Merge pull request #116 from LNIS-Projects/dev
Extended I/O Support for SoC I/O interface
This commit is contained in:
commit
55f7a2c187
|
@ -98,4 +98,12 @@ python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n4_frac_m
|
|||
echo -e "Testing K4N5 with pattern based local routing";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/k4_series/k4n5_pattern_local_routing --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing different tile organizations";
|
||||
echo -e "Testing tiles with pins only on top and left sides";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/top_left_custom_pins --debug --show_thread_logs
|
||||
echo -e "Testing tiles with pins only on top and right sides";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/top_right_custom_pins --debug --show_thread_logs
|
||||
echo -e "Testing tiles with pins only on bottom and right sides";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/bottom_right_custom_pins --debug --show_thread_logs
|
||||
|
||||
end_section "OpenFPGA.TaskTun"
|
||||
|
|
|
@ -46,6 +46,9 @@ python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/io/reduced_io --debu
|
|||
echo -e "Testing Verilog generation with embedded I/Os for an FPGA ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/io/embedded_io --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with SoC I/Os for an FPGA ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/io/soc_io --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with adder chain across an FPGA";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/fabric_chain/adder_chain --debug --show_thread_logs
|
||||
|
||||
|
|
|
@ -571,31 +571,41 @@ static
|
|||
size_t check_io_circuit_model(const CircuitLibrary& circuit_lib) {
|
||||
size_t num_err = 0;
|
||||
|
||||
/* Embedded I/O interface may not have inout port
|
||||
* iopad_port_types_required.push_back(CIRCUIT_MODEL_PORT_INOUT);
|
||||
* Some I/Os may not have SRAM port, such as AIB interface
|
||||
* iopad_port_types_required.push_back(CIRCUIT_MODEL_PORT_SRAM);
|
||||
*/
|
||||
std::vector<enum e_circuit_model_port_type> iopad_port_types_required;
|
||||
iopad_port_types_required.push_back(CIRCUIT_MODEL_PORT_INOUT);
|
||||
num_err += check_circuit_model_port_required(circuit_lib, CIRCUIT_MODEL_IOPAD, iopad_port_types_required);
|
||||
|
||||
/* Each I/O cell must have
|
||||
* - One of the following ports
|
||||
* - At least 1 ASIC-to-FPGA (A2F) port that is defined as global I/O
|
||||
* - At least 1 FPGA-to-ASIC (F2A) port that is defined as global I/O!
|
||||
* - At least 1 ASIC-to-FPGA (A2F) port that is defined as global data I/O
|
||||
* - At least 1 FPGA-to-ASIC (F2A) port that is defined as global data I/O!
|
||||
* - At least 1 regular port that is non-global which is connected to global routing architecture
|
||||
*/
|
||||
for (const auto& io_model : circuit_lib.models_by_type(CIRCUIT_MODEL_IOPAD)) {
|
||||
bool has_global_io = false;
|
||||
bool has_data_io = false;
|
||||
bool has_data_input_only_io = false;
|
||||
bool has_data_output_only_io = false;
|
||||
bool has_internal_connection = false;
|
||||
|
||||
for (const auto& port : circuit_lib.model_ports(io_model)) {
|
||||
if ( (true == circuit_lib.port_is_io(port)
|
||||
&& (true == circuit_lib.port_is_global(port)))) {
|
||||
has_global_io = true;
|
||||
if ( (true == circuit_lib.port_is_io(port))
|
||||
&& (true == circuit_lib.port_is_data_io(port))
|
||||
&& (CIRCUIT_MODEL_PORT_INOUT == circuit_lib.port_type(port))
|
||||
&& (true == circuit_lib.port_is_global(port))) {
|
||||
has_data_io = true;
|
||||
continue; /* Go to next */
|
||||
}
|
||||
if ( (true == circuit_lib.port_is_io(port))
|
||||
&& (true == circuit_lib.port_is_data_io(port))
|
||||
&& (CIRCUIT_MODEL_PORT_INPUT == circuit_lib.port_type(port))
|
||||
&& (true == circuit_lib.port_is_global(port))) {
|
||||
has_data_input_only_io = true;
|
||||
continue; /* Go to next */
|
||||
}
|
||||
if ( (true == circuit_lib.port_is_io(port))
|
||||
&& (true == circuit_lib.port_is_data_io(port))
|
||||
&& (CIRCUIT_MODEL_PORT_OUTPUT == circuit_lib.port_type(port))
|
||||
&& (true == circuit_lib.port_is_global(port))) {
|
||||
has_data_output_only_io = true;
|
||||
continue; /* Go to next */
|
||||
}
|
||||
|
||||
if ( (false == circuit_lib.port_is_io(port)
|
||||
&& (false == circuit_lib.port_is_global(port)))
|
||||
&& (CIRCUIT_MODEL_PORT_SRAM != circuit_lib.port_type(port))) {
|
||||
|
@ -604,9 +614,14 @@ size_t check_io_circuit_model(const CircuitLibrary& circuit_lib) {
|
|||
}
|
||||
}
|
||||
|
||||
if (false == has_global_io) {
|
||||
/* Error out when
|
||||
* - there is no data io, data input-only io and data output-only io
|
||||
*/
|
||||
if ( (false == has_data_io)
|
||||
&& (false == has_data_input_only_io)
|
||||
&& (false == has_data_output_only_io)) {
|
||||
VTR_LOGF_ERROR(__FILE__, __LINE__,
|
||||
"I/O circuit model '%s' does not have any I/O port defined!\n",
|
||||
"I/O circuit model '%s' does not have any data I/O port defined!\n",
|
||||
circuit_lib.model_name(io_model).c_str());
|
||||
num_err++;
|
||||
}
|
||||
|
|
|
@ -907,6 +907,13 @@ bool CircuitLibrary::port_is_io(const CircuitPortId& circuit_port_id) const {
|
|||
return port_is_io_[circuit_port_id];
|
||||
}
|
||||
|
||||
/* Return a flag if the port is used in mode-selection purpuse of a circuit model */
|
||||
bool CircuitLibrary::port_is_data_io(const CircuitPortId& circuit_port_id) const {
|
||||
/* validate the circuit_port_id */
|
||||
VTR_ASSERT(valid_circuit_port_id(circuit_port_id));
|
||||
return port_is_data_io_[circuit_port_id];
|
||||
}
|
||||
|
||||
/* Return a flag if the port is used in mode-selection purpuse of a circuit model */
|
||||
bool CircuitLibrary::port_is_mode_select(const CircuitPortId& circuit_port_id) const {
|
||||
/* validate the circuit_port_id */
|
||||
|
@ -1370,6 +1377,7 @@ CircuitPortId CircuitLibrary::add_model_port(const CircuitModelId& model_id,
|
|||
port_inv_prefix_.emplace_back();
|
||||
port_default_values_.push_back(-1);
|
||||
port_is_io_.push_back(false);
|
||||
port_is_data_io_.push_back(false);
|
||||
port_is_mode_select_.push_back(false);
|
||||
port_is_global_.push_back(false);
|
||||
port_is_reset_.push_back(false);
|
||||
|
@ -1449,6 +1457,15 @@ void CircuitLibrary::set_port_is_io(const CircuitPortId& circuit_port_id,
|
|||
return;
|
||||
}
|
||||
|
||||
/* Set the is_mode_select for a port of a circuit model */
|
||||
void CircuitLibrary::set_port_is_data_io(const CircuitPortId& circuit_port_id,
|
||||
const bool& is_data_io) {
|
||||
/* validate the circuit_port_id */
|
||||
VTR_ASSERT(valid_circuit_port_id(circuit_port_id));
|
||||
port_is_data_io_[circuit_port_id] = is_data_io;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Set the is_mode_select for a port of a circuit model */
|
||||
void CircuitLibrary::set_port_is_mode_select(const CircuitPortId& circuit_port_id,
|
||||
const bool& is_mode_select) {
|
||||
|
|
|
@ -79,27 +79,29 @@
|
|||
