq="2.5e6">
|
||||
<rise slew_time="20e-12" slew_type="abs"/>
|
||||
<fall slew_time="20e-12" slew_type="abs"/>
|
||||
</clock>
|
||||
<input>
|
||||
<rise slew_time="25e-12" slew_type="abs"/>
|
||||
<fall slew_time="25e-12" slew_type="abs"/>
|
||||
</input>
|
||||
</stimulate>
|
||||
</parameters>
|
||||
<tech_lib lib_type="industry" transistor_type="TOP_TT" lib_path="/research/ece/lnis/USERS/tang/tangxifan-eda-tools/branches/subvt_fpga/process/tsmc40nm/toplevel.l" nominal_vdd="0.9" io_vdd="2.5"/>
|
||||
<transistors pn_ratio="2" model_ref="M">
|
||||
<nmos model_name="nch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<pmos model_name="pch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
</transistors>
|
||||
<module_circuit_models>
|
||||
<circuit_model type="inv_buf" name="inv1" prefix="inv1" is_default="1">
|
||||
<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="tap_inv4" prefix="tap_inv4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="3" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="pass_gate" name="tgate" prefix="tgate" is_default="1">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||
10e-12 0e-12 0e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||
10e-12 0e-12 0e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="or2" prefix="or2" is_default="1" verilog_netlist="/research/ece/lnis/USERS/alacchi/clone_github/tangxifan-eda-tools/branches/vpr7_rram/vpr/VerilogNetlists/sram.v/VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="2"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="101" cap_val="22.5e-15" level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_like" prefix="mux_tree_like" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_like_tapbuf" prefix="mux_tree_like_tapbuf" dump_structural_verilog="true" is_default="0">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="tap_inv4"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="1" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="tap_inv4"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="Set" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="Reset" size="1" is_global="true" default_val="1" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" fracturable_lut="true"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<lut_input_buffer exist="on" circuit_model_name="buf4"/>
|
||||
<lut_input_inverter exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="or2"/>
|
||||
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
|
||||
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
|
||||
<port type="sram" prefix="sram" size="64"/>
|
||||
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="pReset" size="1" is_global="true" default_val="1" is_reset="true" is_prog="true"/>
|
||||
<port type="input" prefix="pSet" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/io.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="inout" prefix="pad" size="1"/>
|
||||
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
<!--port type="sram" prefix="enb" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="0"/-->
|
||||
<port type="input" prefix="outpad" size="1"/>
|
||||
<!-- <port type="input" prefix="zin" size="1" is_global="true" default_val="0" /> -->
|
||||
<port type="output" prefix="inpad" size="1"/>
|
||||
</circuit_model>
|
||||
<!-- Hard logic definition for heterogenous blocks -->
|
||||
<circuit_model type="hard_logic" name="adder_1bit" prefix="adder" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/adder.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/adder.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<port type="input" prefix="a" size="1"/>
|
||||
<port type="input" prefix="b" size="1"/>
|
||||
<port type="input" prefix="cin" size="1"/>
|
||||
<port type="output" prefix="sumout" size="1"/>
|
||||
<port type="output" prefix="cout" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/sram.v" >
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
</circuit_model>
|
||||
|
||||
</module_circuit_models>
|
||||
</spice_settings>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="9"/>
|
||||
