[core] adding prog clock arch support for tile modules

This commit is contained in:
tangxifan 2023-07-23 13:11:13 -07:00
parent 0f3f4b0d81
commit 399259ea1d
1 changed files with 477 additions and 7 deletions

View File

@ -1054,6 +1054,476 @@ static void organize_top_module_tile_based_memory_modules(
config_protocol);
}
/*********************************************************************
* Generate an input port for routing multiplexer inside the tile
* which is the middle output of a routing track
********************************************************************/
ModulePinInfo find_tile_module_chan_port(
const ModuleManager& module_manager, const ModuleId& tile_module,
const vtr::Point<size_t>& cb_coord_in_tile,
const RRGraphView& rr_graph, const RRGSB& rr_gsb, const t_rr_type& cb_type,
const RRNodeId& chan_rr_node) {
ModulePinInfo input_port_info;
/* Generate the input port object */
switch (rr_graph.node_type(chan_rr_node)) {
case CHANX:
case CHANY: {
/* Create port description for the routing track middle output */
int chan_node_track_id =
rr_gsb.get_cb_chan_node_index(cb_type, chan_rr_node);
/* Create a port description for the middle output */
std::string input_port_name = generate_cb_module_track_port_name(
cb_type, IN_PORT, 0 == chan_node_track_id % 2);
std::string tile_input_port_name = generate_tile_module_port_name(generate_connection_block_module_name(cb_type, cb_coord_in_tile), input_port_name);
/* Must find a valid port id in the Switch Block module */
input_port_info.first =
module_manager.find_module_port(tile_module, tile_input_port_name);
input_port_info.second = chan_node_track_id / 2;
VTR_ASSERT(true == module_manager.valid_module_port_id(
tile_module, input_port_info.first));
break;
}
default: /* OPIN, SOURCE, IPIN, SINK are invalid*/
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid rr_node type! Should be [OPIN|CHANX|CHANY].\n");
exit(1);
}
return input_port_info;
}
/********************************************************************
* Add nets between a global port and its sinks at an entry point of clock tree
*******************************************************************/
static int build_top_module_global_net_from_tile_clock_arch_tree(
ModuleManager& module_manager, const ModuleId& top_module,
const ModulePortId& top_module_port, const RRGraphView& rr_graph,
const DeviceRRGSB& device_rr_gsb,
const vtr::Matrix<size_t>& tile_instance_ids,
const FabricTile& fabric_tile,
const ClockNetwork& clk_ntwk, const std::string& clk_tree_name,
const RRClockSpatialLookup& rr_clock_lookup) {
int status = CMD_EXEC_SUCCESS;
/* Ensure the clock arch tree name is valid */
ClockTreeId clk_tree = clk_ntwk.find_tree(clk_tree_name);
if (!clk_ntwk.valid_tree_id(clk_tree)) {
VTR_LOG(
"Fail to find a matched clock tree '%s' in the clock architecture "
"definition",
clk_tree_name.c_str());
return CMD_EXEC_FATAL_ERROR;
}
/* Ensure the clock tree width matches the global port size */
if (clk_ntwk.tree_width(clk_tree) !=
module_manager.module_port(top_module, top_module_port).get_width()) {
VTR_LOG(
"Clock tree '%s' does not have the same width '%lu' as the port '%'s of "
"FPGA top module",
clk_tree_name.c_str(), clk_ntwk.tree_width(clk_tree),
module_manager.module_port(top_module, top_module_port)
.get_name()
.c_str());
return CMD_EXEC_FATAL_ERROR;
}
for (ClockTreePinId pin : clk_ntwk.pins(clk_tree)) {
BasicPort src_port =
module_manager.module_port(top_module, top_module_port);
/* Add the module net */
ModuleNetId net = create_module_source_pin_net(
module_manager, top_module, top_module, 0, top_module_port,
src_port.pins()[size_t(pin)]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
for (ClockSpineId spine : clk_ntwk.tree_top_spines(clk_tree)) {
vtr::Point<int> entry_point = clk_ntwk.spine_start_point(spine);
Direction entry_dir = clk_ntwk.spine_direction(spine);
t_rr_type entry_track_type = clk_ntwk.spine_track_type(spine);
