Merge branch 'master' of https://github.com/lnis-uofu/OpenFPGA into vtr_upgrade
This commit is contained in:
commit
373566416c
|
@ -1 +1 @@
|
|||
1.1.489
|
||||
1.1.525
|
||||
|
|
|
@ -25,6 +25,14 @@ Repack's functionality are in the following aspects:
|
|||
|
||||
.. warning:: Design constraints are designed to help repacker to identify which clock net to be mapped to which pin, so that multi-clock benchmarks can be correctly implemented, in the case that VPR may not have sufficient vision on clock net mapping. **Try not to use design constraints to remap any other types of nets!!!**
|
||||
|
||||
.. option:: --ignore_global_nets_on_pins
|
||||
|
||||
Specify the mapping results of global nets should be ignored on which pins of a ``pb_type``. For example, ``--ignore_global_nets_on_pins clb.I[0:11]``. Once specified, the mapping results on the pins for all the global nets, such as clock, reset *etc.*, are ignored. Routing traces will be appeneded to other pins where the same global nets are mapped to.
|
||||
|
||||
.. note:: This option is designed for global nets which are applied to both data path and global networks. For example, a reset signal is mapped to both a LUT input and the reset pin of a FF. Suggest not to use the option in other purposes!
|
||||
|
||||
.. warning:: Users must specify the size/width of the pin. Currently, OpenFPGA cannot infer the pin size from the architecture!!!
|
||||
|
||||
.. option:: --verbose
|
||||
|
||||
Show verbose log
|
||||
|
|
|
@ -21,9 +21,15 @@ ShellCommandId add_openfpga_repack_command(openfpga::Shell<OpenfpgaContext>& she
|
|||
const ShellCommandClassId& cmd_class_id,
|
||||
const std::vector<ShellCommandId>& dependent_cmds) {
|
||||
Command shell_cmd("repack");
|
||||
|
||||
/* Add an option '--design_constraints' */
|
||||
CommandOptionId opt_design_constraints = shell_cmd.add_option("design_constraints", false, "file path to the design constraints");
|
||||
shell_cmd.set_option_require_value(opt_design_constraints, openfpga::OPT_STRING);
|
||||
|
||||
/* Add an option '--ignore_global_nets_on_pins' */
|
||||
CommandOptionId opt_ignore_global_nets = shell_cmd.add_option("ignore_global_nets_on_pins", false, "Specify the pins where global nets will be ignored. Routing traces are merged to other pins");
|
||||
shell_cmd.set_option_require_value(opt_ignore_global_nets, openfpga::OPT_STRING);
|
||||
|
||||
/* Add an option '--verbose' */
|
||||
shell_cmd.add_option("verbose", false, "Enable verbose output");
|
||||
|
||||
|
|
|
@ -30,6 +30,7 @@ int repack(OpenfpgaContext& openfpga_ctx,
|
|||
const Command& cmd, const CommandContext& cmd_context) {
|
||||
|
||||
CommandOptionId opt_design_constraints = cmd.option("design_constraints");
|
||||
CommandOptionId opt_ignore_global_nets = cmd.option("ignore_global_nets_on_pins");
|
||||
CommandOptionId opt_verbose = cmd.option("verbose");
|
||||
|
||||
/* Load design constraints from file */
|
||||
|
@ -40,22 +41,32 @@ int repack(OpenfpgaContext& openfpga_ctx,
|
|||
repack_design_constraints = read_xml_repack_design_constraints(dc_fname.c_str());
|
||||
}
|
||||
|
||||
/* Setup repacker options */
|
||||
RepackOption options;
|
||||
options.set_design_constraints(repack_design_constraints);
|
||||
options.set_ignore_global_nets_on_pins(cmd_context.option_value(cmd, opt_ignore_global_nets));
|
||||
options.set_verbose_output(cmd_context.option_enable(cmd, opt_verbose));
|
||||
|
||||
if (!options.valid()) {
|
||||
VTR_LOG("Detected errors when parsing options!\n");
|
||||
return CMD_EXEC_FATAL_ERROR;
|
||||
}
|
||||
|
||||
pack_physical_pbs(g_vpr_ctx.device(),
|
||||
g_vpr_ctx.atom(),
|
||||
g_vpr_ctx.clustering(),
|
||||
openfpga_ctx.mutable_vpr_device_annotation(),
|
||||
openfpga_ctx.mutable_vpr_clustering_annotation(),
|
||||
openfpga_ctx.vpr_bitstream_annotation(),
|
||||
repack_design_constraints,
|
||||
openfpga_ctx.arch().circuit_lib,
|
||||
cmd_context.option_enable(cmd, opt_verbose));
|
||||
options);
|
||||
|
||||
build_physical_lut_truth_tables(openfpga_ctx.mutable_vpr_clustering_annotation(),
|
||||
g_vpr_ctx.atom(),
|
||||
g_vpr_ctx.clustering(),
|
||||
openfpga_ctx.vpr_device_annotation(),
|
||||
openfpga_ctx.arch().circuit_lib,
|
||||
cmd_context.option_enable(cmd, opt_verbose));
|
||||
options.verbose_output());
|
||||
|
||||
/* TODO: should identify the error code from internal function execution */
|
||||
return CMD_EXEC_SUCCESS;
|
||||
|
|
|
@ -28,6 +28,8 @@ namespace openfpga {
|
|||
/********************************************************************
|
||||
* Find all the GPIO ports in the grid module
|
||||
* and cache their port/pin index in the top-level module
|
||||
*
|
||||
* .. note:: The I/O sequence(indexing) is already determined in the io_children() list of top-level module. Here we just build a fast lookup from (x, y, z) coordinate to the actual indices
|
||||
*******************************************************************/
|
||||
IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
||||
const DeviceGrid& grids) {
|
||||
|
@ -37,59 +39,54 @@ IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
|||
|
||||
std::map<std::string, size_t> io_counter;
|
||||
|
||||
/* Create the coordinate range for each side of FPGA fabric */
|
||||
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coordinates = generate_perimeter_grid_coordinates( grids);
|
||||
std::string top_module_name = generate_fpga_top_module_name();
|
||||
ModuleId top_module = module_manager.find_module(top_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(top_module));
|
||||
|
||||
/* Walk through the I/O child list */
|
||||
for (size_t ichild = 0; ichild < module_manager.io_children(top_module).size(); ++ichild) {
|
||||
ModuleId child = module_manager.io_children(top_module)[ichild];
|
||||
vtr::Point<int> coord = module_manager.io_child_coordinates(top_module)[ichild];
|
||||
|
||||
/* Walk through all the grids on the perimeter, which are I/O grids */
|
||||
for (const e_side& io_side : FPGA_SIDES_CLOCKWISE) {
|
||||
for (const vtr::Point<size_t>& io_coordinate : io_coordinates[io_side]) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[io_coordinate.x()][io_coordinate.y()].type)) {
|
||||
if (true == is_empty_type(grids[coord.x()][coord.y()].type)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[io_coordinate.x()][io_coordinate.y()].width_offset)
|
||||
|| (0 < grids[io_coordinate.x()][io_coordinate.y()].height_offset)) {
|
||||
if ( (0 < grids[coord.x()][coord.y()].width_offset)
|
||||
|| (0 < grids[coord.x()][coord.y()].height_offset)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
t_physical_tile_type_ptr grid_type = grids[io_coordinate.x()][io_coordinate.y()].type;
|
||||
|
||||
/* Find the module name for this type of grid */
|
||||
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
|
||||
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), is_io_type(grid_type), io_side);
|
||||
ModuleId grid_module = module_manager.find_module(grid_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
|
||||
VTR_ASSERT_SAFE(true == module_manager.valid_module_id(child));
|
||||
|
||||
/* Find all the GPIO ports in the grid module */
|
||||
|
||||
/* MUST DO: register in io location mapping!
|
||||
* I/O location mapping is a critical look-up for testbench generators
|
||||
* As we add the I/O grid instances to top module by following order:
|
||||
* TOP -> RIGHT -> BOTTOM -> LEFT
|
||||
* The I/O index will increase in this way as well.
|
||||
* This organization I/O indices is also consistent to the way
|
||||
* that GPIOs are wired in function connect_gpio_module()
|
||||
*
|
||||
* Note: if you change the GPIO function, you should update here as well!
|
||||
*/
|
||||
for (int z = 0; z < grids[io_coordinate.x()][io_coordinate.y()].type->capacity; ++z) {
|
||||
if (size_t(grids[coord.x()][coord.y()].type->capacity) != module_manager.io_children(child).size()) {
|
||||
VTR_LOG("%s[%ld][%ld] capacity: %d while io_child number is %d", grids[coord.x()][coord.y()].type->name, coord.x(), coord.y(), grids[coord.x()][coord.y()].type->capacity, module_manager.io_children(child).size());
|
||||
}
|
||||
VTR_ASSERT(size_t(grids[coord.x()][coord.y()].type->capacity) == module_manager.io_children(child).size());
|
||||
for (size_t isubchild = 0; isubchild < module_manager.io_children(child).size(); ++isubchild) {
|
||||
vtr::Point<int> subchild_coord = module_manager.io_child_coordinates(child)[isubchild];
|
||||
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(grid_module, module_io_port_type)) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(child, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(grid_module, gpio_port_id)) {
|
||||
if (false == module_manager.port_is_mappable_io(child, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const BasicPort& gpio_port = module_manager.module_port(grid_module, gpio_port_id);
|
||||
const BasicPort& gpio_port = module_manager.module_port(child, gpio_port_id);
|
||||
|
||||
auto curr_io_index = io_counter.find(gpio_port.get_name());
|
||||
/* Index always start from zero */
|
||||
if (curr_io_index == io_counter.end()) {
|
||||
io_counter[gpio_port.get_name()] = 0;
|
||||
}
|
||||
io_location_map.set_io_index(io_coordinate.x(), io_coordinate.y(), z,
|
||||
io_location_map.set_io_index(coord.x(), coord.y(), subchild_coord.x(),
|
||||
gpio_port.get_name(),
|
||||
io_counter[gpio_port.get_name()]);
|
||||
io_counter[gpio_port.get_name()]++;
|
||||
|
@ -97,73 +94,8 @@ IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Walk through all the center grids, which may include I/O grids */
|
||||
for (size_t ix = 1; ix < grids.width() - 1; ++ix) {
|
||||
for (size_t iy = 1; iy < grids.height() - 1; ++iy) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[ix][iy].type)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[ix][iy].width_offset)
|
||||
|| (0 < grids[ix][iy].height_offset)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
t_physical_tile_type_ptr grid_type = grids[ix][iy].type;
|
||||
|
||||
/* Find the module name for this type of grid */
|
||||
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
|
||||
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), is_io_type(grid_type), NUM_SIDES);
|
||||
ModuleId grid_module = module_manager.find_module(grid_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
|
||||
|
||||
/* Find all the GPIO ports in the grid module */
|
||||
|
||||
/* MUST DO: register in io location mapping!