* 2. pass_gate_logic_model_id_: specify the id of circuit model for the pass gate logic
|
||||
*
|
||||
* ------ Port information ------
|
||||
* 1. port_ids_: unique id of ports belonging to a circuit model
|
||||
* 1. port_model_ids_: unique id of the parent circuit model for the port
|
||||
* 2. port_types_: types of ports belonging to a circuit model
|
||||
* 3. port_sizes_: width of ports belonging to a circuit model
|
||||
* 4. port_prefix_: prefix of a port when instance of a circuit model
|
||||
* 5. port_lib_names_: port name in the standard cell library, only used when explicit_port_mapping is enabled
|
||||
* 6. port_inv_prefix_: the prefix to be added for the inverted port. This is mainly used by SRAM ports, which have an coupled inverterd port
|
||||
* 7. port_is_mode_select: specify if this port is used to select operating modes of the circuit model
|
||||
* 8. port_is_global: specify if this port is a global signal shared by other circuit model
|
||||
* 9. port_is_reset: specify if this port is a reset signal which needs special pulse widths in testbenches
|
||||
* 10. port_is_set: specify if this port is a set signal which needs special pulse widths in testbenches
|
||||
* 11. port_is_config_enable: specify if this port is a config_enable signal which needs special pulse widths in testbenches
|
||||
* 12. port_is_prog: specify if this port is for FPGA programming use which needs special pulse widths in testbenches
|
||||
* 13. port_tri_state_model_name: the name of circuit model linked to tri-state the port
|
||||
* 14. port_tri_state_model_ids_: the Id of circuit model linked to tri-state the port
|
||||
* 15. port_inv_model_names_: the name of inverter circuit model linked to the port
|
||||
* 16. port_inv_model_ids_: the Id of inverter circuit model linked to the port
|
||||
* 17. port_tri_state_map_: only applicable to inputs of LUTs, the tri-state map applied to each pin of this port
|
||||
* 18. port_lut_frac_level_: only applicable to outputs of LUTs, indicate which level of outputs inside LUT multiplexing structure will be used
|
||||
* 19. port_lut_output_mask_: only applicable to outputs of LUTs, indicate which output at an internal level of LUT multiplexing structure will be used
|
||||
* 20. port_sram_orgz_: only applicable to SRAM ports, indicate how the SRAMs will be organized, either memory decoders or scan-chains
|
||||
* - port_ids_: unique id of ports belonging to a circuit model
|
||||
* - port_model_ids_: unique id of the parent circuit model for the port
|
||||
* - port_types_: types of ports belonging to a circuit model
|
||||
* - port_sizes_: width of ports belonging to a circuit model
|
||||
* - port_prefix_: prefix of a port when instance of a circuit model
|
||||
* - port_lib_names_: port name in the standard cell library, only used when explicit_port_mapping is enabled
|
||||
* - port_inv_prefix_: the prefix to be added for the inverted port. This is mainly used by SRAM ports, which have an coupled inverterd port
|
||||
* - port_is_mode_select: specify if this port is used to select operating modes of the circuit model
|
||||
* - port_is_io: specify if this port is an io port
|
||||
* - port_is_data_io: specify if this port is an io port that can be mapped to a signal from netlist
|
||||
* - port_is_global: specify if this port is a global signal shared by other circuit model
|
||||
* - port_is_reset: specify if this port is a reset signal which needs special pulse widths in testbenches
|
||||
* - port_is_set: specify if this port is a set signal which needs special pulse widths in testbenches
|
||||
* - port_is_config_enable: specify if this port is a config_enable signal which needs special pulse widths in testbenches
|
||||
* - port_is_prog: specify if this port is for FPGA programming use which needs special pulse widths in testbenches
|
||||
* - port_tri_state_model_name: the name of circuit model linked to tri-state the port
|
||||
* - port_tri_state_model_ids_: the Id of circuit model linked to tri-state the port
|
||||
* - port_inv_model_names_: the name of inverter circuit model linked to the port
|
||||
* - port_inv_model_ids_: the Id of inverter circuit model linked to the port
|
||||
* - port_tri_state_map_: only applicable to inputs of LUTs, the tri-state map applied to each pin of this port
|
||||
* - port_lut_frac_level_: only applicable to outputs of LUTs, indicate which level of outputs inside LUT multiplexing structure will be used
|
||||
* - port_lut_output_mask_: only applicable to outputs of LUTs, indicate which output at an internal level of LUT multiplexing structure will be used
|
||||
* - port_sram_orgz_: only applicable to SRAM ports, indicate how the SRAMs will be organized, either memory decoders or scan-chains
|
||||
*
|
||||
* ------ Delay information ------
|
||||
* 1. delay_types_: type of pin-to-pin delay, either rising_edge of falling_edge
|
||||
|
@ -279,6 +281,7 @@ class CircuitLibrary {
|
|||
std::string port_inv_prefix(const CircuitPortId& circuit_port_id) const;
|
||||
size_t port_default_value(const CircuitPortId& circuit_port_id) const;
|
||||
bool port_is_io(const CircuitPortId& circuit_port_id) const;
|
||||
bool port_is_data_io(const CircuitPortId& circuit_port_id) const;
|
||||
bool port_is_mode_select(const CircuitPortId& circuit_port_id) const;
|
||||
bool port_is_global(const CircuitPortId& circuit_port_id) const;
|
||||
bool port_is_reset(const CircuitPortId& circuit_port_id) const;
|
||||
|
@ -354,6 +357,8 @@ class CircuitLibrary {
|
|||
const size_t& default_val);
|
||||
void set_port_is_io(const CircuitPortId& circuit_port_id,
|
||||
const bool& is_io);
|
||||
void set_port_is_data_io(const CircuitPortId& circuit_port_id,
|
||||
const bool& is_data_io);
|
||||
void set_port_is_mode_select(const CircuitPortId& circuit_port_id,
|
||||
const bool& is_mode_select);
|
||||
void set_port_is_global(const CircuitPortId& circuit_port_id,
|
||||
|
@ -545,6 +550,7 @@ class CircuitLibrary {
|
|||
vtr::vector<CircuitPortId, std::string> port_inv_prefix_;
|
||||
vtr::vector<CircuitPortId, size_t> port_default_values_;
|
||||
vtr::vector<CircuitPortId, bool> port_is_io_;
|
||||
vtr::vector<CircuitPortId, bool> port_is_data_io_;
|
||||
vtr::vector<CircuitPortId, bool> port_is_mode_select_;
|
||||
vtr::vector<CircuitPortId, bool> port_is_global_;
|
||||
vtr::vector<CircuitPortId, bool> port_is_reset_;
|
||||
|
|
|
@ -418,6 +418,13 @@ void read_xml_circuit_port(pugi::xml_node& xml_port,
|
|||
*/
|
||||
circuit_lib.set_port_is_io(port, get_attribute(xml_port, "is_io", loc_data, pugiutil::ReqOpt::OPTIONAL).as_bool(false));
|
||||
|
||||
/* Identify if the port is a data io, ONLY applicable to I/O port
|
||||
* By default, it will NOT be a data io port
|
||||
*/
|
||||
if (true == circuit_lib.port_is_io(port)) {
|
||||
circuit_lib.set_port_is_data_io(port, get_attribute(xml_port, "is_data_io", loc_data, pugiutil::ReqOpt::OPTIONAL).as_bool(false));
|
||||
}
|
||||
|
||||
/* Identify if the port is for mode selection, this is only applicable to SRAM ports.