<timing C_ipin_cblock="596e-18" T_ipin_cblock="77.93e-12"/>
|
||||
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<sram area="6">
|
||||
<verilog organization="scan-chain" circuit_model_name="sc_dff_compact"/>
|
||||
<!--verilog organization="memory-bank" circuit_model_name="sram6T_blwl"/-->
|
||||
<spice organization="standalone" circuit_model_name="sram6T" />
|
||||
</sram>
|
||||
<chan_width_distr>
|
||||
<io width="1.000000"/>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
</device>
|
||||
|
||||
<cblocks>
|
||||
<switch type="mux" name="cb_mux" R="0" Cin="596e-18" Cout="0" Tdel="77.93e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="2">
|
||||
</switch>
|
||||
</cblocks>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="sb_mux_L4" R="105" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L2" R="115" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L1" R="128" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment freq="0.4" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1</sb>
|
||||
<cb type="pattern">1 1 </cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1</sb>
|
||||
<cb type="pattern">1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<!--switch_segment_patterns>
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<unbuf_mux name="1"/>
|
||||
<sb type ="pattern">0 1</sb>
|
||||
</pattern>
|
||||
</switch_segment_patterns-->
|
||||
|
||||
<complexblocklist>
|
||||
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io" capacity="7" area="0" idle_mode_name="inpad" physical_mode_name="io_phy">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- physical design description -->
|
||||
<mode name="io_phy" disabled_in_packing="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1" circuit_model_name="iopad" mode_bits="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.§
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1" physical_pb_type_name="iopad" mode_bits="1">
|
||||
<output name="inpad" num_pins="1" physical_mode_pin="inpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1" physical_pb_type_name="iopad" mode_bits="0">
|
||||
<input name="outpad" num_pins="1" physical_mode_pin="outpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<gridlocations>
|
||||
<loc type="perimeter" priority="10"/>
|
||||
</gridlocations>
|
||||
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
|
||||
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb" area="53894">
|
||||
<input name="I" num_pins="40" equivalent="true"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="false"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10" physical_mode_name="fle_phy" idle_mode_name="n2_lut5">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<mode name="fle_phy" disabled_in_packing="true">
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<pb_type name="frac_lut6" blif_model=".frac_lut6" mode_bits="11" num_pb="1" circuit_model_name="frac_lut6">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<pb_type name="adder_phy" blif_model=".subckt adder" num_pb="2" circuit_model_name="adder_1bit">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct_fraclut_in" input="frac_logic.in[5:0]" output="frac_lut6.in[5:0]"/>
|
||||
<direct name="direct_cin" input="frac_logic.cin" output="adder_phy[0].cin"/>
|
||||
<direct name="direct_carry" input="adder_phy[0].cout" output="adder_phy[1].cin"/>
|
||||
<direct name="direct_cout" input="adder_phy[1].cout" output="frac_logic.cout"/>
|
||||
<direct name="direct_lut4carry0" input="frac_lut6.lut4_out[0]" output="adder_phy[0].a"/>
|
||||
<direct name="direct_lut4carry1" input="frac_lut6.lut4_out[1]" output="adder_phy[0].b"/>
|
||||
<direct name="direct_lut4carry2" input="frac_lut6.lut4_out[2]" output="adder_phy[1].a"/>
|
||||
<direct name="direct_lut4carry3" input="frac_lut6.lut4_out[3]" output="adder_phy[1].b"/>
|
||||
<mux name="mux1" input="adder_phy[0].sumout frac_lut6.lut5_out[0]" output="frac_logic.out[0]">
|
||||
<mode_select mode_name="n2_lut5.arithmetic" in_port="adder_phy[0].sumout" out_port="frac_logic.out[0]"/>
|
||||
<mode_select mode_name="n2_lut5.blut5" in_port="frac_lut6.lut5_out[0]" out_port="frac_logic.out[0]"/>