|
||||
* I/O location mapping is a critical look-up for testbench generators
|
||||
* As we add the I/O grid instances to top module by following order:
|
||||
* TOP -> RIGHT -> BOTTOM -> LEFT
|
||||
* The I/O index will increase in this way as well.
|
||||
* This organization I/O indices is also consistent to the way
|
||||
* that GPIOs are wired in function connect_gpio_module()
|
||||
*
|
||||
* Note: if you change the GPIO function, you should update here as well!
|
||||
* FIXME: The codes should be adapt to support sub tiles!!!
|
||||
*/
|
||||
for (int z = 0; z < grids[ix][iy].type->capacity; ++z) {
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(grid_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(grid_module, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const BasicPort& gpio_port = module_manager.module_port(grid_module, gpio_port_id);
|
||||
|
||||
auto curr_io_index = io_counter.find(gpio_port.get_name());
|
||||
/* Index always start from zero */
|
||||
if (curr_io_index == io_counter.end()) {
|
||||
io_counter[gpio_port.get_name()] = 0;
|
||||
}
|
||||
io_location_map.set_io_index(ix, iy, z,
|
||||
gpio_port.get_name(),
|
||||
io_counter[gpio_port.get_name()]);
|
||||
io_counter[gpio_port.get_name()]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check all the GPIO ports in the top-level module has been mapped */
|
||||
std::string top_module_name = generate_fpga_top_module_name();
|
||||
ModuleId top_module = module_manager.find_module(top_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(top_module));
|
||||
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(top_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
|
|
|
@ -1026,7 +1026,9 @@ void build_physical_tile_module(ModuleManager& module_manager,
|
|||
|
||||
/* Add all the sub modules */
|
||||
size_t pb_instance_id = module_manager.num_instance(grid_module, pb_module);
|
||||
module_manager.add_child_module(grid_module, pb_module);
|
||||
module_manager.add_child_module(grid_module, pb_module, false);
|
||||
/* Add a custom I/O child with coordinate 'z' */
|
||||
module_manager.add_io_child(grid_module, pb_module, pb_instance_id, vtr::Point<int>(iz, 0));
|
||||
|
||||
/* Give the child module with a unique instance name */
|
||||
std::string instance_name = generate_physical_block_instance_name(lb_type->pb_graph_head->pb_type, iz);
|
||||
|
|
|
@ -50,7 +50,7 @@ size_t add_top_module_grid_instance(ModuleManager& module_manager,
|
|||
/* Record the instance id */
|
||||
size_t grid_instance = module_manager.num_instance(top_module, grid_module);
|
||||
/* Add the module to top_module */
|
||||
module_manager.add_child_module(top_module, grid_module);
|
||||
module_manager.add_child_module(top_module, grid_module, false);
|
||||
/* Set an unique name to the instance
|
||||
* Note: it is your risk to gurantee the name is unique!
|
||||
*/
|
||||
|
@ -102,33 +102,6 @@ vtr::Matrix<size_t> add_top_module_grid_instances(ModuleManager& module_manager,
|
|||
vtr::Matrix<size_t> grid_instance_ids({grids.width(), grids.height()});
|
||||
grid_instance_ids.fill(size_t(-1));
|
||||
|
||||
/* Instanciate core grids */
|
||||
for (size_t ix = 1; ix < grids.width() - 1; ++ix) {
|
||||
for (size_t iy = 1; iy < grids.height() - 1; ++iy) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[ix][iy].type)) {
|
||||
continue;
|
||||
}
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[ix][iy].width_offset)
|
||||
|| (0 < grids[ix][iy].height_offset)) {
|
||||
/* Find the root of this grid, the instance id should be valid.
|
||||
* We just copy it here
|
||||
*/
|
||||
vtr::Point<size_t> root_grid_coord(ix - grids[ix][iy].width_offset,
|
||||
iy - grids[ix][iy].height_offset);
|
||||
VTR_ASSERT(size_t(-1) != grid_instance_ids[root_grid_coord.x()][root_grid_coord.y()]);
|
||||
grid_instance_ids[ix][iy] = grid_instance_ids[root_grid_coord.x()][root_grid_coord.y()];
|
||||
continue;
|
||||
}
|
||||
/* Add a grid module to top_module*/
|
||||
vtr::Point<size_t> grid_coord(ix, iy);
|
||||
grid_instance_ids[ix][iy] = add_top_module_grid_instance(module_manager, top_module,
|
||||
grids[ix][iy].type,
|
||||
NUM_SIDES, grid_coord);
|
||||
}
|
||||
}
|
||||
|
||||
/* Instanciate I/O grids */
|
||||
/* Create the coordinate range for each side of FPGA fabric */
|
||||
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coordinates = generate_perimeter_grid_coordinates( grids);
|
||||
|
@ -157,6 +130,37 @@ vtr::Matrix<size_t> add_top_module_grid_instances(ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
|
||||
/* Instanciate core grids
|
||||
* IMPORTANT: sequence matters here, it impacts the I/O indexing.
|
||||
* We should follow the same sequence as the build_io_location_map()!
|
||||
* If you change the sequence of walking through grids here, you should change it in the build_io_location map()!
|
||||
*/
|
||||
for (size_t ix = 1; ix < grids.width() - 1; ++ix) {
|
||||
for (size_t iy = 1; iy < grids.height() - 1; ++iy) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[ix][iy].type)) {
|
||||
continue;
|
||||
}
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[ix][iy].width_offset)
|
||||
|| (0 < grids[ix][iy].height_offset)) {
|
||||
/* Find the root of this grid, the instance id should be valid.
|
||||
* We just copy it here
|
||||
*/
|
||||
vtr::Point<size_t> root_grid_coord(ix - grids[ix][iy].width_offset,
|
||||
iy - grids[ix][iy].height_offset);
|
||||
VTR_ASSERT(size_t(-1) != grid_instance_ids[root_grid_coord.x()][root_grid_coord.y()]);
|
||||
grid_instance_ids[ix][iy] = grid_instance_ids[root_grid_coord.x()][root_grid_coord.y()];
|
||||
continue;
|
||||
}
|
||||
/* Add a grid module to top_module*/
|
||||
vtr::Point<size_t> grid_coord(ix, iy);
|
||||
grid_instance_ids[ix][iy] = add_top_module_grid_instance(module_manager, top_module,
|
||||
grids[ix][iy].type,
|
||||
NUM_SIDES, grid_coord);
|
||||
}
|
||||
}
|
||||
|
||||
return grid_instance_ids;
|
||||
}
|
||||
|
||||
|
@ -201,7 +205,7 @@ vtr::Matrix<size_t> add_top_module_switch_block_instances(ModuleManager& module_
|
|||
/* Record the instance id */
|
||||
sb_instance_ids[rr_gsb.get_sb_x()][rr_gsb.get_sb_y()] = module_manager.num_instance(top_module, sb_module);
|
||||
/* Add the module to top_module */
|
||||
module_manager.add_child_module(top_module, sb_module);
|
||||
module_manager.add_child_module(top_module, sb_module, false);
|
||||
/* Set an unique name to the instance
|
||||
* Note: it is your risk to gurantee the name is unique!
|
||||
*/
|
||||
|
@ -257,7 +261,7 @@ vtr::Matrix<size_t> add_top_module_connection_block_instances(ModuleManager& mod
|
|||
/* Record the instance id */
|
||||
cb_instance_ids[rr_gsb.get_cb_x(cb_type)][rr_gsb.get_cb_y(cb_type)] = module_manager.num_instance(top_module, cb_module);
|
||||
/* Add the module to top_module */
|
||||
module_manager.add_child_module(top_module, cb_module);
|
||||
module_manager.add_child_module(top_module, cb_module, false);
|
||||
/* Set an unique name to the instance
|
||||
* Note: it is your risk to gurantee the name is unique!