|
||||
* By default, it will NOT be a mode selection port
|
||||
*/
|
||||
|
|
|
@ -186,6 +186,15 @@ void write_xml_circuit_port(std::fstream& fp,
|
|||
}
|
||||
}
|
||||
|
||||
/* I/O port attributes */
|
||||
if (true == circuit_lib.port_is_io(port)) {
|
||||
write_xml_attribute(fp, "is_io", "true");
|
||||
}
|
||||
|
||||
if (true == circuit_lib.port_is_data_io(port)) {
|
||||
write_xml_attribute(fp, "is_data_io", "true");
|
||||
}
|
||||
|
||||
/* Global, reset, set port attributes */
|
||||
if (true == circuit_lib.port_is_global(port)) {
|
||||
write_xml_attribute(fp, "is_global", "true");
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include "openfpga_reserved_words.h"
|
||||
#include "openfpga_naming.h"
|
||||
|
||||
#include "module_manager_utils.h"
|
||||
#include "openfpga_device_grid_utils.h"
|
||||
#include "build_fabric_io_location_map.h"
|
||||
|
||||
|
@ -74,7 +75,15 @@ IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
|||
* Note: if you change the GPIO function, you should update here as well!
|
||||
*/
|
||||
for (int z = 0; z < grids[io_coordinate.x()][io_coordinate.y()].type->capacity; ++z) {
|
||||
for (const BasicPort& gpio_port : module_manager.module_ports_by_type(grid_module, ModuleManager::MODULE_GPIO_PORT)) {
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(grid_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(grid_module, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const BasicPort& gpio_port = module_manager.module_port(grid_module, gpio_port_id);
|
||||
|
||||
auto curr_io_index = io_counter.find(gpio_port.get_name());
|
||||
/* Index always start from zero */
|
||||
if (curr_io_index == io_counter.end()) {
|
||||
|
@ -88,15 +97,24 @@ IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check all the GPIO ports in the top-level module has been mapped */
|
||||
std::string top_module_name = generate_fpga_top_module_name();
|
||||
ModuleId top_module = module_manager.find_module(top_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(top_module));
|
||||
|
||||
for (const BasicPort& gpio_port : module_manager.module_ports_by_type(top_module, ModuleManager::MODULE_GPIO_PORT)) {
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(top_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(top_module, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const BasicPort& gpio_port = module_manager.module_port(top_module, gpio_port_id);
|
||||
VTR_ASSERT(io_counter[gpio_port.get_name()] == gpio_port.get_width());
|
||||
}
|
||||
}
|
||||
|
||||
return io_location_map;
|
||||
}
|
||||
|
|
|
@ -159,6 +159,11 @@ void add_primitive_module_fpga_global_io_port(ModuleManager& module_manager,
|
|||
const CircuitPortId& circuit_port) {
|
||||
BasicPort module_port(generate_fpga_global_io_port_name(std::string(GIO_INOUT_PREFIX), circuit_lib, primitive_model, circuit_port), circuit_lib.port_size(circuit_port));
|
||||
ModulePortId primitive_io_port_id = module_manager.add_port(primitive_module, module_port, module_io_port_type);
|
||||
/* Set if the port is mappable or not */
|
||||
if (true == circuit_lib.port_is_data_io(circuit_port)) {
|
||||
module_manager.set_port_is_mappable_io(primitive_module, primitive_io_port_id, true);
|
||||
}
|
||||
|
||||
ModulePortId logic_io_port_id = module_manager.find_module_port(logic_module, circuit_lib.port_prefix(circuit_port));
|
||||
BasicPort logic_io_port = module_manager.module_port(logic_module, logic_io_port_id);
|
||||
VTR_ASSERT(logic_io_port.get_width() == module_port.get_width());
|
||||
|
|
|
@ -286,6 +286,12 @@ size_t ModuleManager::instance_id(const ModuleId& parent_module, const ModuleId&
|
|||
return size_t(-1);
|
||||
}
|
||||
|
||||
ModuleManager::e_module_port_type ModuleManager::port_type(const ModuleId& module, const ModulePortId& port) const {
|
||||
/* validate both module id and port id*/
|
||||
VTR_ASSERT(valid_module_port_id(module, port));
|
||||
return port_types_[module][port];
|
||||
}
|
||||
|
||||
/* Find if a port is a wire connection */
|
||||
bool ModuleManager::port_is_wire(const ModuleId& module, const ModulePortId& port) const {
|
||||
/* validate both module id and port id*/
|
||||
|
@ -293,6 +299,13 @@ bool ModuleManager::port_is_wire(const ModuleId& module, const ModulePortId& por
|
|||
return port_is_wire_[module][port];
|
||||
}
|
||||
|
||||
/* Find if a port is a mappable i/o */
|
||||
bool ModuleManager::port_is_mappable_io(const ModuleId& module, const ModulePortId& port) const {
|
||||
/* validate both module id and port id*/
|
||||
VTR_ASSERT(valid_module_port_id(module, port));
|
||||
return port_is_mappable_io_[module][port];
|
||||
}
|
||||
|
||||
/* Find if a port is register */
|
||||
bool ModuleManager::port_is_register(const ModuleId& module, const ModulePortId& port) const {
|
||||
/* validate both module id and port id*/
|
||||
|
@ -529,6 +542,7 @@ ModuleId ModuleManager::add_module(const std::string& name) {
|
|||
ports_.emplace_back();
|
||||
port_types_.emplace_back();
|
||||
port_is_wire_.emplace_back();
|
||||
port_is_mappable_io_.emplace_back();
|
||||
port_is_register_.emplace_back();
|
||||
port_preproc_flags_.emplace_back();
|
||||
|
||||
|
@ -573,6 +587,7 @@ ModulePortId ModuleManager::add_port(const ModuleId& module,
|
|||
ports_[module].push_back(port_info);
|
||||
port_types_[module].push_back(port_type);
|
||||
port_is_wire_[module].push_back(false);
|
||||
port_is_mappable_io_[module].push_back(false);
|
||||
port_is_register_[module].push_back(false);
|
||||
port_preproc_flags_[module].emplace_back(); /* Create an empty string for the pre-processing flags */
|
||||
|
||||
|
@ -617,6 +632,13 @@ void ModuleManager::set_port_is_wire(const ModuleId& module, const std::string&
|
|||
port_is_wire_[module][port] = is_wire;
|
||||
}
|
||||
|
||||
/* Set a port to be a mappable I/O */
|
||||
void ModuleManager::set_port_is_mappable_io(const ModuleId& module, const ModulePortId& port_id, const bool& is_mappable_io) {
|
||||
/* Must find something, otherwise drop an error */
|
||||
VTR_ASSERT(valid_module_port_id(module, port_id));
|
||||
port_is_mappable_io_[module][port_id] = is_mappable_io;
|
||||
}
|
||||
|
||||
/* Set a port to be a register */
|
||||
