Merge branch 'master' into xt_shrink_boundary_doc

This commit is contained in:
tangxifan 2023-08-12 12:26:41 -07:00 committed by GitHub
commit 0c4245cc2c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 1390 additions and 8 deletions

View File

@ -1 +1 @@
1.2.1377
1.2.1384

View File

@ -358,6 +358,23 @@ static int fast_write_memory_bank_flatten_fabric_bitstream_to_text_file(
// (1 << (bl & 7)) - This is to find Bit index of the BL
// within that Byte index
// When we '&' both, we can know if that BL is set or unset
/*
-----------------------------------------------------------------
| bit (bl) | Byte index (bl >> 3) | Bit index (1 << (bl & 7)) |
|----------------------------------------------------------------
| 0 | 0 | b0000_0001 (or 0x01) |
| 1 | 0 | b0000_0010 (or 0x02) |
| 2 | 0 | b0000_0100 (or 0x04) |
| 3 | 0 | b0000_1000 (or 0x08) |
| 4 | 0 | b0001_0000 (or 0x10) |
| 5 | 0 | b0010_0000 (or 0x20) |
| 6 | 0 | b0100_0000 (or 0x40) |
| 7 | 0 | b1000_0000 (or 0x80) |
| 8 | 1 | b0000_0001 (or 0x01) |
| ... | ... | ... |
------------------------------------------------------------------
Each BL can be uniquely represented by bit slice in byte array
*/
for (size_t bl = 0; bl < lengths.bl; bl++) {
if (mask[bl >> 3] & (1 << (bl & 7))) {
if (data[bl >> 3] & (1 << (bl & 7))) {

View File

@ -132,16 +132,16 @@ static int write_fabric_config_bit_to_xml_file(
VTR_ASSERT((fabric_size_t)(wl_addr.size()) == lengths.wl);
}
fp << "<bl address=\"";
memset(&bl_addr[bit.bl], '1', 1);
bl_addr.replace(bit.bl, 1, "1");
fp << bl_addr.c_str();
memset(&bl_addr[bit.bl], 'x', 1);
bl_addr.replace(bit.bl, 1, "x");
fp << "\"/>\n";
/* Word line address */
write_tab_to_file(fp, xml_hierarchy_depth + 1);
fp << "<wl address=\"";
memset(&wl_addr[bit.wl], '1', 1);
wl_addr.replace(bit.wl, 1, "1");
fp << wl_addr.c_str();
memset(&wl_addr[bit.wl], '0', 1);
wl_addr.replace(bit.wl, 1, "0");
fp << "\"/>\n";
} else {
/* Bit line address */

View File

@ -1,6 +1,6 @@
# Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling route
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --device ${OPENFPGA_VPR_DEVICE} --route_chan_width ${OPENFPGA_VPR_ROUTE_CHAN_WIDTH} --clock_modeling ideal
# Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}

View File

@ -188,7 +188,11 @@ run-task basic_tests/tile_organization/hetero_fabric_tile $@
echo -e "Testing group config block";
run-task basic_tests/group_config_block/group_config_block_homo_full_testbench $@
run-task basic_tests/group_config_block/group_config_block_homo_Lshape_full_testbench $@
run-task basic_tests/group_config_block/group_config_block_homo_fabric_tile $@
run-task basic_tests/group_config_block/group_config_block_homo_fabric_tile_core_wrapper $@
run-task basic_tests/group_config_block/group_config_block_hetero_fabric_tile $@
run-task basic_tests/group_config_block/group_config_block_hetero_fabric_tile_Lshape $@
echo -e "Testing global port definition from tiles";
run-task basic_tests/global_tile_ports/global_tile_clock $@