|
||||
*/
|
||||
|
@ -271,6 +275,118 @@ vtr::Matrix<size_t> add_top_module_connection_block_instances(ModuleManager& mod
|
|||
return cb_instance_ids;
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Add the I/O children to the top-level module, which impacts the I/O indexing
|
||||
* This is the default function to build the I/O sequence/indexing
|
||||
* The I/O children is added in a maze shape
|
||||
* The function supports I/Os in the center of grids, starting from the bottom-left corner and ending at the center
|
||||
*
|
||||
* +----------------------+
|
||||
* |+--------------------+|
|
||||
* ||+------------------+||
|
||||
* |||+----------------+|||
|
||||
* ||||+-------------->||||
|
||||
* ||||+---------------+|||
|
||||
* |||+-----------------+||
|
||||
* ||+-------------------+|
|
||||
* |+---------------------+
|
||||
* ^
|
||||
* io[0]
|
||||
*******************************************************************/
|
||||
static
|
||||
void add_top_module_io_children(ModuleManager& module_manager,
|
||||
const ModuleId& top_module,
|
||||
const DeviceGrid& grids,
|
||||
const vtr::Matrix<size_t>& grid_instance_ids) {
|
||||
/* Create the coordinate range for the perimeter I/Os of FPGA fabric */
|
||||
std::map<e_side, std::vector<vtr::Point<size_t>>> io_coordinates = generate_perimeter_grid_coordinates( grids);
|
||||
|
||||
for (const e_side& io_side : FPGA_SIDES_CLOCKWISE) {
|
||||
for (const vtr::Point<size_t>& io_coord : io_coordinates[io_side]) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[io_coord.x()][io_coord.y()].type)) {
|
||||
continue;
|
||||
}
|
||||
/* Skip width, height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[io_coord.x()][io_coord.y()].width_offset)
|
||||
|| (0 < grids[io_coord.x()][io_coord.y()].height_offset)) {
|
||||
continue;
|
||||
}
|
||||
/* Find the module name for this type of grid */
|
||||
t_physical_tile_type_ptr grid_type = grids[io_coord.x()][io_coord.y()].type;
|
||||
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
|
||||
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), is_io_type(grid_type), io_side);
|
||||
ModuleId grid_module = module_manager.find_module(grid_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
|
||||
/* Add a I/O children to top_module*/
|
||||
module_manager.add_io_child(top_module, grid_module, grid_instance_ids[io_coord.x()][io_coord.y()], vtr::Point<int>(io_coord.x(), io_coord.y()));
|
||||
}
|
||||
}
|
||||
|
||||
/* Walk through the center grids */
|
||||
size_t xmin = 1;
|
||||
size_t xmax = grids.width() - 2;
|
||||
size_t ymin = 1;
|
||||
size_t ymax = grids.height() - 2;
|
||||
std::vector<vtr::Point<size_t>> coords;
|
||||
while (xmin < xmax && ymin < ymax) {
|
||||
for (size_t iy = ymin; iy < ymax + 1; iy++) {
|
||||
coords.push_back(vtr::Point<size_t>(xmin, iy));
|
||||
}
|
||||
for (size_t ix = xmin + 1; ix < xmax + 1; ix++) {
|
||||
coords.push_back(vtr::Point<size_t>(ix, ymax));
|
||||
}
|
||||
for (size_t iy = ymax - 1; iy > ymin; iy--) {
|
||||
coords.push_back(vtr::Point<size_t>(xmax, iy));
|
||||
}
|
||||
for (size_t ix = xmax; ix > xmin; ix--) {
|
||||
coords.push_back(vtr::Point<size_t>(ix, ymin));
|
||||
}
|
||||
xmin++;
|
||||
ymin++;
|
||||
xmax--;
|
||||
ymax--;
|
||||
}
|
||||
|
||||
/* If height is odd, add the missing horizental line */
|
||||
if ((grids.height() - 2) % 2 == 1) {
|
||||
if (ymin == ymax) {
|
||||
for (size_t ix = xmin; ix < xmax + 1; ix++) {
|
||||
coords.push_back(vtr::Point<size_t>(ix, ymin));
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If width is odd, add the missing vertical line */
|
||||
if ((grids.width() - 2) % 2 == 1) {
|
||||
if (xmin == xmax) {
|
||||
for (size_t iy = ymin; iy < ymax + 1; iy++) {
|
||||
coords.push_back(vtr::Point<size_t>(xmin, iy));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now walk through the coordinates */
|
||||
for (vtr::Point<size_t> coord : coords) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[coord.x()][coord.y()].type)) {
|
||||
continue;
|
||||
}
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[coord.x()][coord.y()].width_offset)
|
||||
|| (0 < grids[coord.x()][coord.y()].height_offset)) {
|
||||
continue;
|
||||
}
|
||||
/* Find the module name for this type of grid */
|
||||
t_physical_tile_type_ptr grid_type = grids[coord.x()][coord.y()].type;
|
||||
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
|
||||
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), is_io_type(grid_type), NUM_SIDES);
|
||||
ModuleId grid_module = module_manager.find_module(grid_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
|
||||
/* Add a I/O children to top_module*/
|
||||
module_manager.add_io_child(top_module, grid_module, grid_instance_ids[coord.x()][coord.y()], vtr::Point<int>(coord.x(), coord.y()));
|
||||
}
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Print the top-level module for the FPGA fabric in Verilog format
|
||||
* This function will
|
||||
|
@ -323,6 +439,9 @@ int build_top_module(ModuleManager& module_manager,
|
|||
cb_instance_ids[CHANX] = add_top_module_connection_block_instances(module_manager, top_module, device_rr_gsb, CHANX, compact_routing_hierarchy);
|
||||
cb_instance_ids[CHANY] = add_top_module_connection_block_instances(module_manager, top_module, device_rr_gsb, CHANY, compact_routing_hierarchy);
|
||||
|
||||
/* Update I/O children list */
|
||||
add_top_module_io_children(module_manager, top_module, grids, grid_instance_ids);
|
||||
|
||||
/* Add nets when we need a complete fabric modeling,
|
||||
* which is required by downstream functions
|
||||
*/
|
||||
|
@ -350,8 +469,7 @@ int build_top_module(ModuleManager& module_manager,
|
|||
}
|
||||
|
||||
/* Add GPIO ports from the sub-modules under this Verilog module
|
||||
* This is a much easier job after adding sub modules (instances),
|
||||
* we just need to find all the I/O ports from the child modules and build a list of it
|
||||
* For top-level module, we follow a special sequencing for I/O modules. So we rebuild the I/O children list here
|
||||
*/
|
||||
add_module_gpio_ports_from_child_modules(module_manager, top_module);
|
||||
|
||||
|
|
|
@ -131,7 +131,7 @@ void add_module_nets_tile_direct_connection(ModuleManager& module_manager,
|
|||
|
||||
/* Add a submodule of direct connection module to the top-level module */
|
||||
size_t direct_instance_id = module_manager.num_instance(top_module, direct_module);
|
||||
module_manager.add_child_module(top_module, direct_module);
|
||||
module_manager.add_child_module(top_module, direct_module, false);
|
||||
|
||||
/* Create the 1st module net */
|
||||
ModuleNetId net_direct_src = module_manager.create_module_net(top_module);
|
||||
|
|
|
@ -1055,7 +1055,7 @@ void add_top_module_nets_cmos_memory_bank_config_bus(ModuleManager& module_manag
|
|||
}
|
||||
VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module);
|
||||
size_t curr_bl_decoder_instance_id = module_manager.num_instance(top_module, bl_decoder_module);
|
||||
module_manager.add_child_module(top_module, bl_decoder_module);
|
||||
module_manager.add_child_module(top_module, bl_decoder_module, false);
|
||||
|
||||
/**************************************************************
|
||||
* Add the WL decoder module
|
||||
|
@ -1083,7 +1083,7 @@ void add_top_module_nets_cmos_memory_bank_config_bus(ModuleManager& module_manag
|
|||
}
|
||||
VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module);
|
||||
size_t curr_wl_decoder_instance_id = module_manager.num_instance(top_module, wl_decoder_module);
|
||||
module_manager.add_child_module(top_module, wl_decoder_module);
|
||||
module_manager.add_child_module(top_module, wl_decoder_module, false);
|
||||
|
||||
/**************************************************************
|
||||
* Add module nets from the top module to BL decoder's inputs
|
||||
|
@ -1531,7 +1531,7 @@ void add_top_module_nets_cmos_memory_frame_decoder_config_bus(ModuleManager& mod
|
|||
|
||||
/* Instanciate the decoder module here */
|
||||
size_t decoder_instance = module_manager.num_instance(parent_module, decoder_module);
|
||||
module_manager.add_child_module(parent_module, decoder_module);
|
||||
module_manager.add_child_module(parent_module, decoder_module, false);
|
||||
|
||||
/* Connect the enable (EN) port of memory modules under the parent module
|
||||
* to the frame decoder inputs
|
||||
|
|
|
@ -507,7 +507,7 @@ void add_top_module_nets_cmos_ql_memory_bank_bl_decoder_config_bus(ModuleManager
|
|||
}
|
||||
VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module);
|
||||
size_t curr_bl_decoder_instance_id = module_manager.num_instance(top_module, bl_decoder_module);
|
||||
module_manager.add_child_module(top_module, bl_decoder_module);
|
||||
module_manager.add_child_module(top_module, bl_decoder_module, false);
|
||||
|
||||
/**************************************************************
|
||||
* Add module nets from the top module to BL decoder's inputs
|
||||
|
@ -705,7 +705,7 @@ void add_top_module_nets_cmos_ql_memory_bank_wl_decoder_config_bus(ModuleManager
|
|||
}
|
||||
VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module);
|
||||
size_t curr_wl_decoder_instance_id = module_manager.num_instance(top_module, wl_decoder_module);
|
||||
module_manager.add_child_module(top_module, wl_decoder_module);
|
||||
module_manager.add_child_module(top_module, wl_decoder_module, false);
|
||||
|
||||
/**************************************************************
|
||||
* Add module nets from the top module to WL decoder's inputs
|
||||
|
@ -1471,7 +1471,7 @@ void add_top_module_nets_cmos_ql_memory_bank_bl_shift_register_config_bus(Module
|
|||
VTR_ASSERT(sr_bank_module);
|
||||
|
||||
size_t cur_inst = module_manager.num_instance(top_module, sr_bank_module);
|
||||
module_manager.add_child_module(top_module, sr_bank_module);
|
||||
module_manager.add_child_module(top_module, sr_bank_module, false);
|
||||
|
||||
sr_banks.link_bl_shift_register_bank_to_module(config_region, sr_bank, sr_bank_module);
|
||||
sr_banks.link_bl_shift_register_bank_to_instance(config_region, sr_bank, cur_inst);
|
||||
|
@ -1565,7 +1565,7 @@ void add_top_module_nets_cmos_ql_memory_bank_wl_shift_register_config_bus(Module
|
|||
VTR_ASSERT(sr_bank_module);
|
||||
|
||||
size_t cur_inst = module_manager.num_instance(top_module, sr_bank_module);
|
||||
module_manager.add_child_module(top_module, sr_bank_module);
|
||||
module_manager.add_child_module(top_module, sr_bank_module, false);
|
||||
|
||||
sr_banks.link_wl_shift_register_bank_to_module(config_region, sr_bank, sr_bank_module);
|
||||
sr_banks.link_wl_shift_register_bank_to_instance(config_region, sr_bank, cur_inst);
|
||||
|
|
|
@ -91,6 +91,29 @@ std::vector<vtr::Point<int>> ModuleManager::configurable_child_coordinates(const
|
|||
return configurable_child_coordinates_[parent_module];
|
||||
}
|
||||
|
||||
/* Find all the configurable child modules under a parent module */
|
||||
std::vector<ModuleId> ModuleManager::io_children(const ModuleId& parent_module) const {
|
||||
/* Validate the module_id */
|
||||
VTR_ASSERT(valid_module_id(parent_module));
|
||||
|
||||
return io_children_[parent_module];
