Updated demo projects

This commit is contained in:
Ganesh Gore 2023-02-11 16:25:38 -07:00
parent 042a9c0c0a
commit 23e8a4f857
4 changed files with 192 additions and 288 deletions

View File

@ -8,6 +8,8 @@ RUN apt-get install -y nodejs
RUN apt-get install tree RUN apt-get install tree
RUN code-server --install-extension ms-python.python RUN code-server --install-extension ms-python.python
RUN code-server --install-extension mechatroner.rainbow-csv RUN code-server --install-extension mechatroner.rainbow-csv
RUN code-server --install-extension wavetrace.wavetrace
RUN code-server --install-extension dotjoshjohnson.xml
RUN usermod -u 2000 openfpga_user RUN usermod -u 2000 openfpga_user
RUN groupmod -g 2000 openfpga_user RUN groupmod -g 2000 openfpga_user

View File

@ -1,18 +1,5 @@
<?xml version="1.0" ?><!-- <?xml version="1.0" ?>
Architecture with no fracturable LUTs <architecture>
- 40 nm technology
- General purpose logic block:
K = 6, N = 10
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
--><architecture>
<models> <models>
<!-- A virtual model for I/O to be used in the physical mode of io block --> <!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io"> <model name="io">
@ -25,7 +12,8 @@
</model> </model>
</models> </models>
<tiles> <tiles>
<tile name="io" area="0"> <sub_tile name="io" capacity="8"> <tile name="io" area="0">
<sub_tile name="io" capacity="8">
<equivalent_sites> <equivalent_sites>
<site pb_type="io"/> <site pb_type="io"/>
</equivalent_sites> </equivalent_sites>
@ -38,8 +26,10 @@
<loc side="right">io.outpad io.inpad</loc> <loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc> <loc side="bottom">io.outpad io.inpad</loc>
</pinlocations> </pinlocations>
</sub_tile> </tile> </sub_tile>
<tile name="clb" area="53894"> <sub_tile name="clb"> </tile>
<tile name="clb" area="53894">
<sub_tile name="clb">
<equivalent_sites> <equivalent_sites>
<site pb_type="clb"/> <site pb_type="clb"/>
</equivalent_sites> </equivalent_sites>
@ -48,7 +38,8 @@
<clock name="clk" num_pins="1"/> <clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/> <pinlocations pattern="spread"/>
</sub_tile> </tile> </sub_tile>
</tile>
</tiles> </tiles>
<!-- ODIN II specific config ends --> <!-- ODIN II specific config ends -->
<!-- Physical descriptions begin --> <!-- Physical descriptions begin -->
@ -62,25 +53,7 @@
</auto_layout> </auto_layout>
</layout> </layout>
<device> <device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/> <sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/> <area grid_logic_tile_area="0"/>
<chan_width_distr> <chan_width_distr>
<x distr="uniform" peak="1.000000"/> <x distr="uniform" peak="1.000000"/>
@ -90,27 +63,10 @@
<connection_block input_switch_name="ipin_cblock"/> <connection_block input_switch_name="ipin_cblock"/>
</device> </device>
<switchlist> <switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/> <switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/> <switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist> </switchlist>
<segmentlist> <segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15"> <segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/> <mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb> <sb type="pattern">1 1 1 1 1</sb>
@ -118,15 +74,9 @@
</segment> </segment>
</segmentlist> </segmentlist>
<complexblocklist> <complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io"> <pb_type name="io">
<input name="outpad" num_pins="1"/> <input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/> <output name="inpad" num_pins="1"/>
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true"> <mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1"> <pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/> <input name="outpad" num_pins="1"/>
@ -141,11 +91,6 @@
</direct> </direct>
</interconnect> </interconnect>
</mode> </mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad"> <mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1"> <pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/> <output name="inpad" num_pins="1"/>
@ -174,24 +119,10 @@
<!-- Place I/Os on the sides of the FPGA --> <!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/> <power method="ignore"/>
</pb_type> </pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb"> <pb_type name="clb">
<input name="I" num_pins="40" equivalent="full"/> <input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="10" equivalent="none"/> <output name="O" num_pins="10" equivalent="none"/>
<clock name="clk" num_pins="1"/> <clock name="clk" num_pins="1"/>
<!-- Describe basic logic element.
Each basic logic element has a 6-LUT that can be optionally registered
-->
<pb_type name="fle" num_pb="10"> <pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/> <input name="in" num_pins="6"/>
<output name="out" num_pins="1"/> <output name="out" num_pins="1"/>
@ -207,16 +138,6 @@
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut"> <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/> <input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/> <output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out"> <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12 261e-12
261e-12 261e-12
@ -257,31 +178,14 @@
<!-- 6-LUT mode definition end --> <!-- 6-LUT mode definition end -->
</pb_type> </pb_type>
<interconnect> <interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in"> <complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/> <delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/> <delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
</complete> </complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk"> <complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete> </complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out" output="clb.O"/> <direct name="clbouts1" input="fle[9:0].out" output="clb.O"/>
</interconnect> </interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type> </pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist> </complexblocklist>
</architecture> </architecture>

View File

@ -13,8 +13,6 @@ power_analysis = false
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
# fpga_flow= vpr_blif If input in in .blif format
# fpga_flow= yosys_vpr If input in in .v format
fpga_flow=yosys_vpr fpga_flow=yosys_vpr
[OpenFPGA_SHELL] [OpenFPGA_SHELL]
@ -26,7 +24,7 @@ openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulatio
arch0=${PATH:TASK_DIR}/arch/vpr_arch.xml arch0=${PATH:TASK_DIR}/arch/vpr_arch.xml
[BENCHMARKS] [BENCHMARKS]
# bench0=${PATH:TASK_DIR}/micro_benchmark/and2/and2.blif bench0=${PATH:TASK_DIR}/micro_benchmark/and2/and2.v
bench1=${PATH:TASK_DIR}/micro_benchmark/mult8/mult8.v bench1=${PATH:TASK_DIR}/micro_benchmark/mult8/mult8.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
@ -35,7 +33,6 @@ bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow.ys bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow.ys
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:TASK_DIR}/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:TASK_DIR}/micro_benchmark/and2/and2.v bench0_verilog = ${PATH:TASK_DIR}/micro_benchmark/and2/and2.v
bench1_top = mult8 bench1_top = mult8
bench1_verilog = ${PATH:TASK_DIR}/micro_benchmark/mult8/mult8.v bench1_verilog = ${PATH:TASK_DIR}/micro_benchmark/mult8/mult8.v

View File

@ -44,6 +44,7 @@ build_fabric_bitstream --verbose
# Write fabric-dependent bitstream # Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.bit --format plain_text write_fabric_bitstream --file fabric_bitstream.bit --format plain_text
write_fabric_bitstream --file fabric_bitstream.xml --format xml
# Write the Verilog netlist for FPGA fabric # Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist # - Enable the use of explicit port mapping in Verilog netlist