View File

@ -0,0 +1,49 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/group_config_block_preconfig_testbench_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N8_reset_softadder_register_scan_chain_dsp8_caravel_io_skywater130nm_fdhd_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_vpr_extra_options=--constant_net_method route --skip_sync_clustering_and_routing_results on
openfpga_pb_pin_fixup_command = pb_pin_fixup --verbose
openfpga_vpr_device=3x2L
openfpga_vpr_route_chan_width=60
openfpga_group_tile_config_option=--group_tile ${PATH:TASK_DIR}/config/tile_config.xml
openfpga_verilog_testbench_options=
openfpga_add_fpga_core_module=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N8_tileableL_reset_softadder_register_scan_chain_dsp8_nonLR_caravel_io_skywater130nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/mac/mac_2/mac_2.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k4_frac_N8_tileable_reset_softadder_register_scan_chain_dsp8_nonLR_caravel_io_skywater130nm_cell_sim.v
bench_yosys_dsp_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k4_frac_N8_tileable_reset_softadder_register_scan_chain_dsp8_nonLR_caravel_io_skywater130nm_dsp_map.v
bench_yosys_dsp_map_parameters_common=-D DSP_A_MAXWIDTH=8 -D DSP_B_MAXWIDTH=8 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=mult_8x8
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dsp_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = mac_2
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -0,0 +1,38 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/group_config_block_full_testbench_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_group_tile_config_option=
openfpga_add_fpga_core_module=
openfpga_vpr_device=4x4L
openfpga_vpr_route_chan_width=20
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileableL_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/or2/or2.v
[SYNTHESIS_PARAM]
bench_read_verilog_options_common = -nolatches
bench0_top = or2
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=

View File

@ -21,6 +21,8 @@ openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_group_tile_config_option=--group_tile ${PATH:TASK_DIR}/config/tile_config.xml
openfpga_add_fpga_core_module=
openfpga_vpr_device=auto
openfpga_vpr_route_chan_width=20
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzTl_40nm.xml

View File

@ -21,6 +21,8 @@ openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_group_tile_config_option=--group_tile ${PATH:TASK_DIR}/config/tile_config.xml
openfpga_add_fpga_core_module=add_fpga_core_to_fabric --instance_name fpga_core_inst
openfpga_vpr_device=auto
openfpga_vpr_route_chan_width=20
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzTl_40nm.xml

View File

@ -21,6 +21,8 @@ openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_group_tile_config_option=
openfpga_add_fpga_core_module=
openfpga_vpr_device=2x2
openfpga_vpr_route_chan_width=20
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_TileOrgzTl_40nm.xml