|
||||
}
|
||||
|
||||
/* Find all the instances of configurable child modules under a parent module */
|
||||
std::vector<size_t> ModuleManager::io_child_instances(const ModuleId& parent_module) const {
|
||||
/* Validate the module_id */
|
||||
VTR_ASSERT(valid_module_id(parent_module));
|
||||
|
||||
return io_child_instances_[parent_module];
|
||||
}
|
||||
|
||||
std::vector<vtr::Point<int>> ModuleManager::io_child_coordinates(const ModuleId& parent_module) const {
|
||||
/* Validate the module_id */
|
||||
VTR_ASSERT(valid_module_id(parent_module));
|
||||
|
||||
return io_child_coordinates_[parent_module];
|
||||
}
|
||||
|
||||
/* Find the source ids of modules */
|
||||
ModuleManager::module_net_src_range ModuleManager::module_net_sources(const ModuleId& module, const ModuleNetId& net) const {
|
||||
/* Validate the module_id */
|
||||
|
@ -562,6 +585,10 @@ ModuleId ModuleManager::add_module(const std::string& name) {
|
|||
config_region_ids_.emplace_back();
|
||||
config_region_children_.emplace_back();
|
||||
|
||||
io_children_.emplace_back();
|
||||
io_child_instances_.emplace_back();
|
||||
io_child_coordinates_.emplace_back();
|
||||
|
||||
port_ids_.emplace_back();
|
||||
ports_.emplace_back();
|
||||
port_types_.emplace_back();
|
||||
|
@ -680,7 +707,7 @@ void ModuleManager::set_port_preproc_flag(const ModuleId& module, const ModulePo
|
|||
}
|
||||
|
||||
/* Add a child module to a parent module */
|
||||
void ModuleManager::add_child_module(const ModuleId& parent_module, const ModuleId& child_module) {
|
||||
void ModuleManager::add_child_module(const ModuleId& parent_module, const ModuleId& child_module, const bool& is_io_child) {
|
||||
/* Validate the id of both parent and child modules */
|
||||
VTR_ASSERT ( valid_module_id(parent_module) );
|
||||
VTR_ASSERT ( valid_module_id(child_module) );
|
||||
|
@ -693,19 +720,27 @@ void ModuleManager::add_child_module(const ModuleId& parent_module, const Module
|
|||
}
|
||||
|
||||
std::vector<ModuleId>::iterator child_it = std::find(children_[parent_module].begin(), children_[parent_module].end(), child_module);
|
||||
int child_instance_id = -1;
|
||||
if (child_it == children_[parent_module].end()) {
|
||||
/* Update the child module of parent module */
|
||||
children_[parent_module].push_back(child_module);
|
||||
num_child_instances_[parent_module].push_back(1); /* By default give one */
|
||||
child_instance_id = 0;
|
||||
/* Update the instance name list */
|
||||
child_instance_names_[parent_module].emplace_back();
|
||||
child_instance_names_[parent_module].back().emplace_back();
|
||||
} else {
|
||||
/* Increase the counter of instances */
|
||||
child_instance_id = num_child_instances_[parent_module][child_it - children_[parent_module].begin()];
|
||||
num_child_instances_[parent_module][child_it - children_[parent_module].begin()]++;
|
||||
child_instance_names_[parent_module][child_it - children_[parent_module].begin()].emplace_back();
|
||||
}
|
||||
|
||||
/* Add to I/O child if needed */
|
||||
if (is_io_child) {
|
||||
add_io_child(parent_module, child_module, child_instance_id);
|
||||
}
|
||||
|
||||
/* Update fast look-up for nets */
|
||||
size_t instance_id = net_lookup_[parent_module][child_module].size();
|
||||
net_lookup_[parent_module][child_module].emplace_back();
|
||||
|
@ -815,6 +850,36 @@ void ModuleManager::add_configurable_child_to_region(const ModuleId& parent_modu
|
|||
config_region_children_[parent_module][config_region].push_back(config_child_id);
|
||||
}
|
||||
|
||||
void ModuleManager::add_io_child(const ModuleId& parent_module,
|
||||
const ModuleId& child_module,
|
||||
const size_t& child_instance,
|
||||
const vtr::Point<int> coord) {
|
||||
/* Validate the id of both parent and child modules */
|
||||
VTR_ASSERT ( valid_module_id(parent_module) );
|
||||
VTR_ASSERT ( valid_module_id(child_module) );
|
||||
/* Ensure that the instance id is in range */
|
||||
VTR_ASSERT ( child_instance < num_instance(parent_module, child_module));
|
||||
|
||||
io_children_[parent_module].push_back(child_module);
|
||||
io_child_instances_[parent_module].push_back(child_instance);
|
||||
io_child_coordinates_[parent_module].push_back(coord);
|
||||
}
|
||||
|
||||
void ModuleManager::reserve_io_child(const ModuleId& parent_module,
|
||||
const size_t& num_children) {
|
||||
VTR_ASSERT ( valid_module_id(parent_module) );
|
||||
/* Do reserve when the number of children is larger than current size of lists */
|
||||
if (num_children > io_children_[parent_module].size()) {
|
||||
io_children_[parent_module].reserve(num_children);
|
||||
}
|
||||
if (num_children > io_child_instances_[parent_module].size()) {
|
||||
io_child_instances_[parent_module].reserve(num_children);
|
||||
}
|
||||
if (num_children > io_child_coordinates_[parent_module].size()) {
|
||||
io_child_coordinates_[parent_module].reserve(num_children);
|
||||
}
|
||||
}
|
||||
|
||||
void ModuleManager::reserve_module_nets(const ModuleId& module,
|
||||
const size_t& num_nets) {
|
||||
/* Validate the module id */
|
||||
|
@ -1020,6 +1085,14 @@ void ModuleManager::clear_config_region(const ModuleId& parent_module) {
|
|||
config_region_children_[parent_module].clear();
|
||||
}
|
||||
|
||||
void ModuleManager::clear_io_children(const ModuleId& parent_module) {
|
||||
VTR_ASSERT(valid_module_id(parent_module));
|
||||
|
||||
io_children_[parent_module].clear();
|
||||
io_child_instances_[parent_module].clear();
|
||||
io_child_coordinates_[parent_module].clear();
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* Private validators/invalidators
|
||||
******************************************************************************/
|
||||
|
|
|
@ -151,6 +151,14 @@ class ModuleManager {
|
|||
std::vector<size_t> configurable_child_instances(const ModuleId& parent_module) const;
|
||||
/* Find the coordindate of a configurable child module under a parent module */
|
||||
std::vector<vtr::Point<int>> configurable_child_coordinates(const ModuleId& parent_module) const;
|
||||
|
||||
/* Find all the I/O child modules under a parent module */
|
||||
std::vector<ModuleId> io_children(const ModuleId& parent_module) const;
|
||||
/* Find all the instances of I/O child modules under a parent module */
|
||||
std::vector<size_t> io_child_instances(const ModuleId& parent_module) const;
|
||||
/* Find the coordindate of an I/O child module under a parent module */
|
||||
std::vector<vtr::Point<int>> io_child_coordinates(const ModuleId& parent_module) const;
|
||||
|
||||
/* Find the source ids of modules */
|
||||
module_net_src_range module_net_sources(const ModuleId& module, const ModuleNetId& net) const;
|
||||
/* Find the sink ids of modules */
|
||||
|
@ -255,8 +263,13 @@ class ModuleManager {
|
|||
void set_port_is_register(const ModuleId& module, const std::string& port_name, const bool& is_register);
|
||||
/* Set the preprocessing flag for a port */
|
||||
void set_port_preproc_flag(const ModuleId& module, const ModulePortId& port, const std::string& preproc_flag);
|
||||
/* Add a child module to a parent module */
|
||||
void add_child_module(const ModuleId& parent_module, const ModuleId& child_module);
|
||||
/** @brief Add a child module to a parent module.
|
||||
* By default, it considers the child module as an I/O child, and update the children list of I/O modules inside
|
||||
* It not needed, just turn it off. Then you need to call add_io_child() API to update child list
|
||||
*
|
||||
* .. note:: By default, we assume the I/O indexing to the same as sequence when adding child modules to a parent. However, it may not be true all the time, especially for the top-level module, where customization is needed.
|
||||
*/
|
||||
void add_child_module(const ModuleId& parent_module, const ModuleId& child_module, const bool& is_io_child = true);
|
||||
/* Set the instance name of a child module */
|
||||
void set_child_instance_name(const ModuleId& parent_module, const ModuleId& child_module, const size_t& instance_id, const std::string& instance_name);
|
||||
/* Add a configurable child module to module
|
||||
|
@ -266,9 +279,7 @@ class ModuleManager {
|
|||
* By default, it is an invalid coordinate
|
||||
*/
|
||||
void add_configurable_child(const ModuleId& module, const ModuleId& child_module, const size_t& child_instance, const vtr::Point<int> coord = vtr::Point<int>(-1, -1));
|
||||
/* Reserved a number of configurable children
|
||||
* for memory efficiency
|
||||
*/
|
||||
/* Reserved a number of configurable children for memory efficiency */
|
||||
void reserve_configurable_child(const ModuleId& module, const size_t& num_children);
|
||||
|
||||
/* Create a new configurable region under a module */
|
||||
|
@ -283,10 +294,18 @@ class ModuleManager {
|
|||
const ModuleId& child_module,
|
||||
const size_t& child_instance,
|
||||
const size_t& config_child_id);
|
||||
|
||||
/* Reserved a number of module nets for a given module
|
||||
* for memory efficiency
|
||||
/** @brief Add a I/O child to module
|
||||
* This function also set the coordinate of a configurable child
|
||||
* The coordinate is used for build I/O location map. So it is consistent with the VPR coordinate system
|
||||
* By default, it is an invalid coordinate
|
||||
*
|
||||
* .. note:: I/O child does not necessary have to be a I/O block. It just provide a sequence for other functions, e.g., connect_gpio_module() to index the I/Os from each child module/instance.
|
||||
*/
|
||||
void add_io_child(const ModuleId& module, const ModuleId& child_module, const size_t& child_instance, const vtr::Point<int> coord = vtr::Point<int>(-1, -1));
|
||||
/** @brief Reserved a number of I/O children for memory efficiency */
|
||||
void reserve_io_child(const ModuleId& module, const size_t& num_children);
|
||||
|
||||
/* Reserved a number of module nets for a given module for memory efficiency */
|
||||
void reserve_module_nets(const ModuleId& module, const size_t& num_nets);
|
||||
|
||||
/* Add a net to the connection graph of the module */
|
||||
|
@ -295,9 +314,7 @@ class ModuleManager {
|
|||
void set_net_name(const ModuleId& module, const ModuleNetId& net,
|
||||
const std::string& name);
|
||||
|
||||
/* Reserved a number of sources for a module net for a given module
|
||||
* for memory efficiency
|
||||
*/
|
||||
/* Reserved a number of sources for a module net for a given module for memory efficiency */
|
||||
void reserve_module_net_sources(const ModuleId& module, const ModuleNetId& net,
|
||||
const size_t& num_sources);
|
||||
|
||||
|
@ -306,9 +323,7 @@ class ModuleManager {
|
|||
const ModuleId& src_module, const size_t& instance_id,
|
||||
const ModulePortId& src_port, const size_t& src_pin);
|
||||
|
||||
/* Reserved a number of sinks for a module net for a given module
|
||||
* for memory efficiency
|
||||
*/
|
||||
/* Reserved a number of sinks for a module net for a given module for memory efficiency */
|
||||
void reserve_module_net_sinks(const ModuleId& module, const ModuleNetId& net,
|
||||
const size_t& num_sinks);
|
||||
|
||||
|
@ -330,6 +345,14 @@ class ModuleManager {
|
|||
* Do NOT use unless you know what you are doing!!!