void ModuleManager::set_port_is_register(const ModuleId& module, const std::string& port_name, const bool& is_register) {
|
||||
/* Find the port */
|
||||
|
|
|
@ -184,8 +184,12 @@ class ModuleManager {
|
|||
/* Find the instance id of a given instance name */
|
||||
size_t instance_id(const ModuleId& parent_module, const ModuleId& child_module,
|
||||
const std::string& instance_name) const;
|
||||
/* Find the type of a port */
|
||||
ModuleManager::e_module_port_type port_type(const ModuleId& module, const ModulePortId& port) const;
|
||||
/* Find if a port is a wire connection */
|
||||
bool port_is_wire(const ModuleId& module, const ModulePortId& port) const;
|
||||
/* Find if a port is mappable to an I/O from users' implementations */
|
||||
bool port_is_mappable_io(const ModuleId& module, const ModulePortId& port) const;
|
||||
/* Find if a port is register */
|
||||
bool port_is_register(const ModuleId& module, const ModulePortId& port) const;
|
||||
/* Return the pre-processing flag of a port */
|
||||
|
@ -238,6 +242,8 @@ class ModuleManager {
|
|||
void set_module_usage(const ModuleId& module, const e_module_usage_type& usage);
|
||||
/* Set a port to be a wire */
|
||||
void set_port_is_wire(const ModuleId& module, const std::string& port_name, const bool& is_wire);
|
||||
/* Set a port to be mappable to an I/O from users' implemenations */
|
||||
void set_port_is_mappable_io(const ModuleId& module, const ModulePortId& port_id, const bool& is_mappable_io);
|
||||
/* Set a port to be a register */
|
||||
void set_port_is_register(const ModuleId& module, const std::string& port_name, const bool& is_register);
|
||||
/* Set the preprocessing flag for a port */
|
||||
|
@ -356,6 +362,7 @@ class ModuleManager {
|
|||
vtr::vector<ModuleId, vtr::vector<ModulePortId, ModulePortId>> port_ids_; /* List of ports for each Module */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, BasicPort>> ports_; /* List of ports for each Module */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, enum e_module_port_type>> port_types_; /* Type of ports */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, bool>> port_is_mappable_io_; /* If the port is mappable to an I/O for user's implementations */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, bool>> port_is_wire_; /* If the port is a wire, use for Verilog port definition. If enabled: <port_type> reg <port_name> */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, bool>> port_is_register_; /* If the port is a register, use for Verilog port definition. If enabled: <port_type> reg <port_name> */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, std::string>> port_preproc_flags_; /* If a port is available only when a pre-processing flag is enabled. This is to record the pre-processing flags */
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
*******************************************************************/
|
||||
#include <algorithm>
|
||||
#include <iomanip>
|
||||
#include <map>
|
||||
|
||||
/* Headers from vtrutil library */
|
||||
#include "vtr_assert.h"
|
||||
|
@ -17,6 +18,8 @@
|
|||
|
||||
#include "verilog_port_types.h"
|
||||
|
||||
#include "module_manager_utils.h"
|
||||
|
||||
#include "verilog_constants.h"
|
||||
#include "verilog_writer_utils.h"
|
||||
#include "verilog_testbench_utils.h"
|
||||
|
@ -147,12 +150,29 @@ void print_verilog_testbench_connect_fpga_ios(std::fstream& fp,
|
|||
/* Validate the file stream */
|
||||
valid_file_stream(fp);
|
||||
|
||||
/* In this function, we support only 1 type of I/Os */
|
||||
std::vector<BasicPort> module_io_ports = module_manager.module_ports_by_type(top_module, ModuleManager::MODULE_GPIO_PORT);
|
||||
/* Only mappable i/o ports can be considered */
|
||||
std::vector<ModulePortId> module_io_ports;
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(top_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(top_module, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
module_io_ports.push_back(gpio_port_id);
|
||||
}
|
||||
}
|
||||
|
||||
/* Keep tracking which I/Os have been used */
|
||||
for (const BasicPort& module_io_port : module_io_ports) {
|
||||
std::vector<bool> io_used(module_io_port.get_width(), false);
|
||||
std::map<ModulePortId, std::vector<bool>> io_used;
|
||||
for (const ModulePortId& module_io_port_id : module_io_ports) {
|
||||
const BasicPort& module_io_port = module_manager.module_port(top_module, module_io_port_id);
|
||||
io_used[module_io_port_id] = std::vector<bool>(module_io_port.get_width(), false);
|
||||
}
|
||||
|
||||
/* Type mapping between VPR block and Module port */
|
||||
std::map<AtomBlockType, ModuleManager::e_module_port_type> atom_block_type_to_module_port_type;
|
||||
atom_block_type_to_module_port_type[AtomBlockType::INPAD] = ModuleManager::MODULE_GPIN_PORT;
|
||||
atom_block_type_to_module_port_type[AtomBlockType::OUTPAD] = ModuleManager::MODULE_GPOUT_PORT;
|
||||
|
||||
/* See if this I/O should be wired to a benchmark input/output */
|
||||
/* Add signals from blif benchmark and short-wire them to FPGA I/O PADs
|
||||
|
@ -167,19 +187,46 @@ void print_verilog_testbench_connect_fpga_ios(std::fstream& fp,
|
|||
continue;
|
||||
}
|
||||
|
||||
/* If there is a GPIO port, use it directly
|
||||
* Otherwise, should find a GPIN for INPAD
|
||||
* or should find a GPOUT for OUTPAD
|
||||
*/
|
||||
std::pair<ModulePortId, size_t> mapped_module_io_info = std::make_pair(ModulePortId::INVALID(), -1);
|
||||
for (const ModulePortId& module_io_port_id : module_io_ports) {
|
||||
const BasicPort& module_io_port = module_manager.module_port(top_module, module_io_port_id);
|
||||
|
||||
/* Find the index of the mapped GPIO in top-level FPGA fabric */
|
||||
size_t io_index = io_location_map.io_index(place_ctx.block_locs[atom_ctx.lookup.atom_clb(atom_blk)].loc.x,
|
||||
size_t temp_io_index = io_location_map.io_index(place_ctx.block_locs[atom_ctx.lookup.atom_clb(atom_blk)].loc.x,
|
||||
place_ctx.block_locs[atom_ctx.lookup.atom_clb(atom_blk)].loc.y,
|
||||
place_ctx.block_locs[atom_ctx.lookup.atom_clb(atom_blk)].loc.z,
|
||||
module_io_port.get_name());
|
||||
|
||||
/* Bypass invalid index (not mapped to this GPIO port) */
|
||||