View File

@ -0,0 +1,334 @@
<?xml version="1.0"?>
<!--
Architecture with no fracturable LUTs
- 40 nm technology
- General purpose logic block:
K = 4, N = 4
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
</models>
<tiles>
<tile name="io" area="0">
<sub_tile name="io" capacity="8">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<tile name="clb" area="53894">
<sub_tile name="clb">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="10" equivalent="full"/>
<output name="O" num_pins="4" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</sub_tile>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" shrink_boundary="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="4x4L" width="6" height="6">
<region type="EMPTY" startx="0" starty="2" endx="2" endy="5" priority="101"/>
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="48x48" width="50" height="50">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="72x72" width="74" height="74">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="96x96" width="98" height="98">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="10" equivalent="full"/>
<output name="O" num_pins="4" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe basic logic element.
Each basic logic element has a 4-LUT that can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -0,0 +1,933 @@
<?xml version="1.0"?>
<!--
Low-cost homogeneous FPGA Architecture.
- Skywater 130 nm technology
- General purpose logic block:
K = 4, N = 8, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
with optionally registered outputs
- Heterogeneous block
8-bit multiplier
- Routing architecture:
- 10% L = 1, fc_in = 0.15, Fc_out = 0.10
- 10% L = 2, fc_in = 0.15, Fc_out = 0.10
- 80% L = 4, fc_in = 0.15, Fc_out = 0.10
- 100 routing tracks per channel
Authors: Xifan Tang
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="mult_8">
<input_ports>
<port name="A" combinational_sink_ports="Y"/>
<port name="B" combinational_sink_ports="Y"/>
</input_ports>
<output_ports>
<port name="Y"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<model name="adder_lut4">
<input_ports>
<port name="in" combinational_sink_ports="lut2_out lut4_out"/>
</input_ports>
<output_ports>
<port name="lut2_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<model name="carry_follower">
<input_ports>
<port name="a" combinational_sink_ports="cout"/>
<port name="b" combinational_sink_ports="cout"/>
<port name="cin" combinational_sink_ports="cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
</output_ports>
</model>
<model name="frac_lut4">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut2_out"/>
<port name="lut3_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<model name="carry_follower_physical">
<input_ports>
<port name="a" combinational_sink_ports="cout"/>
<port name="b" combinational_sink_ports="cout"/>
<port name="cin" combinational_sink_ports="cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="scff">
<input_ports>
<port name="D" clock="clk"/>
<port name="DI" clock="clk"/>
<port name="reset" clock="clk"/>
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- Top-side has 1 I/O per tile -->
<tile name="io_top" area="0">
<sub_tile name="io_top" capacity="1">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="bottom">io_top.outpad io_top.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<!-- Right-side has 1 I/O per tile -->
<tile name="io_right" area="0">
<sub_tile name="io_right" capacity="1">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io_right.outpad io_right.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<!-- Bottom-side has 9 I/O per tile -->
<tile name="io_bottom" area="0">
<sub_tile name="io_bottom" capacity="9">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="top">io_bottom.outpad io_bottom.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<!-- Left-side has 1 I/O per tile -->
<tile name="io_left" area="0">
<sub_tile name="io_left" capacity="1">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="right">io_left.outpad io_left.inpad</loc>
</pinlocations>
</sub_tile>
</tile>
<!-- CLB has most pins on the top and right sides -->
<tile name="clb" area="53894">