|
||||
*/
|
||||
void clear_config_region(const ModuleId& parent_module);
|
||||
|
||||
/* This is a strong function which will remove all the io children
|
||||
* under a given parent module
|
||||
* It is mainly used by other functions which want to force an I/O sequence
|
||||
* Do NOT use unless you know what you are doing!!!
|
||||
*/
|
||||
void clear_io_children(const ModuleId& parent_module);
|
||||
|
||||
public: /* Public validators/invalidators */
|
||||
bool valid_module_id(const ModuleId& module) const;
|
||||
bool valid_module_port_id(const ModuleId& module, const ModulePortId& port) const;
|
||||
|
@ -371,6 +394,15 @@ class ModuleManager {
|
|||
vtr::vector<ModuleId, vtr::vector<ConfigRegionId, ConfigRegionId>> config_region_ids_;
|
||||
vtr::vector<ModuleId, vtr::vector<ConfigRegionId, std::vector<size_t>>> config_region_children_;
|
||||
|
||||
/* I/O child modules are used to record the position of I/O modules in GPIO indexing
|
||||
* The sequence of children in the list denotes which one is indexed in the GPIO first, etc.
|
||||
* Note that the sequence can be totally different from the children_ list
|
||||
* This is really dependent how the I/O indexing is organized which should be made by users/designers
|
||||
*/
|
||||
vtr::vector<ModuleId, std::vector<ModuleId>> io_children_;
|
||||
vtr::vector<ModuleId, std::vector<size_t>> io_child_instances_;
|
||||
vtr::vector<ModuleId, std::vector<vtr::Point<int>>> io_child_coordinates_;
|
||||
|
||||
/* Port-level data */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, ModulePortId>> port_ids_; /* List of ports for each Module */
|
||||
vtr::vector<ModuleId, vtr::vector<ModulePortId, BasicPort>> ports_; /* List of ports for each Module */
|
||||
|
|
|
@ -388,10 +388,11 @@ void add_lb_router_nets(LbRouter& lb_router,
|
|||
const VprDeviceAnnotation& device_annotation,
|
||||
const ClusteringContext& clustering_ctx,
|
||||
const VprClusteringAnnotation& clustering_annotation,
|
||||
const RepackDesignConstraints& design_constraints,
|
||||
const ClusterBlockId& block_id,
|
||||
const bool& verbose) {
|
||||
const RepackOption& options) {
|
||||
size_t net_counter = 0;
|
||||
bool verbose = options.verbose_output();
|
||||
RepackDesignConstraints design_constraints = options.design_constraints();
|
||||
|
||||
/* Two spots to find source nodes for each nets
|
||||
* - nets that appear in the inputs of a clustered block
|
||||
|
@ -437,6 +438,54 @@ void add_lb_router_nets(LbRouter& lb_router,
|
|||
pb_pin_mapped_nets[pb_pin] = atom_net_id;
|
||||
}
|
||||
|
||||
/* Cache the sink nodes/routing traces for the global nets which is specifed to be ignored on given pins */
|
||||
std::map<AtomNetId, std::vector<LbRRNodeId>> ignored_global_net_sinks;
|
||||
std::map<AtomNetId, bool> ignored_atom_nets;
|
||||
for (int j = 0; j < lb_type->pb_type->num_pins; j++) {
|
||||
/* Get the source pb_graph pin and find the rr_node in logical block routing resource graph */
|
||||
const t_pb_graph_pin* source_pb_pin = get_pb_graph_node_pin_from_block_pin(block_id, j);
|
||||
VTR_ASSERT(source_pb_pin->parent_node == pb->pb_graph_node);
|
||||
|
||||
/* Bypass output pins */
|
||||
if (OUT_PORT == source_pb_pin->port->type) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Find the net mapped to this pin in clustering results*/
|
||||
ClusterNetId cluster_net_id = clustering_ctx.clb_nlist.block_net(block_id, j);
|
||||
/* Get the actual net id because it may be renamed during routing */
|
||||
if (true == clustering_annotation.is_net_renamed(block_id, j)) {
|
||||
cluster_net_id = clustering_annotation.net(block_id, j);
|
||||
}
|
||||
|
||||
/* Bypass unmapped pins */
|
||||
if (ClusterNetId::INVALID() == cluster_net_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Only for global net which should be ignored, cache the sink nodes */
|
||||
BasicPort curr_pin(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number);
|
||||
if ( (clustering_ctx.clb_nlist.net_is_ignored(cluster_net_id))
|
||||
&& (clustering_ctx.clb_nlist.net_is_global(cluster_net_id))
|
||||
&& (options.is_pin_ignore_global_nets(std::string(lb_type->pb_type->name), curr_pin))) {
|
||||
/* Find the net mapped to this pin in clustering results*/
|
||||
AtomNetId atom_net_id = pb_pin_mapped_nets[source_pb_pin];
|
||||
|
||||
std::vector<int> pb_route_indices = find_pb_route_by_atom_net(pb, source_pb_pin, atom_net_id);
|
||||
VTR_ASSERT(1 == pb_route_indices.size());
|
||||
int pb_route_index = pb_route_indices[0];
|
||||
t_pb_graph_pin* packing_source_pb_pin = get_pb_graph_node_pin_from_block_pin(block_id, pb_route_index);
|
||||
VTR_ASSERT(nullptr != packing_source_pb_pin);
|
||||
|
||||
/* Find all the sink pins in the pb_route, we walk through the input pins and find the pin */
|
||||
std::vector<t_pb_graph_pin*> sink_pb_graph_pins = find_routed_pb_graph_pins_atom_net(pb, source_pb_pin, packing_source_pb_pin, atom_net_id, device_annotation, pb_pin_mapped_nets, pb_graph_pin_lookup_from_index);
|
||||
std::vector<LbRRNodeId> sink_lb_rr_nodes = find_lb_net_physical_sink_lb_rr_nodes(lb_rr_graph, sink_pb_graph_pins, device_annotation);
|
||||
VTR_ASSERT(sink_lb_rr_nodes.size() == sink_pb_graph_pins.size());
|
||||
ignored_global_net_sinks[atom_net_id].insert(ignored_global_net_sinks[atom_net_id].end(), sink_lb_rr_nodes.begin(), sink_lb_rr_nodes.end());
|
||||
ignored_atom_nets[atom_net_id] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Cache all the source nodes and sinks node for each net
|
||||
* net_terminal[net][0] is the list of source nodes
|
||||
* net_terminal[net][1] is the list of sink nodes
|
||||
|
@ -460,6 +509,12 @@ void add_lb_router_nets(LbRouter& lb_router,
|
|||
/* Find the net mapped to this pin in clustering results*/
|
||||
AtomNetId atom_net_id = pb_pin_mapped_nets[source_pb_pin];
|
||||
|
||||
BasicPort curr_pin(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number);
|
||||
if ( (ignored_atom_nets[atom_net_id])
|
||||
&& (options.is_pin_ignore_global_nets(std::string(lb_type->pb_type->name), curr_pin))) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check if the net information is constrained or not */
|
||||
std::string constrained_net_name = design_constraints.find_constrained_pin_net(std::string(lb_type->pb_type->name), BasicPort(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number));
|
||||
|
||||
|
@ -573,6 +628,10 @@ void add_lb_router_nets(LbRouter& lb_router,
|
|||
sink_pb_pin->to_string().c_str());
|
||||
}
|
||||
|
||||
/* Append sink nodes from ignored global net cache */
|
||||
sink_lb_rr_nodes.insert(sink_lb_rr_nodes.end(), ignored_global_net_sinks[atom_net_id_to_route].begin(), ignored_global_net_sinks[atom_net_id_to_route].end());
|
||||
VTR_LOGV(verbose, "Append %ld sinks from the routing traces of ignored global nets\n", ignored_global_net_sinks[atom_net_id_to_route].size());
|
||||
|
||||
/* Add the net */
|
||||
add_lb_router_net_to_route(lb_router, lb_rr_graph,
|
||||
std::vector<LbRRNodeId>(1, source_lb_rr_node),
|
||||
|
@ -671,13 +730,13 @@ void repack_cluster(const AtomContext& atom_ctx,
|
|||
const VprDeviceAnnotation& device_annotation,
|
||||
VprClusteringAnnotation& clustering_annotation,
|
||||
const VprBitstreamAnnotation& bitstream_annotation,
|
||||
const RepackDesignConstraints& design_constraints,
|
||||
const ClusterBlockId& block_id,
|
||||
const bool& verbose) {
|
||||
const RepackOption& options) {
|
||||
/* Get the pb graph that current clustered block is mapped to */
|
||||
t_logical_block_type_ptr lb_type = clustering_ctx.clb_nlist.block_type(block_id);
|
||||
t_pb_graph_node* pb_graph_head = lb_type->pb_graph_head;
|
||||
VTR_ASSERT(nullptr != pb_graph_head);
|
||||
bool verbose = options.verbose_output();
|
||||
|
||||
/* We should get a non-empty graph */
|
||||
const LbRRGraph& lb_rr_graph = device_annotation.physical_lb_rr_graph(pb_graph_head);
|
||||
|
@ -693,8 +752,7 @@ void repack_cluster(const AtomContext& atom_ctx,
|
|||
/* Add nets to be routed with source and terminals */
|
||||
add_lb_router_nets(lb_router, lb_type, lb_rr_graph, atom_ctx, device_annotation,
|
||||
clustering_ctx, const_cast<const VprClusteringAnnotation&>(clustering_annotation),
|
||||
design_constraints,
|
||||
block_id, verbose);
|
||||
block_id, options);
|
||||
|
||||
/* Initialize the modes to expand routing trees with the physical modes in device annotation
|
||||
* This is a must-do before running the routeri in the purpose of repacking!!!