|
||||
<mode_select mode_name="n1_lut6" in_port="frac_lut6.lut5_out[0]" out_port="frac_logic.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder_phy[1].sumout frac_lut6.lut5_out[1] frac_lut6.lut6_out[0]" output="frac_logic.out[1]">
|
||||
<mode_select mode_name="n2_lut5.arithmetic" in_port="adder_phy[1].sumout" out_port="frac_logic.out[1]"/>
|
||||
<mode_select mode_name="n2_lut5.blut5" in_port="frac_lut6.lut5_out[1]" out_port="frac_logic.out[1]"/>
|
||||
<mode_select mode_name="n1_lut6" in_port="frac_lut6.lut6_out[0]" out_port="frac_logic.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<pb_type name="ff_phy" blif_model=".latch" num_pb="2" class="flipflop" circuit_model_name="static_dff">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff_phy.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_phy.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<complete name="direct_clk" input="fle.clk" output="ff_phy[1:0].clk"/>
|
||||
<direct name="direct_in" input="fle.in[5:0]" output="frac_logic.in[5:0]"/>
|
||||
<direct name="direct_cin" input="fle.cin" output="frac_logic.cin"/>
|
||||
<direct name="direct_cout" input="frac_logic.cout" output="fle.cout"/>
|
||||
<direct name="direct_frac_out1" input="frac_logic.out[0]" output="ff_phy[0].D"/>
|
||||
<direct name="direct_frac_out2" input="frac_logic.out[1]" output="ff_phy[1].D"/>
|
||||
<mux name="mux1" input="ff_phy[0].Q frac_logic.out[0]" output="fle.out[0]">
|
||||
</mux>
|
||||
<mux name="mux2" input="ff_phy[1].Q frac_logic.out[1]" output="fle.out[1]">
|
||||
</mux>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="n2_lut5" disabled_in_packing="false">
|
||||
<!-- multi-mode support -->
|
||||
<pb_type name="lut5inter" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble5" num_pb="2" idle_mode_name="blut5">
|
||||
<input name="in" num_pins="5"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<mode name="blut5">
|
||||
<pb_type name="flut5" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut" mode_bits="01" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.5">
|
||||
<input name="in" num_pins="5" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut5_out" physical_mode_pin_rotate_offset="1"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="flut5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="flut5.out" spice_model_sram_offset="0">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="flut5.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="flut5.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="flut5.in"/>
|
||||
<direct name="direct2" input="ble5.clk" output="flut5.clk"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut" mode_bits="11" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.25">
|
||||
<input name="in" num_pins="4" port_class="lut_in" physical_mode_pin="in[4:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut4_out" physical_mode_pin_rotate_offset="1"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1" physical_pb_type_name="adder_phy">
|
||||
<input name="a" num_pins="1" physical_mode_pin="a"/>
|
||||
<input name="b" num_pins="1" physical_mode_pin="b"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<output name="cout" num_pins="1" physical_mode_pin="cout"/>
|
||||
<output name="sumout" num_pins="1" physical_mode_pin="sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in[3:0]" output="arithmetic.in"/>
|
||||
<direct name="carry_in" input="ble5.cin" output="arithmetic.cin">
|
||||
<pack_pattern name="chain" in_port="ble5.cin" out_port="arithmetic.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic.cout" output="ble5.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="ble5.cout"/>
|
||||
</direct>
|
||||
<direct name="direct2" input="ble5.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="carry_in" input="lut5inter.cin" output="ble5[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cin" out_port="ble5[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="ble5[1:1].cout" output="lut5inter.cout">
|
||||
<pack_pattern name="chain" in_port="ble5[1:1].cout" out_port="lut5inter.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="ble5[0:0].cout" output="ble5[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="ble5[0:0].cout" out_port="ble5[1:1].cout"/>