<sub_tile name="clb">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I0" num_pins="2" equivalent="full"/>
<input name="I0i" num_pins="2" equivalent="none"/>
<input name="I1" num_pins="2" equivalent="full"/>
<input name="I1i" num_pins="2" equivalent="none"/>
<input name="I2" num_pins="2" equivalent="full"/>
<input name="I2i" num_pins="2" equivalent="none"/>
<input name="I3" num_pins="2" equivalent="full"/>
<input name="I3i" num_pins="2" equivalent="none"/>
<input name="I4" num_pins="2" equivalent="full"/>
<input name="I4i" num_pins="2" equivalent="none"/>
<input name="I5" num_pins="2" equivalent="full"/>
<input name="I5i" num_pins="2" equivalent="none"/>
<input name="I6" num_pins="2" equivalent="full"/>
<input name="I6i" num_pins="2" equivalent="none"/>
<input name="I7" num_pins="2" equivalent="full"/>
<input name="I7i" num_pins="2" equivalent="none"/>
<input name="reg_in" num_pins="1"/>
<input name="sc_in" num_pins="1"/>
<input name="cin" num_pins="1"/>
<input name="reset" num_pins="1" is_non_clock_global="true"/>
<output name="O" num_pins="16" equivalent="none"/>
<output name="reg_out" num_pins="1"/>
<output name="sc_out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="reg_in" fc_type="frac" fc_val="0"/>
<fc_override port_name="reg_out" fc_type="frac" fc_val="0"/>
<fc_override port_name="sc_in" fc_type="frac" fc_val="0"/>
<fc_override port_name="sc_out" fc_type="frac" fc_val="0"/>
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
<fc_override port_name="reset" fc_type="frac" fc_val="0"/>
</fc>
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk clb.reset</loc>
<loc side="top">clb.reg_in clb.sc_in clb.cin clb.O[7:0] clb.I0 clb.I0i clb.I1 clb.I1i clb.I2 clb.I2i clb.I3 clb.I3i</loc>
<loc side="right">clb.O[15:8] clb.I4 clb.I4i clb.I5 clb.I5i clb.I6 clb.I6i clb.I7 clb.I7i</loc>
<loc side="bottom">clb.reg_out clb.sc_out clb.cout</loc>
</pinlocations>
</sub_tile>
</tile>
<tile name="mult_8" height="2" area="396000">
<sub_tile name="mult_8">
<equivalent_sites>
<site pb_type="mult_8" pin_mapping="direct"/>
</equivalent_sites>
<input name="a" num_pins="8"/>
<input name="b" num_pins="8"/>
<output name="out" num_pins="16"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left"/>
<loc side="top"/>
<loc side="right" yoffset="0">mult_8.a[0:2] mult_8.b[0:2] mult_8.out[0:5]</loc>
<loc side="right" yoffset="1">mult_8.a[3:5] mult_8.b[3:5] mult_8.out[6:10]</loc>
<loc side="bottom">mult_8.a[6:7] mult_8.b[6:7] mult_8.out[11:15]</loc>
</pinlocations>
</sub_tile>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true" shrink_boundary="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<row type="io_top" starty="H-1" priority="100"/>
<row type="io_bottom" starty="0" priority="100"/>
<col type="io_left" startx="0" priority="100"/>
<col type="io_right" startx="W-1" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'mult_8' with 'EMPTY' blocks wherever a 'mult_8' does not fit. Vertical offset by 1 for perimeter.-->
<col type="mult_8" startx="2" starty="1" repeatx="8" priority="20"/>
</auto_layout>
<fixed_layout name="3x2" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<row type="io_top" starty="H-1" priority="100"/>
<row type="io_bottom" starty="0" priority="100"/>
<col type="io_left" startx="0" priority="100"/>
<col type="io_right" startx="W-1" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'mult_8' with 'EMPTY' blocks wherever a 'mult_8' does not fit. Vertical offset by 1 for perimeter.-->
<col type="mult_8" startx="2" starty="1" repeatx="8" priority="20"/>
</fixed_layout>
<fixed_layout name="3x2L" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<row type="io_top" starty="H-1" priority="100"/>
<row type="io_bottom" starty="0" priority="100"/>
<col type="io_left" startx="0" priority="100"/>
<col type="io_right" startx="W-1" priority="100"/>
<!-- Empty top-left region -->
<region type="EMPTY" startx="0" starty="2" endx="1" endy="3" priority="101"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'mult_8' with 'EMPTY' blocks wherever a 'mult_8' does not fit. Vertical offset by 1 for perimeter.-->
<col type="mult_8" startx="2" starty="1" repeatx="8" priority="20"/>
</fixed_layout>