if (size_t(-1) == io_index) {
|
||||
if (size_t(-1) == temp_io_index) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* If the port is an GPIO port, just use it */
|
||||
if (ModuleManager::MODULE_GPIO_PORT == module_manager.port_type(top_module, module_io_port_id)) {
|
||||
mapped_module_io_info = std::make_pair(module_io_port_id, temp_io_index);
|
||||
break;
|
||||
}
|
||||
|
||||
/* If this is an INPAD, we can use an GPIN port (if available) */
|
||||
if (atom_block_type_to_module_port_type[atom_ctx.nlist.block_type(atom_blk)] == module_manager.port_type(top_module, module_io_port_id)) {
|
||||
mapped_module_io_info = std::make_pair(module_io_port_id, temp_io_index);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* We must find a valid one */
|
||||
VTR_ASSERT(true == module_manager.valid_module_port_id(top_module, mapped_module_io_info.first));
|
||||
VTR_ASSERT(size_t(-1) != mapped_module_io_info.second);
|
||||
|
||||
/* Ensure that IO index is in range */
|
||||
BasicPort module_mapped_io_port = module_io_port;
|
||||
BasicPort module_mapped_io_port = module_manager.module_port(top_module, mapped_module_io_info.first);
|
||||
size_t io_index = mapped_module_io_info.second;
|
||||
|
||||
/* Set the port pin index */
|
||||
VTR_ASSERT(io_index < module_mapped_io_port.get_width());
|
||||
module_mapped_io_port.set_width(io_index, io_index);
|
||||
|
@ -209,22 +256,23 @@ void print_verilog_testbench_connect_fpga_ios(std::fstream& fp,
|
|||
}
|
||||
|
||||
/* Mark this I/O has been used/wired */
|
||||
io_used[io_index] = true;
|
||||
}
|
||||
io_used[mapped_module_io_info.first][io_index] = true;
|
||||
|
||||
/* Add an empty line as a splitter */
|
||||
fp << std::endl;
|
||||
}
|
||||
|
||||
/* Wire the unused iopads to a constant */
|
||||
print_verilog_comment(fp, std::string("----- Wire unused FPGA I/Os to constants -----"));
|
||||
for (size_t io_index = 0; io_index < io_used.size(); ++io_index) {
|
||||
for (const ModulePortId& module_io_port_id : module_io_ports) {
|
||||
for (size_t io_index = 0; io_index < io_used[module_io_port_id].size(); ++io_index) {
|
||||
/* Bypass used iopads */
|
||||
if (true == io_used[io_index]) {
|
||||
if (true == io_used[module_io_port_id][io_index]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Wire to a contant */
|
||||
BasicPort module_unused_io_port = module_io_port;
|
||||
BasicPort module_unused_io_port = module_manager.module_port(top_module, module_io_port_id);
|
||||
/* Set the port pin index */
|
||||
module_unused_io_port.set_width(io_index, io_index);
|
||||
|
||||
|
|
|
@ -157,20 +157,29 @@ ModuleId add_circuit_model_to_module_manager(ModuleManager& module_manager,
|
|||
*/
|
||||
for (const auto& port : circuit_lib.model_global_ports(circuit_model, false)) {
|
||||
BasicPort port_info(circuit_lib.port_prefix(port), circuit_lib.port_size(port));
|
||||
ModulePortId module_port = ModulePortId::INVALID();
|
||||
|
||||
if ( (CIRCUIT_MODEL_PORT_INPUT == circuit_lib.port_type(port))
|
||||
&& (false == circuit_lib.port_is_io(port)) ) {
|
||||
module_manager.add_port(module, port_info, ModuleManager::MODULE_GLOBAL_PORT);
|
||||
module_port = module_manager.add_port(module, port_info, ModuleManager::MODULE_GLOBAL_PORT);
|
||||
} else if (CIRCUIT_MODEL_PORT_CLOCK == circuit_lib.port_type(port)) {
|
||||
module_manager.add_port(module, port_info, ModuleManager::MODULE_GLOBAL_PORT);
|
||||
module_port = module_manager.add_port(module, port_info, ModuleManager::MODULE_GLOBAL_PORT);
|
||||
} else if ( (CIRCUIT_MODEL_PORT_INPUT == circuit_lib.port_type(port))
|
||||
&& (true == circuit_lib.port_is_io(port)) ) {
|
||||
module_manager.add_port(module, port_info, ModuleManager::MODULE_GPIN_PORT);
|
||||
module_port = module_manager.add_port(module, port_info, ModuleManager::MODULE_GPIN_PORT);
|
||||
} else if (CIRCUIT_MODEL_PORT_OUTPUT == circuit_lib.port_type(port)) {
|
||||
VTR_ASSERT(true == circuit_lib.port_is_io(port));
|
||||
module_manager.add_port(module, port_info, ModuleManager::MODULE_GPOUT_PORT);
|
||||
module_port = module_manager.add_port(module, port_info, ModuleManager::MODULE_GPOUT_PORT);
|
||||
} else if ( (CIRCUIT_MODEL_PORT_INOUT == circuit_lib.port_type(port))
|
||||
&& (true == circuit_lib.port_is_io(port)) ) {
|
||||
module_manager.add_port(module, port_info, ModuleManager::MODULE_GPIO_PORT);
|
||||
module_port = module_manager.add_port(module, port_info, ModuleManager::MODULE_GPIO_PORT);
|
||||
}
|
||||
|
||||
/* Specify if the port can be mapped to an data signal */
|
||||
if (true == module_manager.valid_module_port_id(module, module_port)) {
|
||||
if (true == circuit_lib.port_is_data_io(port)) {
|
||||
module_manager.set_port_is_mappable_io(module, module_port, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1454,20 +1463,27 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
const ModuleId& module_id,
|
||||
const ModuleManager::e_module_port_type& module_port_type) {
|
||||
std::vector<BasicPort> gpio_ports_to_add;
|
||||
std::vector<bool> mappable_gpio_ports;
|
||||
|
||||
/* Iterate over the child modules */
|
||||
for (const ModuleId& child : module_manager.child_modules(module_id)) {
|
||||
/* Iterate over the child instances */
|
||||
for (size_t i = 0; i < module_manager.num_instance(module_id, child); ++i) {
|
||||
/* Find all the global ports, whose port type is special */
|
||||
for (BasicPort gpio_port : module_manager.module_ports_by_type(child, module_port_type)) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(child, module_port_type)) {
|
||||
const BasicPort& gpio_port = module_manager.module_port(child, gpio_port_id);
|
||||
/* If this port is not mergeable, we update the list */
|
||||
bool is_mergeable = false;
|
||||
for (BasicPort& gpio_port_to_add : gpio_ports_to_add) {
|
||||
for (size_t i_gpio_port_to_add = 0; i_gpio_port_to_add < gpio_ports_to_add.size(); ++i_gpio_port_to_add) {
|
||||
BasicPort& gpio_port_to_add = gpio_ports_to_add[i_gpio_port_to_add];
|
||||
if (false == gpio_port_to_add.mergeable(gpio_port)) {
|
||||
continue;
|
||||
}
|
||||
is_mergeable = true;
|
||||
/* Mappable I/O property must match! Mismatch rarely happened
|
||||
* but should error out avoid silent bugs!