/* Find the routing resource node of the entry point */
RRNodeId entry_rr_node =
rr_clock_lookup.find_node(entry_point.x(), entry_point.y(), clk_tree,
clk_ntwk.spine_level(spine), pin, entry_dir);
/* Get the tile module and instance at the entry point */
const RRGSB& rr_gsb = device_rr_gsb.get_gsb_by_cb_coordinate(
entry_track_type, vtr::Point<size_t>(entry_point.x(), entry_point.y()));
vtr::Point<size_t> cb_coord_in_tile = rr_gsb.get_sb_coordinate();
FabricTileId curr_fabric_tile_id = fabric_tile.find_tile_by_cb_coordinate(entry_track_type, cb_coord_in_tile);
vtr::Point<size_t> curr_fabric_tile_coord = fabric_tile.tile_coordinate(curr_fabric_tile_id);
FabricTileId unique_fabric_tile_id = fabric_tile.unique_tile(curr_fabric_tile_coord);
vtr::Point<size_t> unique_fabric_tile_coord = fabric_tile.tile_coordinate(unique_fabric_tile_id);
ModuleId tile_module = module_manager.find_module(generate_tile_module_name(unique_fabric_tile_coord));
size_t tile_instance = tile_instance_ids[curr_fabric_tile_coord.x()][curr_fabric_tile_coord.y()];
/* Find the port name */
size_t cb_idx_in_curr_fabric_tile = fabric_tile.find_cb_index_in_tile(curr_fabric_tile_id, entry_track_type, cb_coord_in_tile);
vtr::Point<size_t> cb_coord_in_unique_fabric_tile = fabric_tile.cb_coordinates(unique_fabric_tile_id, entry_track_type)[cb_idx_in_curr_fabric_tile];
ModulePinInfo des_pin_info = find_tile_module_chan_port(
module_manager, tile_module, cb_coord_in_unique_fabric_tile, rr_graph, rr_gsb, entry_track_type,
entry_rr_node);
/* Configure the net sink */
BasicPort sink_port =
module_manager.module_port(tile_module, des_pin_info.first);
module_manager.add_module_net_sink(top_module, net, tile_module,
tile_instance, des_pin_info.first,
sink_port.pins()[des_pin_info.second]);
}
}
return status;
}
/********************************************************************
* Add global port connection for a given port of a physical tile
* that are defined as global in tile annotation
*******************************************************************/
static int build_top_module_global_net_for_given_tile_module(
ModuleManager& module_manager, const ModuleId& top_module,
const ModulePortId& top_module_port, const TileAnnotation& tile_annotation,
const TileGlobalPortId& tile_global_port,
const BasicPort& tile_port_to_connect,
const VprDeviceAnnotation& vpr_device_annotation, const DeviceGrid& grids,
const vtr::Point<size_t>& grid_coordinate, const e_side& border_side,
const vtr::Matrix<size_t>& grid_instance_ids) {
t_physical_tile_type_ptr physical_tile =
grids.get_physical_type(grid_coordinate.x(), grid_coordinate.y());
/* Find the module name for this type of grid */
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
std::string grid_module_name = generate_grid_block_module_name(
grid_module_name_prefix, std::string(physical_tile->name),
is_io_type(physical_tile), border_side);
ModuleId grid_module = module_manager.find_module(grid_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
size_t grid_instance =
grid_instance_ids[grid_coordinate.x()][grid_coordinate.y()];
/* Find the source port at the top-level module */
BasicPort src_port = module_manager.module_port(top_module, top_module_port);
/* Walk through each instance considering the unique sub tile and capacity
* range, each instance may have an independent pin to be driven by a global
* net! */
for (const t_sub_tile& sub_tile : physical_tile->sub_tiles) {
VTR_ASSERT(1 == sub_tile.equivalent_sites.size());
int grid_pin_start_index = physical_tile->num_pins;
t_physical_tile_port physical_tile_port;
physical_tile_port.num_pins = 0;
/* Count the total number of pins for this type of sub tile */
int sub_tile_num_pins = sub_tile.num_phy_pins / sub_tile.capacity.total();
/* For each instance of the same sub tile type, find the port of the grid
* module according to the tile annotation A tile may consist of multiple
* subtile, connect to all the pins from sub tiles */