<fixed_layout name="12x12" width="14" height="14">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<row type="io_top" starty="H-1" priority="100"/>
<row type="io_bottom" starty="0" priority="100"/>
<col type="io_left" startx="0" priority="100"/>
<col type="io_right" startx="W-1" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'mult_8' with 'EMPTY' blocks wherever a 'mult_8' does not fit. Vertical offset by 1 for perimeter.-->
<col type="mult_8" startx="2" starty="1" repeatx="8" priority="20"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="L1_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<switch type="mux" name="L2_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<switch type="mux" name="L4_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L1" freq="0.10" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="L1_mux"/>
<sb type="pattern">1 1</sb>
<cb type="pattern">1</cb>
</segment>
<segment name="L2" freq="0.10" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="L2_mux"/>
<sb type="pattern">1 1 1</sb>
<cb type="pattern">1 1</cb>
</segment>
<segment name="L4" freq="0.80" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="L4_mux"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="carry_chain" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
<direct name="shift_register" from_pin="clb.reg_out" to_pin="clb.reg_in" x_offset="0" y_offset="-1" z_offset="0"/>
<direct name="scan_chain" from_pin="clb.sc_out" to_pin="clb.sc_in" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define input pads begin -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!-- -Due to the absence of local routing,
the 4 inputs of fracturable LUT4 are no longer equivalent,
because the 4th input can not be switched when the dual-LUT3 modes are used.
So pin equivalence should be applied to the first 3 inputs only
-->
<pb_type name="clb">
<input name="I0" num_pins="2" equivalent="full"/>
<input name="I0i" num_pins="2" equivalent="none"/>
<input name="I1" num_pins="2" equivalent="full"/>
<input name="I1i" num_pins="2" equivalent="none"/>
<input name="I2" num_pins="2" equivalent="full"/>
<input name="I2i" num_pins="2" equivalent="none"/>
<input name="I3" num_pins="2" equivalent="full"/>
<input name="I3i" num_pins="2" equivalent="none"/>
<input name="I4" num_pins="2" equivalent="full"/>
<input name="I4i" num_pins="2" equivalent="none"/>
<input name="I5" num_pins="2" equivalent="full"/>
<input name="I5i" num_pins="2" equivalent="none"/>
<input name="I6" num_pins="2" equivalent="full"/>
<input name="I6i" num_pins="2" equivalent="none"/>
<input name="I7" num_pins="2" equivalent="full"/>
<input name="I7i" num_pins="2" equivalent="none"/>
<input name="reg_in" num_pins="1"/>
<input name="sc_in" num_pins="1"/>
<input name="cin" num_pins="1"/>
<input name="reset" num_pins="1" is_non_clock_global="true"/>
<output name="O" num_pins="16" equivalent="none"/>
<output name="reg_out" num_pins="1"/>
<output name="sc_out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="8">
<input name="in" num_pins="4"/>
<input name="reg_in" num_pins="1"/>
<input name="sc_in" num_pins="1"/>
<input name="cin" num_pins="1"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="reg_out" num_pins="1"/>
<output name="sc_out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disable_packing="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reg_in" num_pins="1"/>
<input name="sc_in" num_pins="1"/>
<input name="cin" num_pins="1"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="reg_out" num_pins="1"/>
<output name="sc_out" num_pins="1"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut2_out" num_pins="2"/>
<output name="lut3_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
</pb_type>
<pb_type name="carry_follower" blif_model=".subckt carry_follower_physical" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="carry_follower.a" out_port="carry_follower.cout"/>
<delay_constant max="0.3e-9" in_port="carry_follower.b" out_port="carry_follower.cout"/>
<delay_constant max="0.3e-9" in_port="carry_follower.cin" out_port="carry_follower.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in[0:1]" output="frac_lut4.in[0:1]"/>