|
||||
</direct>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
|
||||
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
|
||||
<direct name="carry_in" input="fle.cin" output="lut5inter.cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="lut5inter.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="lut5inter.cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode> <!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="6" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut6_out[0]"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy" physical_pb_type_index_factor="2" physical_pb_type_index_offset="1">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[1:1]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode> <!-- n1_lut6 -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in" circuit_model_name="mux_tree_like">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in" />
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in" />
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10">
|
||||
<pin name="cin" fc_type="frac" fc_val="0"/>
|
||||
<pin name="cout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
|
||||
<pinlocations pattern="spread"/>
|
||||
<gridlocations>
|
||||
<loc type="fill" priority="1"/>
|
||||
</gridlocations>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
<power>
|
||||
<local_interconnect C_wire="2.5e-10"/>
|
||||
<mux_transistor_size mux_transistor_size="3"/>
|
||||
<FF_size FF_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
</power>
|
||||
<clocks>
|
||||
<clock buffer_size="auto" C_wire="2.5e-10"/>
|
||||
</clocks>
|
||||
</architecture>
|
File diff suppressed because it is too large
Load Diff
|
@ -262,10 +262,12 @@ void vpr_dump_syn_verilog(t_vpr_setup vpr_setup,
|
|||
/* Output Modelsim Autodeck scripts */
|
||||
if (TRUE == vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.print_modelsim_autodeck) {
|
||||
dump_verilog_modelsim_autodeck(sram_verilog_orgz_info, *(Arch.spice), num_clocks,
|
||||
verilog_dir_formatted, chomped_circuit_name,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.modelsim_ini_path,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.include_timing,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.init_sim);
|
||||
verilog_dir_formatted, chomped_circuit_name,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.modelsim_ini_path,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.include_timing,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.init_sim,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.print_top_tb,
|
||||
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.print_top_auto_tb);
|
||||
}
|
||||
|
||||
/* dump verilog testbench only for input blif */
|
||||
|
|
|
@ -23,6 +23,7 @@ char* modelsim_project_name_postfix = "_fpga_msim";
|
|||
char* modelsim_proc_script_name_postfix = "_proc.tcl";
|
||||
char* modelsim_top_script_name_postfix = "_runsim.tcl";
|
||||
char* modelsim_testbench_module_postfix = "_top_tb";
|
||||
char* modelsim_auto_testbench_module_postfix = "_top_auto_tb";
|
||||
char* modelsim_simulation_time_unit = "ms";
|
||||
|
||||
char* verilog_top_postfix = "_top.v";
|
||||
|
|
|
@ -15,6 +15,7 @@ extern char* modelsim_project_name_postfix;
|
|||
extern char* modelsim_proc_script_name_postfix;
|
||||
extern char* modelsim_top_script_name_postfix;
|
||||
extern char* modelsim_testbench_module_postfix;
|
||||
extern char* modelsim_auto_testbench_module_postfix;
|
||||
extern char* modelsim_simulation_time_unit;
|
||||
|
||||
extern char* verilog_top_postfix;
|
||||
|
|
|
@ -230,6 +230,138 @@ void dump_verilog_modelsim_proc_script(char* modelsim_proc_filename,
|
|||
return;
|
||||
}
|
||||
|
||||
void dump_verilog_modelsim_proc_auto_script(char* modelsim_proc_filename,
|
||||
char* modelsim_ini_path,
|
||||
char* circuit_name,
|
||||
boolean include_timing,
|
||||
boolean init_sim,
|
||||
char* modelsim_project_name) {
|
||||
FILE* fp = NULL;
|
||||
char* circuit_top_tb_name = NULL;
|
||||
|
||||
