Merge branch 'multimode_clb' of https://github.com/LNIS-Projects/OpenFPGA into multimode_clb

This commit is contained in:
AurelienUoU 2019-05-28 15:03:40 -06:00
commit 4ef25a7550
8 changed files with 304 additions and 85 deletions

View File

@ -1,3 +1,6 @@
#ifndef FPGA_X2P_PBTYPES_UTILS_H
#define FPGA_X2P_PBTYPES_UTILS_H
void check_pb_graph_edge(t_pb_graph_edge pb_graph_edge); void check_pb_graph_edge(t_pb_graph_edge pb_graph_edge);
void check_pb_graph_pin_edges(t_pb_graph_pin pb_graph_pin); void check_pb_graph_pin_edges(t_pb_graph_pin pb_graph_pin);
@ -236,3 +239,5 @@ boolean is_pb_used_for_wiring(t_pb_graph_node* cur_pb_graph_node,
t_rr_node* pb_rr_graph); t_rr_node* pb_rr_graph);
char* get_pb_graph_full_name_in_hierarchy(t_pb_graph_node* cur_pb_graph_node); char* get_pb_graph_full_name_in_hierarchy(t_pb_graph_node* cur_pb_graph_node);
#endif

View File

@ -32,6 +32,7 @@
#include "fpga_x2p_globals.h" #include "fpga_x2p_globals.h"
#include "fpga_x2p_utils.h" #include "fpga_x2p_utils.h"
#include "fpga_x2p_backannotate_utils.h" #include "fpga_x2p_backannotate_utils.h"
#include "write_rr_blocks.h"
#include "fpga_x2p_unique_routing.h" #include "fpga_x2p_unique_routing.h"
/***** subroutines declaration *****/ /***** subroutines declaration *****/
@ -820,7 +821,7 @@ DeviceRRChan build_device_rr_chan(int LL_num_rr_nodes, t_rr_node* LL_rr_node,
* For channels chanX with DEC_DIRECTION on the right side, they should be marked as inputs * For channels chanX with DEC_DIRECTION on the right side, they should be marked as inputs
*/ */
static static
RRSwitchBlock build_rr_switch_block(DeviceCoordinator device_range, RRSwitchBlock build_rr_switch_block(DeviceCoordinator& device_range,
size_t sb_x, size_t sb_y, size_t sb_x, size_t sb_y,
int LL_num_rr_nodes, t_rr_node* LL_rr_node, int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_ivec*** LL_rr_node_indices, int num_segments, t_ivec*** LL_rr_node_indices, int num_segments,
@ -1044,6 +1045,7 @@ RRSwitchBlock rotate_rr_switch_block_for_mirror(DeviceCoordinator& device_range,
const RRSwitchBlock& rr_switch_block) { const RRSwitchBlock& rr_switch_block) {
RRSwitchBlock rotated_rr_switch_block; RRSwitchBlock rotated_rr_switch_block;
rotated_rr_switch_block.set(rr_switch_block); rotated_rr_switch_block.set(rr_switch_block);
size_t Fco_offset = 1;
/* For the 4 Switch Blocks at the four corners */ /* For the 4 Switch Blocks at the four corners */
/* 1. BOTTOM-LEFT corner: /* 1. BOTTOM-LEFT corner:
@ -1103,10 +1105,22 @@ RRSwitchBlock rotate_rr_switch_block_for_mirror(DeviceCoordinator& device_range,
* swap the chan_node between TOP and BOTTOM, * swap the chan_node between TOP and BOTTOM,
*/ */
if (device_range.get_y() == rotated_rr_switch_block.get_y() ) { if (device_range.get_y() == rotated_rr_switch_block.get_y() ) {
rotated_rr_switch_block.swap_opin_node(TOP, BOTTOM);
rotated_rr_switch_block.swap_chan_node(TOP, BOTTOM); /* For RIGHT SIDE: X-channel in INC_DIRECTION, rotate by an offset of its x-coordinator */
rotated_rr_switch_block.reverse_opin_node(TOP); rotated_rr_switch_block.rotate_side_chan_node_by_direction(RIGHT, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
rotated_rr_switch_block.reverse_opin_node(BOTTOM); /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.rotate_side_chan_node_by_direction(LEFT, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
/* For LEFT SIDE: X-channel in DEC_DIRECTION, rotate by an offset of its x-coordinator */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(LEFT, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
/* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(RIGHT, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
//rotated_rr_switch_block.swap_opin_node(TOP, BOTTOM);
//rotated_rr_switch_block.swap_chan_node(TOP, BOTTOM);