<direct name="direct2" input="frac_logic.in[3:3]" output="frac_lut4.in[3:3]"/>
<direct name="direct3" input="frac_logic.cin" output="carry_follower.b"/>
<direct name="direct4" input="frac_lut4.lut2_out[1:1]" output="carry_follower.a"/>
<direct name="direct5" input="frac_lut4.lut2_out[0:0]" output="carry_follower.cin"/>
<direct name="direct6" input="carry_follower.cout" output="frac_logic.cout"/>
<direct name="direct7" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
<mux name="mux2" input="frac_logic.cin frac_logic.in[2:2]" output="frac_lut4.in[2:2]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input -->
<pb_type name="ff" blif_model=".subckt scff" num_pb="2">
<input name="D" num_pins="1"/>
<input name="DI" num_pins="1"/>
<input name="reset" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_setup value="66e-12" port="ff.DI" clock="clk"/>
<T_setup value="66e-12" port="ff.reset" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="frac_logic.cin"/>
<direct name="direct3" input="fabric.sc_in" output="ff[0].DI"/>
<direct name="direct4" input="ff[0].Q" output="ff[1].DI"/>
<direct name="direct5" input="ff[1].Q" output="fabric.sc_out"/>
<direct name="direct6" input="ff[1].Q" output="fabric.reg_out"/>
<direct name="direct7" input="frac_logic.cout" output="fabric.cout"/>
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
<complete name="complete2" input="fabric.reset" output="ff[1:0].reset"/>
<mux name="mux1" input="frac_logic.out[0:0] fabric.reg_in" output="ff[0:0].D">
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
<delay_constant max="45e-12" in_port="fabric.reg_in" out_port="ff[0:0].D"/>
</mux>
<mux name="mux2" input="frac_logic.out[1:1] ff[0:0].Q" output="ff[1:1].D">
<delay_constant max="25e-12" in_port="frac_logic.out[1:1]" out_port="ff[1:1].D"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ff[1:1].D"/>
</mux>
<mux name="mux3" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.reg_in" output="fabric.reg_in"/>
<direct name="direct3" input="fle.sc_in" output="fabric.sc_in"/>
<direct name="direct4" input="fle.cin" output="fabric.cin"/>
<direct name="direct5" input="fabric.out" output="fle.out"/>
<direct name="direct6" input="fabric.reg_out" output="fle.reg_out"/>
<direct name="direct7" input="fabric.sc_out" output="fle.sc_out"/>
<direct name="direct8" input="fabric.cout" output="fle.cout"/>
<direct name="direct9" input="fle.clk" output="fabric.clk"/>
<direct name="direct10" input="fle.reset" output="fabric.reset"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Arithmetic mode definition begin -->
<mode name="arithmetic">
<pb_type name="soft_adder" num_pb="1">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<output name="cout" num_pins="1"/>
<!-- Define special LUT marco to be used as adder -->
<pb_type name="adder_lut4" blif_model=".subckt adder_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut2_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder_lut4.in" out_port="adder_lut4.lut2_out"/>
<delay_constant max="0.3e-9" in_port="adder_lut4.in" out_port="adder_lut4.lut4_out"/>
</pb_type>
<pb_type name="carry_follower" blif_model=".subckt carry_follower" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="carry_follower.a" out_port="carry_follower.cout"/>
<delay_constant max="0.3e-9" in_port="carry_follower.b" out_port="carry_follower.cout"/>
<delay_constant max="0.3e-9" in_port="carry_follower.cin" out_port="carry_follower.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="soft_adder.in[0:1]" output="adder_lut4.in[0:1]"/>
<direct name="direct2" input="soft_adder.in[3:3]" output="adder_lut4.in[3:3]"/>
<direct name="direct3" input="soft_adder.cin" output="carry_follower.b">
<!-- Pack pattern to build an adder chain connection considered by packer -->
<pack_pattern name="chain" in_port="soft_adder.cin" out_port="carry_follower.b"/>
</direct>
<direct name="direct4" input="adder_lut4.lut2_out[1:1]" output="carry_follower.a">
<!-- Pack pattern to pair adder_lut4 and carry_follower into a molecule
considered by packer -->
<pack_pattern name="lut_follower" in_port="adder_lut4.lut2_out[1:1]" out_port="carry_follower.a"/>
</direct>