|
||||
|
@ -740,8 +798,7 @@ void repack_clusters(const AtomContext& atom_ctx,
|
|||
const VprDeviceAnnotation& device_annotation,
|
||||
VprClusteringAnnotation& clustering_annotation,
|
||||
const VprBitstreamAnnotation& bitstream_annotation,
|
||||
const RepackDesignConstraints& design_constraints,
|
||||
const bool& verbose) {
|
||||
const RepackOption& options) {
|
||||
vtr::ScopedStartFinishTimer timer("Repack clustered blocks to physical implementation of logical tile");
|
||||
|
||||
for (auto blk_id : clustering_ctx.clb_nlist.blocks()) {
|
||||
|
@ -749,8 +806,8 @@ void repack_clusters(const AtomContext& atom_ctx,
|
|||
device_annotation,
|
||||
clustering_annotation,
|
||||
bitstream_annotation,
|
||||
design_constraints,
|
||||
blk_id, verbose);
|
||||
blk_id,
|
||||
options);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -808,22 +865,20 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
|
|||
VprDeviceAnnotation& device_annotation,
|
||||
VprClusteringAnnotation& clustering_annotation,
|
||||
const VprBitstreamAnnotation& bitstream_annotation,
|
||||
const RepackDesignConstraints& design_constraints,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const bool& verbose) {
|
||||
const RepackOption& options) {
|
||||
|
||||
/* build the routing resource graph for each logical tile */
|
||||
build_physical_lb_rr_graphs(device_ctx,
|
||||
device_annotation,
|
||||
verbose);
|
||||
options.verbose_output());
|
||||
|
||||
/* Call the LbRouter to re-pack each clustered block to physical implementation */
|
||||
repack_clusters(atom_ctx, clustering_ctx,
|
||||
const_cast<const VprDeviceAnnotation&>(device_annotation),
|
||||
clustering_annotation,
|
||||
bitstream_annotation,
|
||||
design_constraints,
|
||||
verbose);
|
||||
options);
|
||||
|
||||
/* Annnotate wire LUTs that are ONLY created by repacker!!!
|
||||
* This is a MUST RUN!
|
||||
|
@ -833,7 +888,7 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
|
|||
clustering_ctx,
|
||||
device_annotation,
|
||||
circuit_lib,
|
||||
verbose);
|
||||
options.verbose_output());
|
||||
}
|
||||
|
||||
} /* end namespace openfpga */
|
||||
|
|
|
@ -9,8 +9,8 @@
|
|||
#include "vpr_clustering_annotation.h"
|
||||
#include "vpr_routing_annotation.h"
|
||||
#include "vpr_bitstream_annotation.h"
|
||||
#include "repack_design_constraints.h"
|
||||
#include "circuit_library.h"
|
||||
#include "repack_option.h"
|
||||
|
||||
/********************************************************************
|
||||
* Function declaration
|
||||
|
@ -25,9 +25,8 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
|
|||
VprDeviceAnnotation& device_annotation,
|
||||
VprClusteringAnnotation& clustering_annotation,
|
||||
const VprBitstreamAnnotation& bitstream_annotation,
|
||||
const RepackDesignConstraints& design_constraints,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const bool& verbose);
|
||||
const RepackOption& options);
|
||||
|
||||
} /* end namespace openfpga */
|
||||
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
/******************************************************************************
|
||||
* Memember functions for data structure RepackOption
|
||||
******************************************************************************/
|
||||
#include <map>
|
||||
#include <array>
|
||||
#include "vtr_assert.h"
|
||||
#include "vtr_log.h"
|
||||
|
||||
#include "repack_option.h"
|
||||
#include "openfpga_tokenizer.h"
|
||||
#include "openfpga_port_parser.h"
|
||||
|
||||
/* begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
/**************************************************
|
||||
* Public Constructors
|
||||
*************************************************/
|
||||
RepackOption::RepackOption() {
|
||||
verbose_output_ = false;
|
||||
num_parse_errors_ = 0;
|
||||
}
|
||||
|
||||
/**************************************************
|
||||
* Public Accessors
|
||||
*************************************************/
|
||||
RepackDesignConstraints RepackOption::design_constraints() const {
|
||||
return design_constraints_;
|
||||
}
|
||||
|
||||
bool RepackOption::is_pin_ignore_global_nets(const std::string& pb_type_name, const BasicPort& pin) const {
|
||||
auto result = ignore_global_nets_on_pins_.find(pb_type_name);
|
||||
if (result == ignore_global_nets_on_pins_.end()) {
|
||||
/* Not found, return false */
|
||||
return false;
|
||||
} else {
|
||||
/* If the pin is contained by the ignore list, return true */
|
||||
for (BasicPort existing_port : result->second) {
|
||||
if (existing_port.mergeable(pin) && existing_port.contained(pin)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool RepackOption::verbose_output() const {
|
||||
return verbose_output_;
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* Private Mutators
|
||||
******************************************************************************/
|
||||
void RepackOption::set_design_constraints(const RepackDesignConstraints& design_constraints) {
|
||||
design_constraints_ = design_constraints;
|
||||
}
|
||||
|
||||
void RepackOption::set_ignore_global_nets_on_pins(const std::string& content) {
|
||||
num_parse_errors_ = 0;
|
||||
/* Split the content using a tokenizer */
|
||||
StringToken tokenizer(content);
|
||||
std::vector<std::string> tokens = tokenizer.split(',');
|
||||
|
||||
/* Parse each token */
|
||||
for (std::string token : tokens) {
|
||||
/* Extract the pb_type name and port name */
|
||||
StringToken pin_tokenizer(token);
|
||||
std::vector<std::string> pin_info = pin_tokenizer.split('.');
|
||||
/* Expect two contents, otherwise error out */
|
||||
if (pin_info.size() != 2) {
|
||||
std::string err_msg = std::string("Invalid content '") + token + std::string("' to skip, expect <pb_type_name>.<pin>\n");
|
||||
VTR_LOG_ERROR(err_msg.c_str());
|
||||
num_parse_errors_++;
|
||||
continue;
|
||||
}
|
||||
std::string pb_type_name = pin_info[0];
|
||||
PortParser port_parser(pin_info[1]);
|
||||
BasicPort curr_port = port_parser.port();
|
||||
if (!curr_port.is_valid()) {
|
||||
std::string err_msg = std::string("Invalid pin definition '") + token + std::string("', expect <pb_type_name>.<pin_name>[int:int]\n");
|
||||
VTR_LOG_ERROR(err_msg.c_str());
|
||||
num_parse_errors_++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check if the existing port already in the ignore list or not */
|
||||
auto result = ignore_global_nets_on_pins_.find(pb_type_name);
|
||||
if (result == ignore_global_nets_on_pins_.end()) {
|
||||
/* Not found, push the port */
|
||||
ignore_global_nets_on_pins_[pb_type_name].push_back(curr_port);
|
||||
} else {
|
||||
/* Already a list of ports. Check one by one.
|
||||
* - It already contained, do nothing but throw a warning.
|
||||
* - If we can merge, merge it.
|
||||
* - Otherwise, create it */
|
||||
bool included_by_existing_port = false;
|
||||
for (BasicPort existing_port : result->second) {
|
||||
if (existing_port.mergeable(curr_port)) {
|
||||
if (!existing_port.contained(curr_port)) {
|
||||
result->second.push_back(curr_port);
|
||||
included_by_existing_port = true;
|
||||
break;
|
||||
} else {
|
||||
std::string warn_msg = std::string("Pin definition '") + token + std::string("' is already included by other pin\n");
|
||||
VTR_LOG_WARN(warn_msg.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!included_by_existing_port) {
|
||||
result->second.push_back(curr_port);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RepackOption::set_verbose_output(const bool& enabled) {
|
||||
verbose_output_ = enabled;
|
||||
}
|
||||
|
||||
bool RepackOption::valid() const {
|
||||
if (num_parse_errors_) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} /* end namespace openfpga */
|
|
@ -0,0 +1,52 @@
|
|||
#ifndef REPACK_OPTION_H
|
||||
#define REPACK_OPTION_H
|
||||
|
||||
/********************************************************************
|
||||
* Include header files required by the data structure definition
|
||||
*******************************************************************/
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "repack_design_constraints.h"
|
||||
|
||||
/* Begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
/********************************************************************
|
||||
* Options for RRGSB writer
|
||||
*******************************************************************/
|
||||
class RepackOption {
|
||||
public: /* Public constructor */
|
||||
/* Set default options */
|
||||
RepackOption();
|
||||
public: /* Public accessors */
|
||||
RepackDesignConstraints design_constraints() const;
|
||||
/* Identify if a pin should ignore all the global nets */
|
||||
bool is_pin_ignore_global_nets(const std::string& pb_type_name, const BasicPort& pin) const;
|
||||
bool verbose_output() const;
|
||||
public: /* Public mutators */
|
||||
void set_design_constraints(const RepackDesignConstraints& design_constraints);
|
||||
void set_ignore_global_nets_on_pins(const std::string& content);
|
||||
void set_verbose_output(const bool& enabled);
|
||||
public: /* Public validators */
|
||||
/* Check if the following internal data is valid or not:
|
||||
* - no parsing errors
|
||||
*/
|
||||
bool valid() const;
|
||||
private: /* Internal Data */
|
||||
RepackDesignConstraints design_constraints_;
|
||||
/* The pin information on which global nets should be mapped to: [pb_type_name][0..num_ports]
|
||||
* For example:
|
||||
* - clb.I[0:1], clb.I[5:6] -> ["clb"][BasicPort(I, 0, 1), BasicPort(I, 5, 6)]
|
||||
* - clb.I[0:1], clb.I[2:6] -> ["clb"][BasicPort(I, 0, 6)]
|
||||
*/
|
||||
std::map<std::string, std::vector<BasicPort>> ignore_global_nets_on_pins_;
|
||||
|
||||
bool verbose_output_;
|
||||
|
||||
/* A flag to indicate if the data parse is invalid or not */
|
||||
int num_parse_errors_;
|
||||
};
|
||||
|
||||
} /* End namespace openfpga*/
|
||||
|
||||
#endif
|
|
@ -1326,7 +1326,7 @@ void add_module_nets_cmos_memory_frame_decoder_config_bus(ModuleManager& module_
|
|||
|
||||
/* Instanciate the decoder module here */
|
||||
VTR_ASSERT(0 == module_manager.num_instance(parent_module, decoder_module));
|
||||
module_manager.add_child_module(parent_module, decoder_module);
|
||||
module_manager.add_child_module(parent_module, decoder_module, false);
|
||||
|
||||
/* Connect the enable (EN) port of memory modules under the parent module
|
||||
* to the frame decoder inputs
|
||||
|
@ -1802,10 +1802,9 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
std::vector<BasicPort> gpio_ports_to_add;
|
||||
std::vector<bool> mappable_gpio_ports;
|
||||
|
||||
/* Iterate over the child modules */
|
||||
for (const ModuleId& child : module_manager.child_modules(module_id)) {
|
||||
/* Iterate over the child instances */
|
||||
for (size_t i = 0; i < module_manager.num_instance(module_id, child); ++i) {
|
||||
/* Iterate over the child modules and instances */
|
||||
for (size_t i = 0; i < module_manager.io_children(module_id).size(); ++i) {
|
||||
ModuleId child = module_manager.io_children(module_id)[i];
|