//rotated_rr_switch_block.reverse_opin_node(TOP);
//rotated_rr_switch_block.reverse_opin_node(BOTTOM);
return rotated_rr_switch_block; return rotated_rr_switch_block;
} }
/* 3. RIGHT side: /* 3. RIGHT side:
@ -1114,10 +1128,22 @@ RRSwitchBlock rotate_rr_switch_block_for_mirror(DeviceCoordinator& device_range,
* swap the chan_node between LEFT and RIGHT, * swap the chan_node between LEFT and RIGHT,
*/ */
if (device_range.get_x() == rotated_rr_switch_block.get_x() ) { if (device_range.get_x() == rotated_rr_switch_block.get_x() ) {
rotated_rr_switch_block.swap_opin_node(LEFT, RIGHT);
rotated_rr_switch_block.swap_chan_node(LEFT, RIGHT); /* For TOP SIDE: Y-channel in INC_DIRECTION, rotate by an offset of its y-coordinator */
rotated_rr_switch_block.reverse_opin_node(LEFT); rotated_rr_switch_block.rotate_side_chan_node_by_direction(TOP, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
rotated_rr_switch_block.reverse_opin_node(RIGHT); /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.rotate_side_chan_node_by_direction(BOTTOM, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
/* For BOTTOM SIDE: Y-channel in DEC_DIRECTION, rotate by an offset of its y-coordinator */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(BOTTOM, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
/* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(TOP, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
//rotated_rr_switch_block.swap_opin_node(LEFT, RIGHT);
//rotated_rr_switch_block.swap_chan_node(LEFT, RIGHT);
//rotated_rr_switch_block.reverse_opin_node(LEFT);
//rotated_rr_switch_block.reverse_opin_node(RIGHT);
return rotated_rr_switch_block; return rotated_rr_switch_block;
} }
/* 4. LEFT side: /* 4. LEFT side:
@ -1136,35 +1162,36 @@ RRSwitchBlock rotate_rr_switch_block_for_mirror(DeviceCoordinator& device_range,
/* Reach here, it means we have a SB at the center region */ /* Reach here, it means we have a SB at the center region */
/* For TOP SIDE: Y-channel in INC_DIRECTION, rotate by an offset of its y-coordinator */ /* For TOP SIDE: Y-channel in INC_DIRECTION, rotate by an offset of its y-coordinator */
if (1 < rotated_rr_switch_block.get_y()) { if (1 < rotated_rr_switch_block.get_y()) {
rotated_rr_switch_block.rotate_side_chan_node_by_direction(TOP, INC_DIRECTION, rotated_rr_switch_block.get_y() - 1); rotated_rr_switch_block.rotate_side_chan_node_by_direction(TOP, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
/* Rotate the same nodes on the opposite side */ /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.rotate_side_chan_node_by_direction(BOTTOM, INC_DIRECTION, rotated_rr_switch_block.get_y() - 1); rotated_rr_switch_block.rotate_side_chan_node_by_direction(BOTTOM, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
} }
/* For RIGHT SIDE: X-channel in INC_DIRECTION, rotate by an offset of its x-coordinator */ /* For RIGHT SIDE: X-channel in INC_DIRECTION, rotate by an offset of its x-coordinator */
if (1 < rotated_rr_switch_block.get_x()) { if (1 < rotated_rr_switch_block.get_x()) {
rotated_rr_switch_block.rotate_side_chan_node_by_direction(RIGHT, INC_DIRECTION, rotated_rr_switch_block.get_x() - 1); rotated_rr_switch_block.rotate_side_chan_node_by_direction(RIGHT, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
/* Rotate the same nodes on the opposite side */ /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.rotate_side_chan_node_by_direction(LEFT, INC_DIRECTION, rotated_rr_switch_block.get_x() - 1); rotated_rr_switch_block.rotate_side_chan_node_by_direction(LEFT, INC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
} }
/* For BOTTOM SIDE: Y-channel in DEC_DIRECTION, rotate by an offset of its y-coordinator */ /* For BOTTOM SIDE: Y-channel in DEC_DIRECTION, rotate by an offset of its y-coordinator */
