Merge pull request #529 from lnis-uofu/counters

Enable comprehensive tests for counter benchmarks
This commit is contained in:
tangxifan 2022-02-14 18:27:20 -08:00 committed by GitHub
commit 1e8deae120
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 264 additions and 14 deletions

View File

@ -53,6 +53,7 @@ constexpr char* FORMAL_TB_SIM_START_PORT_NAME = "sim_start";
*******************************************************************/
static
void print_verilog_top_random_testbench_ports(std::fstream& fp,
const ModuleManager& module_manager,
const std::string& circuit_name,
const std::vector<std::string>& clock_port_names,
const AtomContext& atom_ctx,
@ -79,7 +80,8 @@ void print_verilog_top_random_testbench_ports(std::fstream& fp,
/* Add an empty line as splitter */
fp << std::endl;
print_verilog_testbench_shared_ports(fp, atom_ctx, netlist_annotation,
print_verilog_testbench_shared_ports(fp, module_manager, FabricGlobalPortInfo(), PinConstraints(),
atom_ctx, netlist_annotation,
clock_port_names,
std::string(),
std::string(BENCHMARK_PORT_POSTFIX),
@ -308,7 +310,7 @@ void print_verilog_random_top_testbench(const std::string& circuit_name,
std::vector<std::string> clock_port_names = find_atom_netlist_clock_port_names(atom_ctx.nlist, netlist_annotation);
/* Start of testbench */
print_verilog_top_random_testbench_ports(fp, circuit_name, clock_port_names, atom_ctx, netlist_annotation, options);
print_verilog_top_random_testbench_ports(fp, module_manager, circuit_name, clock_port_names, atom_ctx, netlist_annotation, options);
/* Call defined top-level module */
print_verilog_random_testbench_fpga_instance(fp, circuit_name,

View File

@ -185,13 +185,15 @@ int print_verilog_preconfig_top_module_connect_global_ports(std::fstream &fp,
/* For other ports, give an default value */
for (size_t pin_id = 0; pin_id < module_global_port.pins().size(); ++pin_id) {
BasicPort module_global_pin(module_global_port.get_name() + std::string(FORMAL_VERIFICATION_TOP_MODULE_PORT_POSTFIX),
BasicPort module_global_pin(module_global_port.get_name(),
module_global_port.pins()[pin_id],
module_global_port.pins()[pin_id]);
/* If the global port name is in the pin constraints, we should wire it to the constrained pin */
std::string constrained_net_name = pin_constraints.pin_net(module_global_pin);
module_global_pin.set_name(module_global_port.get_name() + std::string(FORMAL_VERIFICATION_TOP_MODULE_PORT_POSTFIX));
/* - If constrained to a given net in the benchmark, we connect the global pin to the net
* - If constrained to an open net in the benchmark, we assign it to a default value
*/

View File

@ -719,6 +719,9 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
* same input vectors
*******************************************************************/
void print_verilog_testbench_shared_ports(std::fstream& fp,
const ModuleManager& module_manager,
const FabricGlobalPortInfo& global_ports,
const PinConstraints& pin_constraints,
const AtomContext& atom_ctx,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,
@ -751,7 +754,12 @@ void print_verilog_testbench_shared_ports(std::fstream& fp,
/* Each logical block assumes a single-width port */
BasicPort input_port(block_name + shared_input_port_postfix, 1);
/* For global ports, use wires; otherwise, use registers*/
if (false == port_is_fabric_global_reset_port(global_ports, module_manager, pin_constraints.net_pin(block_name))) {
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, input_port) << ";" << std::endl;
} else {
fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, input_port) << ";" << std::endl;
}
}
/* Add an empty line as splitter */

View File

@ -15,6 +15,8 @@
#include "fabric_global_port_info.h"
#include "pin_constraints.h"
#include "simulation_setting.h"
#include "fabric_global_port_info.h"
#include "pin_constraints.h"
/********************************************************************
* Function declaration
@ -98,6 +100,9 @@ void print_verilog_testbench_random_stimuli(std::fstream& fp,
const bool& no_self_checking);
void print_verilog_testbench_shared_ports(std::fstream& fp,
const ModuleManager& module_manager,
const FabricGlobalPortInfo& global_ports,
const PinConstraints& pin_constraints,
const AtomContext& atom_ctx,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,