||||
/* Find all the global ports, whose port type is special */
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(child, module_port_type)) {
|
||||
const BasicPort& gpio_port = module_manager.module_port(child, gpio_port_id);
|
||||
|
@ -1837,7 +1836,6 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Record the port id for each type of GPIO port */
|
||||
std::vector<ModulePortId> gpio_port_ids;
|
||||
|
@ -1854,9 +1852,9 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
/* Set up a counter for each type of GPIO port */
|
||||
std::vector<size_t> gpio_port_lsb(gpio_ports_to_add.size(), 0);
|
||||
/* Add module nets to connect the GPIOs of the module to the GPIOs of the sub module */
|
||||
for (const ModuleId& child : module_manager.child_modules(module_id)) {
|
||||
/* Iterate over the child instances */
|
||||
for (const size_t& child_instance : module_manager.child_module_instances(module_id, child)) {
|
||||
for (size_t i = 0; i < module_manager.io_children(module_id).size(); ++i) {
|
||||
ModuleId child = module_manager.io_children(module_id)[i];
|
||||
size_t child_instance = module_manager.io_child_instances(module_id)[i];
|
||||
/* Find all the global ports, whose port type is special */
|
||||
for (ModulePortId child_gpio_port_id : module_manager.module_port_ids_by_type(child, module_port_type)) {
|
||||
BasicPort child_gpio_port = module_manager.module_port(child, child_gpio_port_id);
|
||||
|
@ -1892,11 +1890,9 @@ void add_module_io_ports_from_child_modules(ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check: all the lsb should now match the size of each GPIO port */
|
||||
for (size_t iport = 0; iport < gpio_ports_to_add.size(); ++iport) {
|
||||
if (gpio_ports_to_add[iport].get_width() != gpio_port_lsb[iport])
|
||||
VTR_ASSERT(gpio_ports_to_add[iport].get_width() == gpio_port_lsb[iport]);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
/////////////////////////////////////////
|
||||
// Functionality: A register driven by a combinational logic with reset signal
|
||||
// Author: Xifan Tang
|
||||
////////////////////////////////////////
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
module rst_on_lut(a, b, q, out, clk, rst);
|
||||
|
||||
input wire rst;
|
||||
input wire clk;
|
||||
input wire a;
|
||||
input wire b;
|
||||
output reg q;
|
||||
output wire out;
|
||||
|
||||
always @(posedge rst or posedge clk) begin
|
||||
if (rst) begin
|
||||
q <= 0;
|
||||
end else begin
|
||||
q <= a;
|
||||
end
|
||||
end
|
||||
|
||||
assign out = b & ~rst;
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,76 @@
|
|||
# Run VPR for the 'and' design
|
||||
#--write_rr_graph example_rr_graph.xml
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling ideal
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
|
||||
|
||||
# Read OpenFPGA simulation settings
|
||||
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
# to debug use --verbose options
|
||||
link_openfpga_arch --sort_gsb_chan_node_in_edges
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing #--verbose
|
||||
|
||||
# Write the fabric hierarchy of module graph to a file
|
||||
# This is used by hierarchical PnR flows
|
||||
write_fabric_hierarchy --file ./fabric_hierarchy.txt
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack --ignore_global_nets_on_pins clb.I[0:11] #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write fabric-dependent bitstream
|
||||
write_fabric_bitstream --file fabric_bitstream.bit --format plain_text
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_full_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --include_signal_init --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE} --bitstream fabric_bitstream.bit
|
||||
write_preconfigured_fabric_wrapper --embed_bitstream iverilog --file ./SRC --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE}
|
||||
write_preconfigured_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE}
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file ./SDC
|
||||
|
||||
# Write SDC to disable timing for configure ports
|
||||
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file ./SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
||||
|
||||
# Note :
|
||||
# To run verification at the end of the flow maintain source in ./SRC directory
|
|
@ -129,6 +129,11 @@ echo -e "Testing K4N5 with pattern based local routing";
|
|||
run-task basic_tests/k4_series/k4n5_pattern_local_routing $@
|
||||
echo -e "Testing K4N4 with custom I/O location syntax";
|
||||
run-task basic_tests/k4_series/k4n4_custom_io_loc $@
|
||||
run-task basic_tests/k4_series/k4n4_custom_io_loc_center $@
|
||||
run-task basic_tests/k4_series/k4n4_custom_io_loc_center_height_odd $@
|
||||
run-task basic_tests/k4_series/k4n4_custom_io_loc_center_width_odd $@
|
||||
echo -e "Testing K4N4 with a local routing where reset can driven LUT inputs";
|
||||
run-task basic_tests/k4_series/k4n4_rstOnLut $@
|
||||
|
||||
echo -e "Testing different tile organizations";
|
||||
echo -e "Testing tiles with pins only on top and left sides";
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
"""
|
||||
=========================================
|
||||
Represetes IO Sequence in OpenFPGA Engine
|
||||
=========================================
|
||||
|
||||
This example demonstrates the ``OpenFPGA_Arch`` class which parses the
|
||||
`VPR` and `OpenFPGA` Architecture file and provides logical information.
|
||||
|
||||
.. image:: ../../../examples/OpenFPGA_basic/_sample_io_sequence.svg
|
||||
:width: 60%
|
||||
:align: center
|
||||
|
||||
Author: Ganesh Gore
|
||||
|
||||
"""
|
||||
import math
|
||||
import svgwrite
|
||||
from svgwrite.container import Group
|
||||
|
||||
|
||||
def draw_connections(width, height, connections):
|
||||
"""
|
||||
Draw connection sequence
|
||||
"""
|
||||
dwg = svgwrite.Drawing()
|
||||
|
||||
DRAW_WIDTH = (width + 2) * SCALE
|
||||
DRAW_HEIGHT = (height + 2) * SCALE
|
||||
# set user coordinate space
|
||||
dwg.viewbox(width=DRAW_WIDTH, height=DRAW_HEIGHT, miny=-1 * DRAW_HEIGHT)
|
||||
|
||||
dwg_main = Group(id="Main", transform="scale(1,-1)")
|
||||
dwg.add(dwg_main)
|
||||
|
||||
for w in range(1, width + 2):
|
||||
dwg_main.add(
|
||||
dwg.line(
|
||||
(w * SCALE, SCALE), (w * SCALE, (height + 1) * SCALE), stroke="red"
|
||||
)
|
||||
)
|
||||
|
||||
for h in range(1, height + 2):
|
||||
dwg_main.add(
|
||||
dwg.line((SCALE, h * SCALE), ((width + 1) * SCALE, h * SCALE), stroke="red")
|
||||
)
|
||||
|
||||
path = "M "
|
||||
for point in connections:
|
||||
path += " %d %d " % ((point[0] + 0.5) * SCALE, (point[1] + 0.5) * SCALE)
|
||||
|
||||
dwg_main.add(dwg.path(path, stroke="blue", fill="none", stroke_width="2px"))
|
||||
dwg.saveas("_sample_io_sequence.svg", pretty=True)
|
||||
|
||||
|
||||
SCALE = 20
|
||||
FPGA_WIDTH = 40
|
||||
FPGA_HEIGHT = 15
|
||||
|
||||
W = max(FPGA_WIDTH, FPGA_HEIGHT)
|
||||
W2 = math.floor(W / 2) + 1
|
||||
|
||||
connections = []
|
||||
xmin, xmax = 1, FPGA_WIDTH
|
||||
ymin, ymax = 1, FPGA_HEIGHT
|
||||
|
||||
while (xmin < xmax) and (ymin < ymax):
|
||||
print(xmin, ymin, end=" -> ")
|
||||
print(xmax, ymax)
|
||||
|
||||
x = xmin
|
||||
for y in range(ymin, ymax + 1):
|
||||
connections.append((x, y))
|
||||
y = ymax
|
||||
for x in range(xmin, xmax + 1):
|
||||
connections.append((x, y))
|
||||
|
||||
x = xmax
|
||||
for y in range(ymin, ymax + 1)[::-1]:
|
||||
connections.append((x, y))
|
||||
|
||||
y = ymin
|
||||
for x in range(xmin, xmax + 1)[::-1][:-1]:
|
||||
connections.append((x, y))
|
||||
|
||||
xmin += 1
|
||||
ymin += 1
|
||||
xmax -= 1
|
||||
ymax -= 1
|
||||
|
||||
|
||||
if FPGA_HEIGHT % 2 == 1: # if height is odd
|
||||
if ymin == ymax: # if touching vertically
|
||||
y = ymin
|
||||
for x in range(xmin, xmax + 1):
|
||||
connections.append((x, y))
|
||||
|
||||
|
||||
if FPGA_WIDTH % 2 == 1: # if width is odd
|
||||
if xmin == xmax: # if touching horizontally
|
||||
x = xmin
|
||||
for y in range(ymin, ymax + 1):
|
||||
connections.append((x, y))
|
||||
|
||||
# print(connections)
|
||||
if connections:
|
||||
draw_connections(FPGA_WIDTH, FPGA_HEIGHT, connections)
|
||||
else:
|
||||
# Dummy draw
|
||||
draw_connections(FPGA_WIDTH, FPGA_HEIGHT, [(1, 1)])
|
|
@ -19,7 +19,7 @@ fpga_flow=vpr_blif
|
|||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/write_full_testbench_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=--device 2x2
|
||||
openfpga_vpr_device_layout=--device 4x4
|
||||
openfpga_fast_configuration=
|
||||
|
||||
[ARCHITECTURES]
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/write_full_testbench_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=--device 4x4_io_center
|
||||
openfpga_fast_configuration=
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_customIoLoc_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/write_full_testbench_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=--device 4x3_io_center
|
||||
openfpga_fast_configuration=
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_customIoLoc_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/write_full_testbench_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=--device 3x4_io_center
|
||||
openfpga_fast_configuration=
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_customIoLoc_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
|
@ -0,0 +1,7 @@
|
|||
<pin_constraints>
|
||||
<!-- For a given .blif file, we want to assign
|
||||
- the reset signal to the op_reset[0] port of the FPGA fabric
|
||||
-->
|
||||
<set_io pin="op_reset[0]" net="rst"/>
|
||||
</pin_constraints>
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = false
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 3*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/ignore_global_nets_on_pins_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_fracff_rstOnLut_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/rst_on_lut/rst_on_lut.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
# Yosys script parameters
|
||||
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_sim.v
|
||||
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_map.v
|
||||
bench_read_verilog_options_common = -nolatches
|
||||
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
|
||||
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
|
||||
|
||||
bench0_top = rst_on_lut
|
||||
bench0_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_reset.xml
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -22,6 +22,7 @@ Please reveal the following architecture features in the names to help quickly s
|
|||
- reduced\_io: If I/Os only appear a certain or multiple sides of FPGAs
|
||||
- registerable\_io: If I/Os are registerable (can be either combinational or sequential)
|
||||
- CustomIoLoc: Use OpenFPGA's extended custom I/O location syntax
|
||||
- rstOnLut: The reset signal of CLB can feed LUT inputs through a local routing architecture
|
||||
- <feature\_size>: The technology node which the delay numbers are extracted from.