if (device_range.get_y() - 1 > rotated_rr_switch_block.get_y()) { if ( 1 < rotated_rr_switch_block.get_y()) {
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(BOTTOM, DEC_DIRECTION, device_range.get_y() - 1 - rotated_rr_switch_block.get_y()); rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(BOTTOM, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
/* Rotate the same nodes on the opposite side */ /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(TOP, DEC_DIRECTION, device_range.get_y() - 1 - rotated_rr_switch_block.get_y()); rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(TOP, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_y() - 1));
} }
/* For LEFT SIDE: X-channel in DEC_DIRECTION, rotate by an offset of its x-coordinator */ /* For LEFT SIDE: X-channel in DEC_DIRECTION, rotate by an offset of its x-coordinator */
if (device_range.get_x() - 1 > rotated_rr_switch_block.get_x()) { if ( 1 < rotated_rr_switch_block.get_x()) {
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(LEFT, DEC_DIRECTION, device_range.get_x() - 1 - rotated_rr_switch_block.get_x()); rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(LEFT, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
/* Rotate the same nodes on the opposite side */ /* Rotate the same nodes on the opposite side */
rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(RIGHT, DEC_DIRECTION, device_range.get_x() - 1 - rotated_rr_switch_block.get_x()); rotated_rr_switch_block.counter_rotate_side_chan_node_by_direction(RIGHT, DEC_DIRECTION, Fco_offset * (rotated_rr_switch_block.get_x() - 1));
} }
return rotated_rr_switch_block; return rotated_rr_switch_block;
} }
/* Build a list of Switch blocks, each of which contains a collection of rr_nodes /* Build a list of Switch blocks, each of which contains a collection of rr_nodes
* We will maintain a list of unique switch blocks, which will be outputted as a Verilog module * We will maintain a list of unique switch blocks, which will be outputted as a Verilog module
* Each switch block in the FPGA fabric will be an instance of these modules. * Each switch block in the FPGA fabric will be an instance of these modules.
@ -1206,11 +1233,7 @@ DeviceRRSwitchBlock build_device_rr_switch_blocks(int LL_num_rr_nodes, t_rr_node
for (size_t ix = 0; ix <= sb_range.get_x(); ++ix) { for (size_t ix = 0; ix <= sb_range.get_x(); ++ix) {
for (size_t iy = 0; iy <= sb_range.get_y(); ++iy) { for (size_t iy = 0; iy <= sb_range.get_y(); ++iy) {
//RRSwitchBlock rr_sb = LL_device_rr_switch_block.get_switch_block(ix, iy); RRSwitchBlock rr_sb = LL_device_rr_switch_block.get_switch_block(ix, iy);
RRSwitchBlock rr_sb = build_rr_switch_block(sb_range, ix, iy,
LL_num_rr_nodes, LL_rr_node,
LL_rr_node_indices,
num_segments, LL_rr_indexed_data);
RRSwitchBlock rotated_rr_sb = rotate_rr_switch_block_for_mirror(sb_range, rr_sb); RRSwitchBlock rotated_rr_sb = rotate_rr_switch_block_for_mirror(sb_range, rr_sb);
DeviceCoordinator sb_coordinator = rr_sb.get_coordinator(); DeviceCoordinator sb_coordinator = rr_sb.get_coordinator();
LL_device_rr_switch_block.add_rotatable_mirror(sb_coordinator, rotated_rr_sb); LL_device_rr_switch_block.add_rotatable_mirror(sb_coordinator, rotated_rr_sb);
@ -1223,6 +1246,8 @@ DeviceRRSwitchBlock build_device_rr_switch_blocks(int LL_num_rr_nodes, t_rr_node
"Detect %d rotatable unique switch blocks from %d switch blocks.\n", "Detect %d rotatable unique switch blocks from %d switch blocks.\n",
LL_device_rr_switch_block.get_num_rotatable_mirror(), (nx + 1) * (ny + 1) ); LL_device_rr_switch_block.get_num_rotatable_mirror(), (nx + 1) * (ny + 1) );
write_device_rr_switch_block_to_xml(LL_device_rr_switch_block);
return LL_device_rr_switch_block; return LL_device_rr_switch_block;
} }