circuit_top_tb_name = my_strcat(circuit_name, modelsim_auto_testbench_module_postfix);
|
||||
|
||||
/* Create Modelsim proc file */
|
||||
/* Open file and file handler */
|
||||
fp = fopen(modelsim_proc_filename, "w");
|
||||
if (NULL == fp) {
|
||||
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create Modelsim simulation deck auto-generation scripts: %s",
|
||||
__FILE__, __LINE__, modelsim_proc_filename);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(fp, "proc create_project {projectname project_path} {\n");
|
||||
fprintf(fp, " #Switch to the modelsim folder to create the project\n");
|
||||
fprintf(fp, " set libname $projectname\n");
|
||||
fprintf(fp, " set initfile %s\n", modelsim_ini_path);
|
||||
fprintf(fp, " project new $project_path/$projectname $projectname $libname $initfile 0\n");
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
fprintf(fp, " \n");
|
||||
|
||||
fprintf(fp, "proc create_project_with_close {projectname modelsim_path} {\n");
|
||||
fprintf(fp, " #Get the current project name\n");
|
||||
fprintf(fp, " set project_env [project env]\n");
|
||||
fprintf(fp, " if {$project_env eq \"\"} {\n");
|
||||
fprintf(fp, " #If string empty (no project)\n");
|
||||
fprintf(fp, " create_project $projectname $modelsim_path\n");
|
||||
fprintf(fp, " } else {\n");
|
||||
fprintf(fp, " #If string not empty (a project is loaded so clsoe it first)\n");
|
||||
fprintf(fp, " project close\n");
|
||||
fprintf(fp, " create_project $projectname $modelsim_path\n");
|
||||
fprintf(fp, " }\n");
|
||||
fprintf(fp, " }\n");
|
||||
|
||||
fprintf(fp, " \n");
|
||||
|
||||
fprintf(fp, "proc add_files_project {verilog_files} {\n");
|
||||
fprintf(fp, " #Get the length of the list\n");
|
||||
fprintf(fp, " set listlength [llength $verilog_files]\n");
|
||||
fprintf(fp, " #Add the verilog files one by one\n");
|
||||
fprintf(fp, " for {set x 0} {$x<$listlength} {incr x} {\n");
|
||||
fprintf(fp, " project addfile [lindex $verilog_files $x]\n");
|
||||
fprintf(fp, " }\n");
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
fprintf(fp, " \n");
|
||||
|
||||
fprintf(fp, "proc add_waves {} {\n");
|
||||
fprintf(fp, " add wave -position insertpoint sim:/%s/*\n", circuit_top_tb_name);
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
|
||||
fprintf(fp, "proc runsim {simtime unit} {\n");
|
||||
fprintf(fp, " run $simtime $unit\n");
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
|
||||
fprintf(fp, "#Top procedure to create enw project\n");
|
||||
fprintf(fp, "proc top_create_new_project {projectname verilog_files modelsim_path simtime unit} {\n");
|
||||
fprintf(fp, " #Create the project\n");
|
||||
fprintf(fp, " create_project_with_close $projectname $modelsim_path\n");
|
||||
fprintf(fp, " #Add the verilog files\n");
|
||||
fprintf(fp, " add_files_project $verilog_files\n");
|
||||
fprintf(fp, " #Compile all the files\n");
|
||||
// fprintf(fp, " project compileall\n"); // removed to allow compilation with define
|
||||
// Begin of compilation with Define
|
||||
fprintf(fp, " set myFiles [project filenames]\n");
|
||||
fprintf(fp, " foreach x $myFiles {\n");
|
||||
fprintf(fp, " vlog ");
|
||||
if(TRUE == include_timing){
|
||||
fprintf(fp, "+define+%s ", verilog_timing_preproc_flag);
|
||||
}
|
||||
if(TRUE == init_sim){
|
||||
fprintf(fp, "+define+%s ", verilog_init_sim_preproc_flag);
|
||||
}
|
||||
fprintf(fp, "$x\n }\n");
|
||||
// End of compilation with Define
|
||||
fprintf(fp, " #Start the simulation\n");
|
||||
fprintf(fp, " vsim $projectname.%s -voptargs=+acc\n", circuit_top_tb_name);
|
||||
fprintf(fp, " #Add the waves \n");
|
||||
fprintf(fp, " add_waves\n");
|
||||
fprintf(fp, " #run the simulation\n");
|
||||
fprintf(fp, " runsim $simtime $unit\n");
|
||||
fprintf(fp, " #Fit the window view\n");
|
||||
fprintf(fp, " wave zoom full\n");
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
fprintf(fp, "#Top proc to recompile files and re run the simulation\n");
|
||||
fprintf(fp, "proc top_rerun_sim {simtime unit} {\n");
|
||||
// Save format
|
||||
fprintf(fp, " #Save actual format\n");
|
||||
fprintf(fp, " set myLoc [pwd]\n");
|
||||