for (int subtile_index = sub_tile.capacity.low;
subtile_index <= sub_tile.capacity.high; subtile_index++) {
for (const t_physical_tile_port& tile_port : sub_tile.ports) {
if (std::string(tile_port.name) == tile_port_to_connect.get_name()) {
BasicPort ref_tile_port(tile_port.name, tile_port.num_pins);
/* Port size must match!!! */
if (false == ref_tile_port.contained(tile_port_to_connect)) {
VTR_LOG_ERROR(
"Tile annotation '%s' port '%s[%lu:%lu]' is out of the range of "
"physical tile port '%s[%lu:%lu]'!",
tile_annotation.global_port_name(tile_global_port).c_str(),
tile_port_to_connect.get_name().c_str(),
tile_port_to_connect.get_lsb(), tile_port_to_connect.get_msb(),
ref_tile_port.get_name().c_str(), ref_tile_port.get_lsb(),
ref_tile_port.get_msb());
return CMD_EXEC_FATAL_ERROR;
}
grid_pin_start_index =
(subtile_index - sub_tile.capacity.low) * sub_tile_num_pins +
tile_port.absolute_first_pin_index;
physical_tile_port = tile_port;
break;
}
}
/* Ensure the pin index is valid */
VTR_ASSERT(grid_pin_start_index < physical_tile->num_pins);
/* Ensure port width is in range */
VTR_ASSERT(src_port.get_width() == tile_port_to_connect.get_width());
/* Create a pin id mapping between the source port (top module) and the
* sink port (grid module) */
std::map<size_t, size_t> sink2src_pin_map;
for (size_t ipin = 0; ipin < tile_port_to_connect.get_width(); ++ipin) {
size_t sink_pin = tile_port_to_connect.pins()[ipin];
size_t src_pin = src_port.pins()[ipin];
sink2src_pin_map[sink_pin] = src_pin;
}
/* Create the connections */
for (size_t pin_id = tile_port_to_connect.get_lsb();
pin_id < tile_port_to_connect.get_msb() + 1; ++pin_id) {
int grid_pin_index = grid_pin_start_index + pin_id;
/* Find the module pin */
size_t grid_pin_width = physical_tile->pin_width_offset[grid_pin_index];
size_t grid_pin_height =
physical_tile->pin_height_offset[grid_pin_index];
std::vector<e_side> pin_sides = find_physical_tile_pin_side(
physical_tile, grid_pin_index, border_side);
BasicPort grid_pin_info =
vpr_device_annotation.physical_tile_pin_port_info(physical_tile,
grid_pin_index);
VTR_ASSERT(true == grid_pin_info.is_valid());
/* Build nets */
for (const e_side& pin_side : pin_sides) {
std::string grid_port_name =
generate_grid_port_name(grid_pin_width, grid_pin_height,
subtile_index, pin_side, grid_pin_info);
ModulePortId grid_port_id =
module_manager.find_module_port(grid_module, grid_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module,
grid_port_id));
VTR_ASSERT(
1 ==
module_manager.module_port(grid_module, grid_port_id).get_width());
ModuleNetId net = create_module_source_pin_net(
module_manager, top_module, top_module, 0, top_module_port,
src_port.pins()[sink2src_pin_map[pin_id]]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Configure the net sink */
BasicPort sink_port =
module_manager.module_port(grid_module, grid_port_id);
module_manager.add_module_net_sink(top_module, net, grid_module,
grid_instance, grid_port_id,
sink_port.pins()[0]);
}
}
}
}
return CMD_EXEC_SUCCESS;
}
/********************************************************************
* Add nets between a global port and its sinks at each tile modules
*******************************************************************/
static int build_top_module_global_net_from_tile_modules(
ModuleManager& module_manager, const ModuleId& top_module,
const ModulePortId& top_module_port, const TileAnnotation& tile_annotation,
const TileGlobalPortId& tile_global_port,
const VprDeviceAnnotation& vpr_device_annotation, const DeviceGrid& grids,
const vtr::Matrix<size_t>& tile_instance_ids,
const FabricTile& fabric_tile) {
int status = CMD_EXEC_SUCCESS;
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coordinates =
generate_perimeter_grid_coordinates(grids);
for (size_t tile_info_id = 0;
tile_info_id <
tile_annotation.global_port_tile_names(tile_global_port).size();
++tile_info_id) {
std::string tile_name =