View File

@ -101,6 +101,26 @@ bool RRChan::is_mirror(RRChan& cand) const {
return true; return true;
} }
/* Get a list of segments used in this routing channel */
std::vector<size_t> RRChan::get_segment_ids() const {
std::vector<size_t> seg_list;
/* make sure a clean start */
seg_list.clear();
/* Traverse node_segments */
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
std::vector<size_t>::iterator it;
/* Try to find the node_segment id in the list */
it = find(seg_list.begin(), seg_list.end(), node_segments_[inode]);
if ( it != seg_list.end() ) {
/* Not found, add it to the list */
seg_list.push_back(node_segments_[inode]);
}
}
return seg_list;
}
/* Mutators */ /* Mutators */
void RRChan::set(const RRChan& rr_chan) { void RRChan::set(const RRChan& rr_chan) {
@ -166,7 +186,7 @@ void RRChan::rotate(size_t rotate_begin, size_t rotate_end, size_t offset) {
/* rotate all the channel nodes by a given offset: /* rotate all the channel nodes by a given offset:
* Routing Channel nodes are divided into different groups using segment ids * Routing Channel nodes are divided into different groups using segment ids
* each group is rotated separatedly * each group should be rotated separatedly
*/ */
void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t offset) { void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t offset) {
/* skip if there are no nodes */ /* skip if there are no nodes */
@ -174,11 +194,16 @@ void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t of
return; return;
} }
/* get a list of segment_ids existing in the routing channel */
std::vector<size_t> seg_ids = get_segment_ids();
for (size_t iseg = 0; iseg < seg_ids.size(); ++iseg) {
/* Get the channel nodes of a given direction */ /* Get the channel nodes of a given direction */
std::vector<t_rr_node*> nodes; std::vector<t_rr_node*> nodes;
std::vector<size_t> node_segments; std::vector<size_t> node_segments;
for (size_t inode = 0; inode < get_chan_width(); ++inode) { for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if (node_direction == get_node(inode)->direction) { if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes.push_back(get_node(inode)); nodes.push_back(get_node(inode));
node_segments.push_back(get_node_segment(inode)); node_segments.push_back(get_node_segment(inode));
} }
@ -193,7 +218,8 @@ void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t of
/* back-annotate to to the original chan nodes*/ /* back-annotate to to the original chan nodes*/
for (size_t inode = 0; inode < get_chan_width(); ++inode) { for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if (node_direction == get_node(inode)->direction) { if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes_[inode] = nodes.front(); nodes_[inode] = nodes.front();
node_segments_[inode] = node_segments.front(); node_segments_[inode] = node_segments.front();
/* pop up temp vectors */ /* pop up temp vectors */
@ -205,6 +231,7 @@ void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t of
/* Make sure temp vectors are all poped out */ /* Make sure temp vectors are all poped out */
assert ( 0 == nodes.size()); assert ( 0 == nodes.size());
assert ( 0 == node_segments.size()); assert ( 0 == node_segments.size());
}
return; return;
} }
@ -219,11 +246,16 @@ void RRChan::counter_rotate_by_node_direction(enum e_direction node_direction, s
return; return;
} }
/* get a list of segment_ids existing in the routing channel */
std::vector<size_t> seg_ids = get_segment_ids();
for (size_t iseg = 0; iseg < seg_ids.size(); ++iseg) {
/* Get the channel nodes of a given direction */ /* Get the channel nodes of a given direction */
std::vector<t_rr_node*> nodes; std::vector<t_rr_node*> nodes;
std::vector<size_t> node_segments; std::vector<size_t> node_segments;
for (size_t inode = 0; inode < get_chan_width(); ++inode) { for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if (node_direction == get_node(inode)->direction) { if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes.push_back(get_node(inode)); nodes.push_back(get_node(inode));
node_segments.push_back(get_node_segment(inode)); node_segments.push_back(get_node_segment(inode));
} }
@ -238,7 +270,8 @@ void RRChan::counter_rotate_by_node_direction(enum e_direction node_direction, s
/* back-annotate to to the original chan nodes*/ /* back-annotate to to the original chan nodes*/
for (size_t inode = 0; inode < get_chan_width(); ++inode) { for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if (node_direction == get_node(inode)->direction) { if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes_[inode] = nodes.front(); nodes_[inode] = nodes.front();
node_segments_[inode] = node_segments.front(); node_segments_[inode] = node_segments.front();
/* pop up temp vectors */ /* pop up temp vectors */
@ -250,6 +283,7 @@ void RRChan::counter_rotate_by_node_direction(enum e_direction node_direction, s
/* Make sure temp vectors are all poped out */ /* Make sure temp vectors are all poped out */
assert ( 0 == nodes.size()); assert ( 0 == nodes.size());
assert ( 0 == node_segments.size()); assert ( 0 == node_segments.size());
}
return; return;
} }
@ -1084,6 +1118,7 @@ void RRSwitchBlock::set(const RRSwitchBlock& src) {
return; return;
} }
/* Set the coordinator (x,y) for the switch block */ /* Set the coordinator (x,y) for the switch block */
void RRSwitchBlock::set_coordinator(size_t x, size_t y) { void RRSwitchBlock::set_coordinator(size_t x, size_t y) {
coordinator_.set(x, y); coordinator_.set(x, y);
@ -1763,6 +1798,9 @@ void DeviceRRSwitchBlock::add_rr_switch_block(DeviceCoordinator& coordinator,
/* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */ /* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void DeviceRRSwitchBlock::build_unique_mirror() { void DeviceRRSwitchBlock::build_unique_mirror() {
/* Make sure a clean start */
clear_mirror();
for (size_t ix = 0; ix < rr_switch_block_.size(); ++ix) { for (size_t ix = 0; ix < rr_switch_block_.size(); ++ix) {
for (size_t iy = 0; iy < rr_switch_block_[ix].size(); ++iy) { for (size_t iy = 0; iy < rr_switch_block_[ix].size(); ++iy) {
bool is_unique_mirror = true; bool is_unique_mirror = true;
@ -1820,6 +1858,9 @@ void DeviceRRSwitchBlock::add_rotatable_mirror(DeviceCoordinator& coordinator,
rotatable_mirror_.push_back(coordinator); rotatable_mirror_.push_back(coordinator);
/* Record the id of unique mirror */ /* Record the id of unique mirror */
rr_switch_block_rotatable_mirror_id_[coordinator.get_x()][coordinator.get_y()] = rotatable_mirror_.size() - 1; rr_switch_block_rotatable_mirror_id_[coordinator.get_x()][coordinator.get_y()] = rotatable_mirror_.size() - 1;
/*
printf("Detect a rotatable mirror: SB[%lu][%lu]\n", coordinator.get_x(), coordinator.get_y());
*/
} }
return; return;
@ -1830,15 +1871,34 @@ void DeviceRRSwitchBlock::clear() {
/* clean rr_switch_block array */ /* clean rr_switch_block array */
for (size_t x = 0; x < rr_switch_block_.size(); ++x) { for (size_t x = 0; x < rr_switch_block_.size(); ++x) {
rr_switch_block_[x].clear(); rr_switch_block_[x].clear();
rr_switch_block_mirror_id_[x].clear();
rr_switch_block_rotatable_mirror_id_[x].clear();
} }
rr_switch_block_.clear(); rr_switch_block_.clear();
rr_switch_block_mirror_id_.clear();
rr_switch_block_rotatable_mirror_id_.clear();
/* clean unique mirror */
clear_mirror();
/* clean unique mirror */
clear_rotatable_mirror();
return;
}
/* clean the content related to unique_mirrors */
void DeviceRRSwitchBlock::clear_mirror() {
/* clean unique mirror */ /* clean unique mirror */
unique_mirror_.clear(); unique_mirror_.clear();
return;
}
/* clean the content related to rotatable_mirrors */
void DeviceRRSwitchBlock::clear_rotatable_mirror() {
/* clean unique mirror */ /* clean unique mirror */
rotatable_mirror_.clear(); rotatable_mirror_.clear();
return; return;
} }