View File

@ -407,10 +407,15 @@ void print_verilog_top_testbench_global_reset_ports_stimuli(std::fstream& fp,
/* - If constrained to a given net in the benchmark, we connect the global pin to the net */
if ( (false == pin_constraints.unconstrained_net(constrained_net_name))
&& (false == pin_constraints.unmapped_net(constrained_net_name))) {
BasicPort benchmark_pin(constrained_net_name, 1);
BasicPort benchmark_pin(constrained_net_name + std::string(TOP_TESTBENCH_SHARED_INPUT_POSTFIX), 1);
/* Polarity of some input may have to be inverted, as defined in pin constraints
* For example, the reset signal of the benchmark is active low
* while the reset signal of the FPGA fabric is active high (inside FPGA, the reset signal will be inverted)
* However, to ensure correct stimuli to the benchmark, we have to invert the signal
*/
print_verilog_wire_connection(fp, module_global_pin,
benchmark_pin,
false);
PinConstraints::LOGIC_HIGH == pin_constraints.net_default_value(constrained_net_name));
continue; /* Finish the net assignment for this reset pin */
}
}
@ -693,6 +698,7 @@ void print_verilog_top_testbench_ports(std::fstream& fp,
const AtomContext& atom_ctx,
const VprNetlistAnnotation& netlist_annotation,
const std::vector<std::string>& clock_port_names,
const FabricGlobalPortInfo& global_ports,
const PinConstraints& pin_constraints,
const SimulationSetting& simulation_parameters,
const ConfigProtocol& config_protocol,
@ -798,7 +804,10 @@ void print_verilog_top_testbench_ports(std::fstream& fp,
simulation_parameters,
op_clock_port);
print_verilog_testbench_shared_ports(fp, atom_ctx, netlist_annotation,
std::vector<std::string> global_port_names;
print_verilog_testbench_shared_ports(fp,
module_manager, global_ports, pin_constraints,
atom_ctx, netlist_annotation,
clock_port_names,
std::string(TOP_TESTBENCH_SHARED_INPUT_POSTFIX),
std::string(TOP_TESTBENCH_REFERENCE_OUTPUT_POSTFIX),
@ -1967,6 +1976,7 @@ int print_verilog_full_testbench(const ModuleManager& module_manager,
print_verilog_top_testbench_ports(fp, module_manager, top_module,
atom_ctx, netlist_annotation,
clock_port_names,
global_ports,
pin_constraints,
simulation_parameters, config_protocol,
circuit_name,

View File

@ -0,0 +1,74 @@
# Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling ideal
# Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
# Read OpenFPGA simulation settings
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base
# to debug use --verbose options
link_openfpga_arch --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing #--verbose
# Write the fabric hierarchy of module graph to a file
# This is used by hierarchical PnR flows
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.bit --format plain_text
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_full_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --include_signal_init --bitstream fabric_bitstream.bit --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE} ${OPENFPGA_FULL_TESTBENCH_OPTIONS}
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file ./SDC
# Write SDC to disable timing for configure ports
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory

View File

@ -7,7 +7,9 @@ PYTHON_EXEC=python3.8
# OpenFPGA Shell with VPR8
##############################################
echo -e "Micro benchmark regression tests";
run-task benchmark_sweep/counter --debug --show_thread_logs
run-task benchmark_sweep/counter8 --debug --show_thread_logs
run-task benchmark_sweep/counter8_full_testbench --debug --show_thread_logs
run-task benchmark_sweep/counter128 --debug --show_thread_logs
run-task benchmark_sweep/mac_units --debug --show_thread_logs
# Verify MCNC big20 benchmark suite with ModelSim

View File

@ -27,10 +27,8 @@ vpr_route_chan_width=50
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_sync_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_reset/counter.v
bench2=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_128bit_async_reset/counter.v
bench3=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_128bit_async_resetb/counter.v
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_128bit_async_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_128bit_async_resetb/counter.v
[SYNTHESIS_PARAM]
# Yosys script parameters
@ -46,8 +44,6 @@ bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_df
bench0_top = counter
bench1_top = counter
bench2_top = counter
bench3_top = counter
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
#end_flow_with_test=

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="reset"/>
</pin_constraints>

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="resetb" default_value="1"/>
</pin_constraints>

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="rst_counter"/>
</pin_constraints>

View File

@ -0,0 +1,54 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 5*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/example_without_ace_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_dpram8K_dsp36_fracff_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_sync_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_reset/counter.v
bench2=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_resetb/counter.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm_cell_sim.v
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm_dff_map.v
bench_yosys_bram_map_rules_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram.txt
bench_yosys_bram_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram_map.v
bench_yosys_dsp_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_dsp_map.v
bench_yosys_dsp_map_parameters_common=-D DSP_A_MAXWIDTH=36 -D DSP_B_MAXWIDTH=36 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=mult_36x36
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = counter
bench0_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_rst.xml
bench1_top = counter
bench1_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_reset.xml
bench2_top = counter
bench2_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_resetb.xml
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="reset"/>
</pin_constraints>

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="resetb" default_value="1"/>
</pin_constraints>

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="rst_counter"/>
</pin_constraints>

View File

@ -0,0 +1,55 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 5*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/full_testbench_example_without_ace_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_dpram8K_dsp36_fracff_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_full_testbench_options=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_sync_reset/counter.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_reset/counter.v
bench2=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counters/counter_8bit_async_resetb/counter.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm_cell_sim.v
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_fracff_40nm_dff_map.v
bench_yosys_bram_map_rules_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram.txt
bench_yosys_bram_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram_map.v
bench_yosys_dsp_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_dsp_map.v
bench_yosys_dsp_map_parameters_common=-D DSP_A_MAXWIDTH=36 -D DSP_B_MAXWIDTH=36 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=mult_36x36
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = counter
bench0_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_rst.xml
bench1_top = counter
bench1_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_reset.xml
bench2_top = counter
bench2_openfpga_pin_constraints_file=${PATH:TASK_DIR}/config/pin_constraints_resetb.xml
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=