|
||||
*/
|
||||
VTR_ASSERT(module_manager.port_is_mappable_io(child, gpio_port_id) == mappable_gpio_ports[i_gpio_port_to_add]);
|
||||
/* For mergeable ports, we combine the port
|
||||
* Note: do NOT use the merge() method!
|
||||
* the GPIO ports should be accumulated by the sizes of ports
|
||||
|
@ -1479,6 +1495,8 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
if (false == is_mergeable) {
|
||||
/* Reach here, this is an unique gpio port, update the list */
|
||||
gpio_ports_to_add.push_back(gpio_port);
|
||||
/* If the gpio port is a mappable I/O, we should herit from the child module */
|
||||
mappable_gpio_ports.push_back(module_manager.port_is_mappable_io(child, gpio_port_id));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1487,9 +1505,13 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
/* Record the port id for each type of GPIO port */
|
||||
std::vector<ModulePortId> gpio_port_ids;
|
||||
/* Add the gpio ports for the module */
|
||||
for (const BasicPort& gpio_port_to_add : gpio_ports_to_add) {
|
||||
for (size_t iport = 0; iport < gpio_ports_to_add.size(); ++iport) {
|
||||
const BasicPort& gpio_port_to_add = gpio_ports_to_add[iport];
|
||||
ModulePortId port_id = module_manager.add_port(module_id, gpio_port_to_add, module_port_type);
|
||||
gpio_port_ids.push_back(port_id);
|
||||
if (true == mappable_gpio_ports[iport]) {
|
||||
module_manager.set_port_is_mappable_io(module_id, port_id, true);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up a counter for each type of GPIO port */
|
||||
|
|
|
@ -32,6 +32,8 @@
|
|||
/* begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
constexpr std::array<ModuleManager::e_module_port_type, 3> MODULE_IO_PORT_TYPES = {ModuleManager::MODULE_GPIN_PORT, ModuleManager::MODULE_GPOUT_PORT, ModuleManager::MODULE_GPIO_PORT};
|
||||
|
||||
void reserve_module_manager_module_nets(ModuleManager& module_manager,
|
||||
const ModuleId& module);
|
||||
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAM" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMRN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMS" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -150,7 +150,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -152,7 +152,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -151,7 +151,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -151,7 +151,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFRN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -151,7 +151,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFS" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -151,7 +151,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFSN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCH" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -144,7 +144,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCH" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCH" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -163,7 +163,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SDFFSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHRN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHS" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHSN" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAM" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="SRAMSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -150,7 +150,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -152,7 +152,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCH" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHSR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -166,7 +166,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="LATCHR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -0,0 +1,250 @@
|
|||
<!-- Architecture annotation for OpenFPGA framework
|
||||
This annotation supports the k4_frac_cc_sky130nm.xml
|
||||
- General purpose logic block
|
||||
- K = 6, N = 10, I = 40
|
||||
- Single mode
|
||||
- Routing architecture
|
||||
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||
- Skywater 130nm PDK
|
||||
- circuit models are binded to the opensource skywater
|
||||
foundry middle-speed (ms) standard cell library
|
||||
-->
|
||||
<openfpga_architecture>
|
||||
<technology_library>
|
||||
<device_library>
|
||||
<device_model name="logic" type="transistor">
|
||||
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="0.9" pn_ratio="2"/>
|
||||
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
</device_model>
|
||||
<device_model name="io" type="transistor">
|
||||
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="2.5" pn_ratio="3"/>
|
||||
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
</device_model>
|
||||
</device_library>
|
||||
<variation_library>
|
||||
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_1" prefix="sky130_fd_sc_hd__inv_1" is_default="true">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Y" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_2" prefix="sky130_fd_sc_hd__buf_2" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_4" prefix="sky130_fd_sc_hd__buf_4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_2" prefix="sky130_fd_sc_hd__inv_2" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Y" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__or2_1" prefix="sky130_fd_sc_hd__or2_1" is_default="true">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="a" lib_name="A" size="1"/>
|
||||
<port type="input" prefix="b" lib_name="B" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<!-- Define a circuit model for the standard cell MUX2
|
||||
OpenFPGA requires the following truth table for the MUX2
|
||||
When the select signal sel is enabled, the first input, i.e., in0
|
||||
will be propagated to the output, i.e., out
|
||||
If your standard cell provider does not offer the exact truth table,
|
||||
you can simply swap the inputs as shown in the example below
|
||||
-->
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__mux2_1" prefix="sky130_fd_sc_hd__mux2_1">
|
||||
<design_technology type="cmos" topology="MUX2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in0" lib_name="A1" size="1"/>
|
||||
<port type="input" prefix="in1" lib_name="A0" size="1"/>
|
||||
<port type="input" prefix="sel" lib_name="S" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/>
|
||||
<!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="0" C="0" num_level="1"/>
|
||||
<!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_4"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="SDFFSRQ" prefix="SDFFSRQ" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="DI" lib_name="SI" size="1"/>
|
||||
<port type="input" prefix="Test_en" lib_name="SE" size="1" is_global="true" default_val="0"/>
|
||||
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" fracturable_lut="true"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
|
||||
<lut_input_inverter exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
|
||||
<lut_intermediate_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2" location_map="-1-"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="4" tri_state_map="---1" circuit_model_name="sky130_fd_sc_hd__or2_1"/>
|
||||
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
|
||||
<port type="sram" prefix="sram" size="16"/>
|
||||