View File

@ -47,6 +47,7 @@ class RRChan {
int get_node_segment(t_rr_node* node) const; int get_node_segment(t_rr_node* node) const;
int get_node_segment(size_t track_num) const; int get_node_segment(size_t track_num) const;
bool is_mirror(RRChan& cand) const; /* evaluate if two RR_chan is mirror to each other */ bool is_mirror(RRChan& cand) const; /* evaluate if two RR_chan is mirror to each other */
std::vector<size_t> get_segment_ids() const; /* Get a list of segments used in this routing channel */
public: /* Mutators */ public: /* Mutators */
void set(const RRChan&); /* copy */ void set(const RRChan&); /* copy */
void set_type(t_rr_type type); /* modify type */ void set_type(t_rr_type type); /* modify type */
@ -253,6 +254,8 @@ class DeviceRRSwitchBlock {
void build_unique_mirror(); /* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */ void build_unique_mirror(); /* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void add_rotatable_mirror(DeviceCoordinator& coordinator, RRSwitchBlock& rr_sb); /* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */ void add_rotatable_mirror(DeviceCoordinator& coordinator, RRSwitchBlock& rr_sb); /* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void clear(); /* clean the content */ void clear(); /* clean the content */
void clear_mirror(); /* clean the content */
void clear_rotatable_mirror(); /* clean the content */
private: /* Validators */ private: /* Validators */
bool validate_coordinator(DeviceCoordinator& coordinator) const; /* Validate if the (x,y) is the range of this device */ bool validate_coordinator(DeviceCoordinator& coordinator) const; /* Validate if the (x,y) is the range of this device */
bool validate_unique_mirror_index(size_t index) const; /* Validate if the index in the range of unique_mirror vector*/ bool validate_unique_mirror_index(size_t index) const; /* Validate if the index in the range of unique_mirror vector*/