fprintf(fp, " write format wave -window .main_pane.wave.interior.cs.body.pw.wf $myLoc/relaunch.do\n");
|
||||
// Quit simulation
|
||||
fprintf(fp, " quit -sim\n");
|
||||
// Recompile file
|
||||
fprintf(fp, " #Compile updated verilog files\n");
|
||||
fprintf(fp, " set myFiles [project filenames]\n");
|
||||
fprintf(fp, " foreach x $myFiles {\n");
|
||||
fprintf(fp, " vlog ");
|
||||
if(TRUE == include_timing){
|
||||
fprintf(fp, "+define+%s ", verilog_timing_preproc_flag);
|
||||
}
|
||||
if(TRUE == init_sim){
|
||||
fprintf(fp, "+define+%s ", verilog_init_sim_preproc_flag);
|
||||
}
|
||||
fprintf(fp, "$x\n }\n");
|
||||
// Restart the Simulation
|
||||
fprintf(fp, " set projectname %s\n", modelsim_project_name);
|
||||
fprintf(fp, " vsim $projectname.%s -voptargs=+acc -do relaunch.do\n", circuit_top_tb_name);
|
||||
// Relaunch the Simulation
|
||||
fprintf(fp, " #run the simulation\n");
|
||||
fprintf(fp, " run $simtime $unit\n");
|
||||
fprintf(fp, "}\n");
|
||||
|
||||
/* Close File handler */
|
||||
fclose(fp);
|
||||
|
||||
/* Free */
|
||||
my_free(circuit_top_tb_name);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void dump_verilog_modelsim_top_script(char* modelsim_top_script_filename,
|
||||
char* modelsim_proc_script_filename,
|
||||
char* modelsim_project_path,
|
||||
|
@ -299,6 +431,75 @@ void dump_verilog_modelsim_top_script(char* modelsim_top_script_filename,
|
|||
return;
|
||||
}
|
||||
|
||||
void dump_verilog_modelsim_top_auto_script(char* modelsim_top_auto_script_filename,
|
||||
char* modelsim_proc_auto_script_filename,
|
||||
char* modelsim_project_path,
|
||||
char* circuit_name,
|
||||
char* modelsim_project_name,
|
||||
float sim_time,
|
||||
char* sim_time_unit,
|
||||
t_spice spice) {
|
||||
FILE* fp = NULL;
|
||||
|
||||
/* Create Modelsim proc file */
|
||||
/* Open file and file handler */
|
||||
fp = fopen(modelsim_top_auto_script_filename, "w");
|
||||
if (NULL == fp) {
|
||||
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create Modelsim simulation deck auto-generation scripts: %s",
|
||||
__FILE__, __LINE__, modelsim_top_auto_script_filename);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(fp, "set projectname %s\n", modelsim_project_name);
|
||||
fprintf(fp, "set benchmark %s\n", circuit_name);
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#in ms\n");
|
||||
fprintf(fp, "set simtime %.4g\n", sim_time);
|
||||
fprintf(fp, "set unit %s\n",
|
||||
sim_time_unit);
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#Path were both tcl script are located\n");
|
||||
fprintf(fp, "set project_path \"%s%s\"\n", modelsim_project_path, default_modelsim_dir_name);
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#Path were the verilog files are located\n");
|
||||
fprintf(fp, "set verilog_path \"%s\"\n", modelsim_project_path);
|
||||
fprintf(fp, "set verilog_files [list \\\n");
|
||||
/* TODO: include verilog files */
|
||||
fprintf(fp, " ${verilog_path}${benchmark}%s \\\n",
|
||||
verilog_top_postfix);
|
||||
fprintf(fp, " ${verilog_path}${benchmark}%s \\\n",
|
||||
top_auto_testbench_verilog_file_postfix);
|
||||
/* User-defined verilog netlists */
|
||||
init_include_user_defined_verilog_netlists(spice);
|
||||
modelsim_include_user_defined_verilog_netlists(fp, spice);
|
||||
|
||||
fprintf(fp, " ${verilog_path}%s%s \\\n",
|
||||
default_lb_dir_name, logic_block_verilog_file_name);
|
||||
fprintf(fp, " ${verilog_path}%s%s \\\n",
|
||||
default_rr_dir_name, routing_verilog_file_name);
|
||||
fprintf(fp, " ${verilog_path}%s%s ] \n",
|
||||
default_submodule_dir_name, submodule_verilog_file_name);
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#Source the tcl script\n");
|
||||
fprintf(fp, "source ${verilog_path}%s\n", modelsim_proc_auto_script_filename);
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#Execute the top level procedure\n");
|
||||
fprintf(fp, "top_create_new_project $projectname $verilog_files $project_path $simtime $unit\n");
|
||||
fprintf(fp, "\n");
|
||||
|
||||
fprintf(fp, "#Relaunch simulation\n");
|
||||
|
||||
/* Close File handler */
|
||||
fclose(fp);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/***** Top-level function *****/