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="DFF" prefix="DFF" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="QN" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="EMBEDDED_IO" prefix="EMBEDDED_IO" is_default="true" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="input" prefix="SOC_IN" lib_name="SOC_IN" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="output" prefix="SOC_OUT" lib_name="SOC_OUT" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="output" prefix="SOC_DIR" lib_name="SOC_DIR" size="1" is_global="true" is_io="true"/>
|
||||
<port type="output" prefix="inpad" lib_name="FPGA_IN" size="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="FPGA_OUT" size="1"/>
|
||||
<port type="sram" prefix="en" lib_name="FPGA_DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="DFF" num_regions="1"/>
|
||||
</configuration_protocol>
|
||||
<connection_block>
|
||||
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</connection_block>
|
||||
<switch_block>
|
||||
<switch name="L1_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
<switch name="L2_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
<switch name="L4_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</switch_block>
|
||||
<routing_segment>
|
||||
<segment name="L1" circuit_model_name="chan_segment"/>
|
||||
<segment name="L2" circuit_model_name="chan_segment"/>
|
||||
<segment name="L4" circuit_model_name="chan_segment"/>
|
||||
</routing_segment>
|
||||
<direct_connection>
|
||||
<direct name="shift_register" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
|
||||
<direct name="scan_chain" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
|
||||
</direct_connection>
|
||||
<pb_type_annotations>
|
||||
<!-- physical pb_type binding in complex block IO -->
|
||||
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
|
||||
<pb_type name="io[physical].iopad" circuit_model_name="EMBEDDED_IO" mode_bits="1"/>
|
||||
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
|
||||
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block CLB -->
|
||||
<!-- physical mode will be the default mode if not specified -->
|
||||
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="SDFFSRQ"/>
|
||||
<!-- Binding operating pb_type to physical pb_type -->
|
||||
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->
|
||||
<port name="in" physical_mode_port="in[0:2]"/>
|
||||
<port name="out" physical_mode_port="lut3_out[0:0]" physical_mode_pin_rotate_offset="1"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||
<!-- Binding operating pb_types in mode 'ble4' -->
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="0">
|
||||
<!-- Binding the lut4 to the first 4 inputs of fracturable lut4 -->
|
||||
<port name="in" physical_mode_port="in[0:3]"/>
|
||||
<port name="out" physical_mode_port="lut4_out"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
|
||||
<!-- Binding operating pb_types in mode 'shift_register' -->
|
||||
<pb_type name="clb.fle[shift_register].shift_reg.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
</pb_type_annotations>
|
||||
</openfpga_architecture>
|
|
@ -188,14 +188,14 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="inout" prefix="PAD" lib_name="A" size="1" is_global="true" is_io="true" />
|
||||
<port type="inout" prefix="PAD" lib_name="A" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPOUT" prefix="GPOUT" is_default="false" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="inout" prefix="PAD" lib_name="Y" size="1" is_global="true" is_io="true" />
|
||||
<port type="inout" prefix="PAD" lib_name="Y" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
|
|
|
@ -160,7 +160,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -179,7 +179,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -184,7 +184,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -184,7 +184,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -199,7 +199,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -170,7 +170,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -169,7 +169,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -170,7 +170,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -169,7 +169,7 @@
|
|||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
|
|
|
@ -38,3 +38,22 @@ module GPOUT (
|
|||
);
|
||||
assign Y = A;
|
||||
endmodule
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Function : A minimum embedded I/O
|
||||
// just an overlay to interface other components
|
||||
//-----------------------------------------------------
|
||||
module EMBEDDED_IO (
|
||||
input SOC_IN, // Input to drive the inpad signal
|
||||
output SOC_OUT, // Output the outpad signal
|
||||
output SOC_DIR, // Output the directionality
|
||||
output FPGA_IN, // Input data to FPGA
|
||||
input FPGA_OUT, // Output data from FPGA
|
||||
input FPGA_DIR // direction control
|
||||
);
|
||||
|
||||
assign FPGA_IN = SOC_IN;
|
||||
assign SOC_OUT = FPGA_OUT;
|
||||
assign SOC_DIR = FPGA_DIR;
|
||||
endmodule
|
||||
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzBr_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/or2/or2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = or2
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,35 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzTl_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/or2/or2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = or2
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,35 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzTr_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/or2/or2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = or2
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/fix_device_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N8_register_scan_chain_caravel_io_skywater130nm_fdhd_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=2x2
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N8_tileable_register_scan_chain_nonLR_caravel_io_skywater130nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -13,5 +13,9 @@ Please reveal the following architecture features in the names to help quickly s
|
|||
- multi\_io\_capacity: If I/O capacity is different on each side of FPGAs.
|
||||
- reduced\_io: If I/Os only appear a certain or multiple sides of FPGAs
|
||||
- <feature\_size>: The technology node which the delay numbers are extracted from.
|
||||
- TileOrgz<Type>: How tile is organized.
|
||||
* Top-left (Tl): the pins of a tile are placed on the top side and left side only
|
||||
* Top-right (Tr): the pins of a tile are placed on the top side and right side only
|
||||
* Bottom-right (Br): the pins of a tile are placed on the bottom side and right side only
|
||||
|
||||
Other features are used in naming should be listed here.
|
||||
|
|
|
@ -0,0 +1,298 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left"></loc>
|
||||
<loc side="top"></loc>
|
||||
<loc side="right">clb.I[5:9] clb.O[2:3]</loc>
|
||||
<loc side="bottom">clb.clk clb.I[0:4] clb.O[0:1]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,298 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="top">clb.clk clb.I[0:4] clb.O[0:1]</loc>
|
||||
<loc side="left">clb.I[5:9] clb.O[2:3]</loc>
|
||||
<loc side="right"></loc>
|
||||
<loc side="bottom"></loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,298 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left"></loc>
|
||||
<loc side="top">clb.clk clb.I[0:4] clb.O[0:1]</loc>
|
||||
<loc side="right">clb.I[5:9] clb.O[2:3]</loc>
|
||||
<loc side="bottom"></loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,665 @@
|
|||
<!--
|
||||
Low-cost homogeneous FPGA Architecture.