View File

@ -0,0 +1,111 @@
/*
* Output internal structure of classes defined in rr_blocks.h to XML format
*/
#include <fstream>
#include <string.h>
#include <assert.h>
#include "rr_blocks.h"
#include "write_rr_blocks.h"
#include "fpga_x2p_utils.h"
void write_rr_switch_block_to_xml(std::string fname_prefix, RRSwitchBlock& rr_sb) {
/* Create a file handler*/
std::fstream fp;
std::string fname = fname_prefix;
fname += rr_sb.gen_verilog_instance_name();
fname += ".xml";
printf("Output SB XML: %s\n", fname.c_str());
/* Open a file */
fp.open(fname, std::fstream::out | std::fstream::trunc);
/* Output location of the Switch Block */
fp << "<rr_sb x=\"" << rr_sb.get_x() << "\" y=\"" << rr_sb.get_y() << "\""
<< " num_sides=\"" << rr_sb.get_num_sides() << "\">" << std::endl;
/* Output each side */
for (size_t side = 0; side < rr_sb.get_num_sides(); ++side) {
Side side_manager(side);
/* Output chan nodes */
for (size_t inode = 0; inode < rr_sb.get_chan_width(side_manager.get_side()); ++inode) {
/* We only care OUT_PORT */
if (OUT_PORT != rr_sb.get_chan_node_direction(side_manager.get_side(), inode)) {
continue;
}
/* Output drivers */
size_t num_drive_rr_nodes = 0;
t_rr_node** drive_rr_nodes = 0;
t_rr_node* cur_rr_node = rr_sb.get_chan_node(side_manager.get_side(), inode);
/* Output node information: location, index, side */
fp << "\t<" << convert_chan_type_to_string(cur_rr_node->type)
<< " side=\"" << side_manager.to_string()
<< "\" index=\"" << inode << "\">"
<< std::endl;
/* Check if this node is directly connected to the node on the opposite side */
if (true == rr_sb.is_node_imply_short_connection(cur_rr_node)) {
/* Double check if the interc lies inside a channel wire, that is interc between segments */
assert(true == rr_sb.is_node_exist_opposite_side(cur_rr_node, side_manager.get_side()));
num_drive_rr_nodes = 0;
drive_rr_nodes = NULL;
} else {
num_drive_rr_nodes = cur_rr_node->num_drive_rr_nodes;
drive_rr_nodes = cur_rr_node->drive_rr_nodes;
}
/* Direct connection: output the node on the opposite side */
if (0 == num_drive_rr_nodes) {
Side oppo_side = side_manager.get_opposite();
fp << "\t\t<drive_node type=\"" << convert_chan_type_to_string(cur_rr_node->type)
<< "\" side=\"" << oppo_side.to_string()
<< "\" index=\"" << rr_sb.get_node_index(cur_rr_node, oppo_side.get_side(), IN_PORT) << "\"/>"
<< std::endl;
} else {
for (size_t jnode = 0; jnode < num_drive_rr_nodes; ++jnode) {
enum e_side drive_node_side = NUM_SIDES;
int drive_node_index = -1;
rr_sb.get_node_side_and_index(drive_rr_nodes[jnode], IN_PORT, &drive_node_side, &drive_node_index);
Side drive_side(drive_node_side);
std::string node_type_str;
if (OPIN == drive_rr_nodes[jnode]->type) {
node_type_str = "opin";
} else {
node_type_str = convert_chan_type_to_string(drive_rr_nodes[jnode]->type);
}
fp << "\t\t<drive_node type=\"" << node_type_str
<< "\" side=\"" << drive_side.to_string()
<< "\" index=\"" << drive_node_index << "\"/>"
<< std::endl;
}
}
fp << "\t</" << convert_chan_type_to_string(cur_rr_node->type) << ">" << std::endl;
}
}
fp << "</rr_sb>" << std::endl;
/* close a file */
fp.close();
return;
}
/* Output each rr_switch_block to a XML file */
void write_device_rr_switch_block_to_xml(DeviceRRSwitchBlock& LL_device_rr_switch_block) {
std::string fname_prefix("/var/tmp/xtang/sb_xml/");
DeviceCoordinator sb_range = LL_device_rr_switch_block.get_switch_block_range();
/* For each switch block, an XML file will be outputted */
for (size_t ix = 0; ix < sb_range.get_x(); ++ix) {
for (size_t iy = 0; iy < sb_range.get_y(); ++iy) {
RRSwitchBlock rr_sb = LL_device_rr_switch_block.get_switch_block(ix, iy);
write_rr_switch_block_to_xml(fname_prefix, rr_sb);
}
}
return;
}