|
||||
void dump_verilog_modelsim_autodeck(t_sram_orgz_info* cur_sram_orgz_info,
|
||||
t_spice spice,
|
||||
|
@ -307,16 +508,23 @@ void dump_verilog_modelsim_autodeck(t_sram_orgz_info* cur_sram_orgz_info,
|
|||
char* chomped_circuit_name,
|
||||
char* simulator_ini_path,
|
||||
boolean include_timing,
|
||||
boolean init_sim) {
|
||||
boolean init_sim,
|
||||
boolean print_top_tb,
|
||||
boolean print_top_auto_tb) {
|
||||
char* modelsim_project_name = NULL;
|
||||
char* modelsim_proc_script_filename = NULL;
|
||||
char* modelsim_top_script_filename = NULL;
|
||||
char* modelsim_proc_auto_script_filename = NULL;
|
||||
char* modelsim_top_auto_script_filename = NULL;
|
||||
char* auto_tb_postfix = "_autocheck";
|
||||
float simulation_time_period = 0.;
|
||||
|
||||
/* Determine the project name for Modelsim */
|
||||
modelsim_project_name = my_strcat(chomped_circuit_name, modelsim_project_name_postfix);
|
||||
modelsim_top_script_filename = my_strcat(verilog_dir_formatted, my_strcat(chomped_circuit_name, modelsim_top_script_name_postfix));
|
||||
modelsim_proc_script_filename = my_strcat(verilog_dir_formatted, my_strcat(chomped_circuit_name, modelsim_proc_script_name_postfix));
|
||||
modelsim_top_auto_script_filename = my_strcat(verilog_dir_formatted, my_strcat(chomped_circuit_name, my_strcat(auto_tb_postfix, modelsim_top_script_name_postfix)));
|
||||
modelsim_proc_auto_script_filename = my_strcat(verilog_dir_formatted, my_strcat(chomped_circuit_name, my_strcat(auto_tb_postfix, modelsim_proc_script_name_postfix)));
|
||||
|
||||
/* Generate files */
|
||||
vpr_printf(TIO_MESSAGE_INFO, "Writing Modelsim simulation deck auto-generation scripts...\n");
|
||||
|
@ -330,11 +538,18 @@ void dump_verilog_modelsim_autodeck(t_sram_orgz_info* cur_sram_orgz_info,
|
|||
}
|
||||
|
||||
/* Dump the Modelsim process function file */
|
||||
dump_verilog_modelsim_proc_script(modelsim_proc_script_filename,
|
||||
if(print_top_tb){
|
||||
dump_verilog_modelsim_proc_script(modelsim_proc_script_filename,
|
||||
simulator_ini_path, chomped_circuit_name,
|
||||
include_timing, init_sim,
|
||||
modelsim_project_name);
|
||||
|
||||
}
|
||||
if(print_top_auto_tb){
|
||||
dump_verilog_modelsim_proc_auto_script(modelsim_proc_auto_script_filename,
|
||||
simulator_ini_path, chomped_circuit_name,
|
||||
include_timing, init_sim,
|
||||
modelsim_project_name);
|
||||
}
|
||||
/* Compute simulation time period */
|
||||
simulation_time_period = get_verilog_modelsim_simulation_time_period(convert_modelsim_time_unit_to_float(modelsim_simulation_time_unit),
|
||||
get_sram_orgz_info_num_mem_bit(cur_sram_orgz_info),
|
||||
|
@ -343,13 +558,22 @@ void dump_verilog_modelsim_autodeck(t_sram_orgz_info* cur_sram_orgz_info,
|
|||
1./spice.spice_params.stimulate_params.op_clock_freq);
|
||||
|
||||
/* Dump the Modelsim top-level script file */
|
||||
dump_verilog_modelsim_top_script(modelsim_top_script_filename,
|
||||
if(print_top_tb){
|
||||
dump_verilog_modelsim_top_script(modelsim_top_script_filename,
|
||||
my_strcat(chomped_circuit_name, modelsim_proc_script_name_postfix),
|
||||
verilog_dir_formatted,
|
||||
chomped_circuit_name, modelsim_project_name,
|
||||
simulation_time_period, modelsim_simulation_time_unit,
|
||||
spice);
|
||||
|
||||
}
|
||||
if(print_top_auto_tb){
|
||||
dump_verilog_modelsim_top_auto_script(modelsim_top_auto_script_filename,
|
||||
my_strcat(chomped_circuit_name, my_strcat( auto_tb_postfix, modelsim_proc_script_name_postfix)),
|
||||
verilog_dir_formatted,
|
||||
chomped_circuit_name, modelsim_project_name,
|
||||
simulation_time_period, modelsim_simulation_time_unit,
|
||||
spice);
|
||||
}
|
||||
/* Free */
|
||||
my_free(modelsim_project_name);
|
||||
my_free(modelsim_proc_script_filename);
|
||||
|
|
|
@ -6,4 +6,6 @@ void dump_verilog_modelsim_autodeck(t_sram_orgz_info* cur_sram_orgz_info,
|
|||
char* chomped_circuit_name,
|
||||
char* simulator_ini_path,
|
||||
boolean include_timing,
|
||||
boolean init_sim);
|
||||
boolean init_sim,
|
||||
boolean print_top_tb,
|
||||
boolean print_top_auto_tb);
|
||||
|
|
Loading…
Reference in New Issue