|
||||
|
||||
- Skywater 130 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 8, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
|
||||
with optionally registered outputs
|
||||
- Routing architecture:
|
||||
- 10% L = 1, fc_in = 0.15, Fc_out = 0.10
|
||||
- 10% L = 2, fc_in = 0.15, Fc_out = 0.10
|
||||
- 80% L = 4, fc_in = 0.15, Fc_out = 0.10
|
||||
- 100 routing tracks per channel
|
||||
|
||||
Authors: Xifan Tang
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
|
||||
<model name="frac_lut4">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut3_out"/>
|
||||
<port name="lut4_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="scff">
|
||||
<input_ports>
|
||||
<port name="D" clock="clk"/>
|
||||
<port name="DI" clock="clk"/>
|
||||
<port name="clk" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="clk"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- Top-side has 1 I/O per tile -->
|
||||
<tile name="io_top" capacity="1" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="bottom">io_top.outpad io_top.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<!-- Right-side has 1 I/O per tile -->
|
||||
<tile name="io_right" capacity="1" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io_right.outpad io_right.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<!-- Bottom-side has 6 I/O per tile -->
|
||||
<tile name="io_bottom" capacity="6" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="top">io_bottom.outpad io_bottom.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<!-- Left-side has 1 I/O per tile -->
|
||||
<tile name="io_left" capacity="1" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="right">io_left.outpad io_left.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<!-- CLB has most pins on the top and right sides -->
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.regin clb.scin clb.O[7:0] clb.I0 clb.I0i clb.I1 clb.I1i clb.I2 clb.I2i clb.I3 clb.I3i </loc>
|
||||
<loc side="right">clb.O[15:8] clb.I4 clb.I4i clb.I5 clb.I5i clb.I6 clb.I6i clb.I7 clb.I7i</loc>
|
||||
<loc side="bottom">clb.regout clb.scout </loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="12x12" width="14" height="14">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="L1_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<switch type="mux" name="L2_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<switch type="mux" name="L4_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L1" freq="0.10" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L1_mux"/>
|
||||
<sb type="pattern">1 1</sb>
|
||||
<cb type="pattern">1</cb>
|
||||
</segment>
|
||||
<segment name="L2" freq="0.10" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L2_mux"/>
|
||||
<sb type="pattern">1 1 1</sb>
|
||||
<cb type="pattern">1 1</cb>
|
||||
</segment>
|
||||
<segment name="L4" freq="0.80" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L4_mux"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
<direct name="scan_chain" from_pin="clb.scout" to_pin="clb.scin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Define input pads begin -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!-- -Due to the absence of local routing,
|
||||
the 4 inputs of fracturable LUT4 are no longer equivalent,
|
||||
because the 4th input can not be switched when the dual-LUT3 modes are used.
|
||||
So pin equivalence should be applied to the first 3 inputs only
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="8">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="lut3_out" num_pins="2"/>
|
||||
<output name="lut4_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
|
||||
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input -->
|
||||
<pb_type name="ff" blif_model=".subckt scff" num_pb="2">
|
||||
<input name="D" num_pins="1"/>
|
||||
<input name="DI" num_pins="1"/>
|
||||
<output name="Q" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_setup value="66e-12" port="ff.DI" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="fabric.scin" output="ff[0].DI"/>
|
||||
<direct name="direct3" input="ff[0].Q" output="ff[1].DI"/>
|
||||
<direct name="direct4" input="ff[1].Q" output="fabric.scout"/>
|
||||
<direct name="direct5" input="ff[1].Q" output="fabric.regout"/>
|
||||
<direct name="direct6" input="frac_logic.out[1:1]" output="ff[1:1].D"/>
|
||||
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="frac_logic.out[0:0] fabric.regin" output="ff[0:0].D">
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
|
||||
<delay_constant max="45e-12" in_port="fabric.regin" out_port="ff[0:0].D"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux3" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
|
||||
<direct name="direct4" input="fle.scin" output="fabric.scin"/>
|
||||
<direct name="direct5" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct7" input="fabric.regout" output="fle.regout"/>
|
||||
<direct name="direct8" input="fabric.scout" output="fle.scout"/>
|
||||
<direct name="direct9" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- Dual 3-LUT mode definition begin -->
|
||||
<mode name="n2_lut3">
|
||||
<pb_type name="lut3inter" num_pb="1">
|
||||
<input name="in" num_pins="3"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble3" num_pb="2">
|
||||
<input name="in" num_pins="3"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define the LUT -->
|
||||
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define the flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
|
||||
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
|
||||
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
|
||||
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
|
||||
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
|
||||
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Dual 3-LUT mode definition end -->
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 4-LUT mode definition end -->
|
||||
<!-- Define shift register begin -->
|
||||
<mode name="shift_register">
|
||||
<pb_type name="shift_reg" num_pb="1">
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
|
||||
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
|
||||
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
|
||||
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
|
||||
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define shift register end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use direct connections to reduce the area to the most
|
||||
The global local routing is going to compensate the loss in routability
|
||||
-->
|
||||
<direct name="direct_fle0" input="clb.I0" output="fle[0:0].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle0i" input="clb.I0i" output="fle[0:0].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle1" input="clb.I1" output="fle[1:1].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle1i" input="clb.I1i" output="fle[1:1].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle2" input="clb.I2" output="fle[2:2].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle2i" input="clb.I2i" output="fle[2:2].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle3" input="clb.I3" output="fle[3:3].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle3i" input="clb.I3i" output="fle[3:3].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4" input="clb.I4" output="fle[4:4].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4i" input="clb.I4i" output="fle[4:4].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5" input="clb.I5" output="fle[5:5].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5i" input="clb.I5i" output="fle[5:5].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6" input="clb.I6" output="fle[6:6].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6i" input="clb.I6i" output="fle[6:6].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7" input="clb.I7" output="fle[7:7].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7i" input="clb.I7i" output="fle[7:7].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<complete name="clks" input="clb.clk" output="fle[7:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out[0:1]" output="clb.O[7:0]"/>
|
||||
<direct name="clbouts2" input="fle[7:4].out[0:1]" output="clb.O[15:8]"/>
|
||||
<!-- Shift register chain links -->
|
||||
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
<!--pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/-->
|
||||
</direct>
|
||||
<direct name="shift_register_out" input="fle[7:7].regout" output="clb.regout">
|
||||
<!--pack_pattern name="chain" in_port="fle[7:7].regout" out_port="clb.regout"/-->
|
||||
</direct>
|
||||
<direct name="shift_register_link" input="fle[6:0].regout" output="fle[7:1].regin">
|
||||
<!--pack_pattern name="chain" in_port="fle[6:0].regout" out_port="fle[7:1].regin"/-->
|
||||
</direct>
|
||||
<!-- Scan chain links -->
|
||||
<direct name="scan_chain_in" input="clb.scin" output="fle[0:0].scin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.scin" out_port="fle[0:0].scin"/>
|
||||
</direct>
|
||||
<direct name="scan_chain_out" input="fle[7:7].scout" output="clb.scout">
|
||||
</direct>
|
||||
<direct name="scan_chain_link" input="fle[6:0].scout" output="fle[7:1].scin">
|
||||
</direct>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
Loading…
Reference in New Issue