<direct name="direct5" input="adder_lut4.lut2_out[0:0]" output="carry_follower.cin">
</direct>
<direct name="direct6" input="carry_follower.cout" output="soft_adder.cout">
<!-- Pack pattern to build an adder chain connection considered by packer -->
<pack_pattern name="chain" in_port="carry_follower.cout" out_port="soft_adder.cout"/>
</direct>
<direct name="direct7" input="adder_lut4.lut4_out" output="soft_adder.sumout[0:0]">
</direct>
<mux name="mux1" input="soft_adder.cin soft_adder.in[2:2]" output="adder_lut4.in[2:2]">
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="soft_adder.in"/>
<direct name="direct2" input="fle.cin" output="soft_adder.cin">
<!-- Pack pattern to build an adder chain connection considered by packer -->
<pack_pattern name="chain" in_port="fle.cin" out_port="soft_adder.cin"/>
</direct>
<direct name="direct3" input="soft_adder.sumout" output="fle.out[0:0]"/>
<direct name="direct4" input="soft_adder.cout" output="fle.cout">
<!-- Pack pattern to build an adder chain connection considered by packer -->
<pack_pattern name="chain" in_port="soft_adder.cout" out_port="fle.cout"/>
</direct>
</interconnect>
</mode>
<!-- Arithmetic mode definition end -->
<!-- Dual 3-LUT mode definition begin -->
<mode name="n2_lut3">
<pb_type name="lut3inter" num_pb="1">
<input name="in" num_pins="3"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble3" num_pb="2">
<input name="in" num_pins="3"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
</interconnect>
</mode>
<!-- Dual 3-LUT mode definition end -->
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
</interconnect>
</mode>
<!-- 4-LUT mode definition end -->
<!-- Define shift register begin -->
<mode name="shift_register">
<pb_type name="shift_reg" num_pb="1">
<input name="reg_in" num_pins="1"/>
<output name="ff_out" num_pins="2"/>
<output name="reg_out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="shift_reg.reg_in" output="ff[0].D"/>
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
<direct name="direct3" input="ff[1].Q" output="shift_reg.reg_out"/>
<direct name="direct4" input="ff[0].Q" output="shift_reg.ff_out[0:0]"/>
<direct name="direct5" input="ff[1].Q" output="shift_reg.ff_out[1:1]"/>
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.reg_in" output="shift_reg.reg_in"/>
<direct name="direct2" input="shift_reg.reg_out" output="fle.reg_out"/>
<direct name="direct3" input="shift_reg.ff_out" output="fle.out"/>
<direct name="direct4" input="fle.clk" output="shift_reg.clk"/>
</interconnect>
</mode>
<!-- Define shift register end -->
</pb_type>
<interconnect>
<!-- We use direct connections to reduce the area to the most
The global local routing is going to compensate the loss in routability
-->
<!-- FIXME: The implicit port definition results in I0[0] connected to
in[2]. Such twisted connection is not expected.
I[0] should be connected to in[0]
-->
<direct name="direct_fle0" input="clb.I0[0:1]" output="fle[0:0].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle0i" input="clb.I0i[0:1]" output="fle[0:0].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle1" input="clb.I1[0:1]" output="fle[1:1].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle1i" input="clb.I1i[0:1]" output="fle[1:1].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle2" input="clb.I2[0:1]" output="fle[2:2].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle2i" input="clb.I2i[0:1]" output="fle[2:2].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle3" input="clb.I3[0:1]" output="fle[3:3].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle3i" input="clb.I3i[0:1]" output="fle[3:3].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle4" input="clb.I4[0:1]" output="fle[4:4].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle4i" input="clb.I4i[0:1]" output="fle[4:4].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle5" input="clb.I5[0:1]" output="fle[5:5].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle5i" input="clb.I5i[0:1]" output="fle[5:5].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle6" input="clb.I6[0:1]" output="fle[6:6].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle6i" input="clb.I6i[0:1]" output="fle[6:6].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle7" input="clb.I7[0:1]" output="fle[7:7].in[0:1]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<direct name="direct_fle7i" input="clb.I7i[0:1]" output="fle[7:7].in[2:3]">