tile_annotation.global_port_tile_names(tile_global_port)[tile_info_id];
BasicPort tile_port =
tile_annotation.global_port_tile_ports(tile_global_port)[tile_info_id];
/* Find the coordinates for the wanted tiles */
vtr::Point<size_t> start_coord(1, 1);
vtr::Point<size_t> end_coord(grids.width() - 1, grids.height() - 1);
vtr::Point<size_t> range = tile_annotation.global_port_tile_coordinates(
tile_global_port)[tile_info_id];
bool out_of_range = false;
/* -1 means all the x should be considered */
if (size_t(-1) != range.x()) {
if ((range.x() < start_coord.x()) || (range.x() > end_coord.x())) {
out_of_range = true;
} else {
/* Set the range */
start_coord.set_x(range.x());
end_coord.set_x(range.x());
}
}
/* -1 means all the y should be considered */
if (size_t(-1) != range.y()) {
if ((range.y() < start_coord.y()) || (range.y() > end_coord.y())) {
out_of_range = true;
} else {
/* Set the range */
start_coord.set_y(range.y());
end_coord.set_y(range.y());
}
}
/* Error out immediately if the coordinate is not valid! */
if (true == out_of_range) {
VTR_LOG_ERROR(
"Coordinate (%lu, %lu) in tile annotation for tile '%s' is out of "
"range (%lu:%lu, %lu:%lu)!",
range.x(), range.y(), tile_name.c_str(), start_coord.x(), end_coord.x(),
start_coord.y(), end_coord.y());
return CMD_EXEC_FATAL_ERROR;
}
/* Spot the port from child modules from core grids */
for (size_t ix = start_coord.x(); ix < end_coord.x(); ++ix) {
for (size_t iy = start_coord.y(); iy < end_coord.y(); ++iy) {
t_physical_tile_type_ptr phy_tile_type =
grids.get_physical_type(ix, iy);
/* Bypass EMPTY tiles */
if (true == is_empty_type(phy_tile_type)) {
continue;
}
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
if ((0 < grids.get_width_offset(ix, iy)) ||
(0 < grids.get_height_offset(ix, iy))) {
continue;
}
/* Bypass the tiles whose names do not match */
if (std::string(phy_tile_type->name) != tile_name) {
continue;
}
/* Create nets and finish connection build-up */
status = build_top_module_global_net_for_given_tile_module(
module_manager, top_module, top_module_port, tile_annotation,
tile_global_port, tile_port, vpr_device_annotation, grids,
vtr::Point<size_t>(ix, iy), NUM_SIDES, grid_instance_ids);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
/* Walk through all the grids on the perimeter, which are I/O grids */
for (const e_side& io_side : FPGA_SIDES_CLOCKWISE) {
for (const vtr::Point<size_t>& io_coordinate : io_coordinates[io_side]) {
t_physical_tile_type_ptr phy_tile_type =
grids.get_physical_type(io_coordinate.x(), io_coordinate.y());
/* Bypass EMPTY grid */
if (true == is_empty_type(phy_tile_type)) {
continue;
}
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
if ((0 <
grids.get_width_offset(io_coordinate.x(), io_coordinate.y())) ||
(0 <
grids.get_height_offset(io_coordinate.x(), io_coordinate.y()))) {
continue;
}
/* Bypass the tiles whose names do not match */
if (std::string(phy_tile_type->name) != tile_name) {
continue;
}
/* Check if the coordinate satisfy the tile coordinate defintion
* - Bypass if the x is a specific number (!= -1), and io_coordinate
* is different
* - Bypass if the y is a specific number (!= -1), and io_coordinate
* is different
*/
if ((size_t(-1) != range.x()) && (range.x() != io_coordinate.x())) {
continue;
}
if ((size_t(-1) != range.y()) && (range.y() != io_coordinate.y())) {
continue;
}
/* Create nets and finish connection build-up */
status = build_top_module_global_net_for_given_tile_module(
module_manager, top_module, top_module_port, tile_annotation,
tile_global_port, tile_port, vpr_device_annotation, grids,
io_coordinate, io_side, grid_instance_ids);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
}
}
}
return status;
}
/********************************************************************
* Add global ports from tile ports that are defined as global in tile
*annotation
*******************************************************************/
static int add_top_module_global_ports_from_tile_modules(