|
||||
- TileOrgz<Type>: How tile is organized.
|
||||
* Top-left (Tl): the pins of a tile are placed on the top side and left side only
|
||||
|
|
|
@ -43,7 +43,10 @@
|
|||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="bottom">io_top[0:3].inpad io_top[0:7].outpad io_top[4:7].inpad</loc>
|
||||
<loc side="top">io_top[0:1].inpad io_top[0:1].outpad</loc>
|
||||
<loc side="right">io_top[3:2].inpad</loc>
|
||||
<loc side="bottom">io_top[4:5].inpad io_top[2:4].outpad</loc>
|
||||
<loc side="left">io_top[6:7].inpad io_top[5:7].outpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="io_bottom" capacity="6" area="0">
|
||||
|
@ -54,18 +57,10 @@
|
|||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="top">io_bottom[0:1].outpad io_bottom[0:3].inpad io_bottom[2:5].outpad io_bottom[4:5].inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="io_left" capacity="4" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="right">io_left.inpad io_left.outpad</loc>
|
||||
<loc side="top">io_bottom[0:1].outpad</loc>
|
||||
<loc side="right">io_bottom[2:2].outpad io_bottom[0:3].inpad</loc>
|
||||
<loc side="bottom">io_bottom[3:3].outpad</loc>
|
||||
<loc side="left">io_bottom[4:5].outpad io_bottom[4:5].inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="io_right" capacity="2" area="0">
|
||||
|
@ -76,7 +71,10 @@
|
|||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io_right[1:1].inpad io_right[1:0].outpad io_right[0:0].inpad</loc>
|
||||
<loc side="top">io_right[0:0].inpad</loc>
|
||||
<loc side="right">io_right[1:1].outpad</loc>
|
||||
<loc side="bottom">io_right[0:0].outpad</loc>
|
||||
<loc side="left">io_right[1:1].inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
|
@ -94,61 +92,123 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring
|
||||
Intend to have no I/Os on the left side, it is to check the correctness of I/O indexing in OpenFPGA
|
||||
-->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring -->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="4x4" width="6" height="6">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring -->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="4x4_io_center" width="6" height="6">
|
||||
<!--Perimeter of 'clb' blocks, I/Os are placed in the center-->
|
||||
<row type="clb" starty="H-2" priority="90"/>
|
||||
<row type="clb" starty="1" priority="91"/>
|
||||
<col type="clb" startx="W-2" priority="93"/>
|
||||
<col type="clb" startx="1" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="io_top" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="4x3_io_center" width="6" height="5">
|
||||
<!--Perimeter of 'clb' blocks, I/Os are placed in the center-->
|
||||
<row type="clb" starty="H-2" priority="90"/>
|
||||
<row type="clb" starty="1" priority="91"/>
|
||||
<col type="clb" startx="W-2" priority="93"/>
|
||||
<col type="clb" startx="1" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="io_top" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="3x4_io_center" width="5" height="6">
|
||||
<!--Perimeter of 'clb' blocks, I/Os are placed in the center-->
|
||||
<row type="clb" starty="H-2" priority="90"/>
|
||||
<row type="clb" starty="1" priority="91"/>
|
||||
<col type="clb" startx="W-2" priority="93"/>
|
||||
<col type="clb" startx="1" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="io_top" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="48x48" width="50" height="50">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring -->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="72x72" width="74" height="74">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring -->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="96x96" width="98" height="98">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
<col type="io_left" startx="0" priority="100"/>
|
||||
<col type="io_right" startx="W-1" priority="100"/>
|
||||
<!--Perimeter of 'EMPTY' blocks, I/Os are placed on the inner ring -->
|
||||
<row type="io_top" starty="H-2" priority="90"/>
|
||||
<row type="io_bottom" starty="1" priority="91"/>
|
||||
<col type="io_right" startx="W-2" priority="93"/>
|
||||
<row type="EMPTY" starty="H-1" priority="101"/>
|
||||
<row type="EMPTY" starty="0" priority="102"/>
|
||||
<col type="EMPTY" startx="0" priority="103"/>
|
||||
<col type="EMPTY" startx="W-1" priority="104"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
|
|
|
@ -0,0 +1,627 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
|
||||
with optionally registered outputs
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Authors: Xifan Tang
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut4">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut3_out"/>
|
||||
<port name="lut4_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="dff">
|
||||
<input_ports>
|
||||
<port name="D" clock="C"/>
|
||||
<port name="C" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="C"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="dffr">
|
||||
<input_ports>
|
||||
<port name="D" clock="C"/>
|
||||
<port name="R" clock="C"/>
|
||||
<port name="C" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="C"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="dffrn">
|
||||
<input_ports>
|
||||
<port name="D" clock="C"/>
|
||||
<port name="RN" clock="C"/>
|
||||
<port name="C" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="C"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="12" equivalent="full"/>
|
||||
<input name="reset" num_pins="1" is_non_clock_global="true"/>
|
||||
<output name="O" num_pins="8" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="reset" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="4x4" width="6" height="6">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="48x48" width="50" height="50">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disable_packing="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="12" equivalent="full"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="O" num_pins="8" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disable_packing="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="lut3_out" num_pins="2"/>
|
||||
<output name="lut4_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
|
||||
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".subckt dffr" num_pb="2">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<input name="R" num_pins="1"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="C"/>
|
||||
<T_setup value="66e-12" port="ff.R" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
|
||||
<complete name="direct3" input="fabric.clk" output="ff[1:0].C"/>
|
||||
<complete name="direct4" input="fabric.reset" output="ff[1:0].R"/>
|
||||
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
|
||||
<direct name="direct4" input="fle.reset" output="fabric.reset"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- Dual 3-LUT mode definition begin -->
|
||||
<mode name="n2_lut3">
|
||||
<pb_type name="lut3inter" num_pb="1">
|
||||
<input name="in" num_pins="3"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble3" num_pb="2">
|
||||
<input name="in" num_pins="3"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define the LUT -->
|
||||
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define the flip-flop -->
|
||||
<pb_type name="ff" num_pb="1">
|
||||
<input name="D" num_pins="1"/>
|
||||
<input name="R" num_pins="1"/>
|
||||
<output name="Q" num_pins="1"/>
|
||||
<clock name="C" num_pins="1"/>
|
||||
<mode name="latch">
|
||||
<pb_type name="latch" blif_model=".latch" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="latch.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="latch.D"/>
|
||||
<direct name="direct2" input="ff.C" output="latch.clk"/>
|
||||
<direct name="direct3" input="latch.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dff">
|
||||
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dff.D" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dff.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dff.C"/>
|
||||
<direct name="direct3" input="dff.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dffr">
|
||||
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<input name="R" num_pins="1"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dffr.D" clock="C"/>
|
||||
<T_setup value="66e-12" port="dffr.R" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dffr.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dffr.C"/>
|
||||
<direct name="direct3" input="ff.R" output="dffr.R"/>
|
||||
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dffrn">
|
||||
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<input name="RN" num_pins="1"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
|
||||
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dffrn.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dffrn.C"/>
|
||||
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
|
||||
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble3.clk" output="ff[0:0].C"/>
|
||||
<direct name="direct4" input="ble3.reset" output="ff[0:0].R"/>
|
||||
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
|
||||
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
|
||||
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
|
||||
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
|
||||
<complete name="complete2" input="lut3inter.reset" output="ble3[1:0].reset"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
|
||||
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
|
||||
<direct name="direct4" input="fle.reset" output="lut3inter.reset"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Dual 3-LUT mode definition end -->
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="reset" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define the flip-flop -->
|
||||
<pb_type name="ff" num_pb="1">
|
||||
<input name="D" num_pins="1"/>
|
||||
<input name="R" num_pins="1"/>
|
||||
<output name="Q" num_pins="1"/>
|
||||
<clock name="C" num_pins="1"/>
|
||||
<mode name="latch">
|
||||
<pb_type name="latch" blif_model=".latch" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="latch.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="latch.D"/>
|
||||
<direct name="direct2" input="ff.C" output="latch.clk"/>
|
||||
<direct name="direct3" input="latch.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dff">
|
||||
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dff.D" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dff.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dff.C"/>
|
||||
<direct name="direct3" input="dff.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dffr">
|
||||
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<input name="R" num_pins="1"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dffr.D" clock="C"/>
|
||||
<T_setup value="66e-12" port="dffr.R" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dffr.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dffr.C"/>
|
||||
<direct name="direct3" input="ff.R" output="dffr.R"/>
|
||||
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="dffrn">
|
||||
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<input name="RN" num_pins="1"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="C" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
|
||||
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
|
||||
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ff.D" output="dffrn.D"/>
|
||||
<direct name="direct2" input="ff.C" output="dffrn.C"/>
|
||||
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
|
||||
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.C"/>
|
||||
<direct name="direct4" input="ble4.reset" output="ff.R"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
<direct name="direct4" input="fle.reset" output="ble4.reset"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out clb.reset" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I clb.reset" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<complete name="resets" input="clb.reset" output="fle[3:0].reset">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
|
||||
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
Loading…
Reference in New Issue