<!-- TODO: Timing should be backannotated from post-PnR results -->
</direct>
<complete name="clks" input="clb.clk" output="fle[7:0].clk">
</complete>
<complete name="resets" input="clb.reset" output="fle[7:0].reset">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out[0:1]" output="clb.O[7:0]"/>
<direct name="clbouts2" input="fle[7:4].out[0:1]" output="clb.O[15:8]"/>
<!-- Shift register chain links -->
<direct name="shift_register_in" input="clb.reg_in" output="fle[0:0].reg_in">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.reg_in" out_port="fle[0:0].reg_in"/>
<!--pack_pattern name="chain" in_port="clb.reg_in" out_port="fle[0:0].reg_in"/-->
</direct>
<direct name="shift_register_out" input="fle[7:7].reg_out" output="clb.reg_out">
<!--pack_pattern name="chain" in_port="fle[7:7].reg_out" out_port="clb.reg_out"/-->
</direct>
<direct name="shift_register_link" input="fle[6:0].reg_out" output="fle[7:1].reg_in">
<!--pack_pattern name="chain" in_port="fle[6:0].reg_out" out_port="fle[7:1].reg_in"/-->
</direct>
<!-- Scan chain links -->
<direct name="scan_chain_in" input="clb.sc_in" output="fle[0:0].sc_in">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.sc_in" out_port="fle[0:0].sc_in"/>
</direct>
<direct name="scan_chain_out" input="fle[7:7].sc_out" output="clb.sc_out">
</direct>
<direct name="scan_chain_link" input="fle[6:0].sc_out" output="fle[7:1].sc_in">
</direct>
<!-- Carry chain links -->
<direct name="carry_chain_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_chain_out" input="fle[7:7].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[7:7].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_chain_link" input="fle[6:0].cout" output="fle[7:1].cin">
<pack_pattern name="chain" in_port="fle[6:0].cout" out_port="fle[7:1].cin"/>
</direct>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define fracturable multiplier begin -->
<pb_type name="mult_8">
<input name="a" num_pins="8"/>
<input name="b" num_pins="8"/>
<output name="out" num_pins="16"/>
<mode name="mult_8x8">
<pb_type name="mult_8x8_slice" num_pb="1">
<input name="A_cfg" num_pins="8"/>
<input name="B_cfg" num_pins="8"/>
<output name="OUT_cfg" num_pins="16"/>
<pb_type name="mult_8x8" blif_model=".subckt mult_8" num_pb="1">
<input name="A" num_pins="8"/>
<input name="B" num_pins="8"/>
<output name="Y" num_pins="16"/>
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_8x8.A" out_port="mult_8x8.Y"/>
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_8x8.B" out_port="mult_8x8.Y"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_8x8_slice.A_cfg" output="mult_8x8.A">
</direct>
<direct name="b2b" input="mult_8x8_slice.B_cfg" output="mult_8x8.B">
</direct>
<direct name="out2out" input="mult_8x8.Y" output="mult_8x8_slice.OUT_cfg">
</direct>
</interconnect>
<power method="pin-toggle">
<port name="A_cfg" energy_per_toggle="2.13e-12"/>
<port name="B_cfg" energy_per_toggle="2.13e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_8.a" output="mult_8x8_slice.A_cfg">
<delay_constant max="134e-12" min="74e-12" in_port="mult_8.a" out_port="mult_8x8_slice.A_cfg"/>
</direct>
<direct name="b2b" input="mult_8.b" output="mult_8x8_slice.B_cfg">
<delay_constant max="134e-12" min="74e-12" in_port="mult_8.b" out_port="mult_8x8_slice.B_cfg"/>
</direct>
<direct name="out2out" input="mult_8x8_slice.OUT_cfg" output="mult_8.out">
<delay_constant max="1.93e-9" min="74e-12" in_port="mult_8x8_slice.OUT_cfg" out_port="mult_8.out"/>
</direct>
</interconnect>
</mode>
<!-- Place this multiplier block every 8 columns from (and including) the sixth column -->
<power method="sum-of-children"/>
</pb_type>
<!-- Define fracturable multiplier end -->
</complexblocklist>
</architecture>

@ -1 +1 @@
Subproject commit 5bea5da827600c06990be740b580213eebae6263
Subproject commit 8f4c5567f4ff92db0659d54dd1eb6435d3b7a9f6

2
yosys

@ -1 +1 @@
Subproject commit 389b8d0f94a24c30e5b9352866f0999b14312b23
Subproject commit 2829cd9caa5729b3b7e2393d3428e265cd038ea6