ModuleManager& module_manager, const ModuleId& top_module,
const TileAnnotation& tile_annotation,
const VprDeviceAnnotation& vpr_device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const DeviceRRGSB& device_rr_gsb,
const vtr::Matrix<size_t>& tile_instance_ids,
const FabricTile& fabric_tile, const ClockNetwork& clk_ntwk,
const RRClockSpatialLookup& rr_clock_lookup) {
int status = CMD_EXEC_SUCCESS;
/* Add the global ports which are NOT yet added to the top-level module
* (in different names than the global ports defined in circuit library
*/
std::vector<BasicPort> global_ports_to_add;
for (const TileGlobalPortId& tile_global_port :
tile_annotation.global_ports()) {
ModulePortId module_port = module_manager.find_module_port(
top_module, tile_annotation.global_port_name(tile_global_port));
/* The global port size is derived from the maximum port size among all the
* tile port defintion */
if (ModulePortId::INVALID() == module_port) {
BasicPort global_port_to_add;
global_port_to_add.set_name(
tile_annotation.global_port_name(tile_global_port));
size_t max_port_size = 0;
for (const BasicPort& tile_port :
tile_annotation.global_port_tile_ports(tile_global_port)) {
max_port_size = std::max(tile_port.get_width(), max_port_size);
}
global_port_to_add.set_width(max_port_size);
global_ports_to_add.push_back(global_port_to_add);
}
}
for (const BasicPort& global_port_to_add : global_ports_to_add) {
module_manager.add_port(top_module, global_port_to_add,
ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add module nets */
for (const TileGlobalPortId& tile_global_port :
tile_annotation.global_ports()) {
/* Must found one valid port! */
ModulePortId top_module_port = module_manager.find_module_port(
top_module, tile_annotation.global_port_name(tile_global_port));
VTR_ASSERT(ModulePortId::INVALID() != top_module_port);
/* There are two cases when building the nets:
* - If the net will go through a dedicated clock tree network, the net will
* drive an input of a routing block
* - If the net will be directly wired to tiles, the net will drive an input
* of a tile
*/
if (!tile_annotation.global_port_clock_arch_tree_name(tile_global_port)
.empty()) {
status = build_top_module_global_net_from_tile_clock_arch_tree(
module_manager, top_module, top_module_port, rr_graph, device_rr_gsb,
tile_instance_ids, fabric_tile, clk_ntwk,
tile_annotation.global_port_clock_arch_tree_name(tile_global_port),
rr_clock_lookup);
} else {
status = build_top_module_global_net_from_tile_modules(
module_manager, top_module, top_module_port, tile_annotation,
tile_global_port, vpr_device_annotation, grids, tile_instance_ids, fabric_tile);
}
if (status == CMD_EXEC_FATAL_ERROR) {
return status;
}
}
return status;
}
/********************************************************************
* Add the tile-level instances to the top module of FPGA fabric
@ -1092,14 +1562,14 @@ int build_top_module_tile_child_instances(
/* TODO: Inter-tile direct connections */
}
/* TODO: Add global ports from tile modules: how to connect to clock
architecture and the global port from tile annotation status =
add_top_module_global_ports_from_grid_modules( module_manager, top_module,
tile_annotation, vpr_device_annotation, grids, rr_graph, device_rr_gsb,
cb_instance_ids, grid_instance_ids, clk_ntwk, rr_clock_lookup); if
(CMD_EXEC_FATAL_ERROR == status) { return status;
/* TODO: Add global ports from tile modules: how to connect to clock architecture and the global port from tile annotation
*/
status = add_top_module_global_ports_from_tile_modules( module_manager, top_module,
tile_annotation, vpr_device_annotation, grids, rr_graph, device_rr_gsb,
tile_instance_ids, fabric_tile, clk_ntwk, rr_clock_lookup);
if (CMD_EXEC_FATAL_ERROR == status) {
return status;
}
*/
/* Add GPIO ports from the sub-modules under this Verilog module
* For top-level module, we follow a special sequencing for I/O modules. So we