View File

@ -0,0 +1,8 @@
#ifndef WRITE_RR_BLOCKS_H
#define WRITE_RR_BLOCKS_H
void write_rr_switch_block_to_xml(std::string fname_prefix, RRSwitchBlock& rr_sb) {
void write_device_rr_switch_block_to_xml(DeviceRRSwitchBlock& LL_device_rr_switch_block);
#endif

View File

@ -1033,10 +1033,13 @@ void verilog_generate_sdc_disable_unused_sbs_muxs(FILE* fp) {
} }
t_rr_node* cur_rr_node = rr_sb.get_chan_node(side_manager.get_side(), itrack); t_rr_node* cur_rr_node = rr_sb.get_chan_node(side_manager.get_side(), itrack);
for (int imux = 0 ; imux < cur_rr_node->fan_in; ++imux) { for (int imux = 0 ; imux < cur_rr_node->fan_in; ++imux) {
if (1 == cur_rr_node->fan_in) {
continue;
}
if (imux == cur_rr_node->id_path) { if (imux == cur_rr_node->id_path) {
fprintf(fp, "#"); // comments out if the node is active fprintf(fp, "#"); // comments out if the node is active
} }
//if(cur_rr_node->name_mux == NULL) assert (NULL != cur_rr_node->name_mux); //if(cur_rr_node->name_mux == NULL) assert (NULL != cur_rr_node->name_mux);
fprintf(fp, "set_disable_timing %s[%d]\n", fprintf(fp, "set_disable_timing %s[%d]\n",
cur_rr_node->name_mux, imux); cur_rr_node->name_mux, imux);
} }
@ -1070,10 +1073,13 @@ void verilog_generate_sdc_disable_unused_sbs_muxs(FILE* fp, int LL_nx, int LL_ny
if (OUT_PORT == cur_sb_info->chan_rr_node_direction[side][itrack]) { if (OUT_PORT == cur_sb_info->chan_rr_node_direction[side][itrack]) {
cur_rr_node = cur_sb_info->chan_rr_node[side][itrack]; cur_rr_node = cur_sb_info->chan_rr_node[side][itrack];
for (imux = 0 ; imux < cur_rr_node-> fan_in; imux++) { for (imux = 0 ; imux < cur_rr_node-> fan_in; imux++) {
if (1 == cur_rr_node->fan_in) {
continue;
}
if (imux == cur_rr_node->id_path) { if (imux == cur_rr_node->id_path) {
fprintf(fp, "#"); // comments out if the node is active fprintf(fp, "#"); // comments out if the node is active
} }
//if(cur_rr_node->name_mux == NULL) assert (NULL != cur_rr_node->name_mux); //if(cur_rr_node->name_mux == NULL) assert (NULL != cur_rr_node->name_mux);
fprintf(fp, "set_disable_timing %s[%d]\n", fprintf(fp, "set_disable_timing %s[%d]\n",
cur_rr_node->name_mux, imux); cur_rr_node->name_mux, imux);
} }

View File

@ -34,6 +34,7 @@ set vpr_route_chan_width = 200
#make -j32 #make -j32
# Remove previous designs # Remove previous designs
rm -rf $verilog_output_dirpath/$verilog_output_dirname rm -rf $verilog_output_dirpath/$verilog_output_dirname
rm -rf $verilog_output_dirpath/$verilog_output_dirname\_compact
# Run VPR # Run VPR
#valgrind #valgrind