Merge pull request #147 from lnis-uofu/dev
Support I/O tiles in the center part of FPGA grid layout
This commit is contained in:
commit
09fa83ddfc
|
@ -102,6 +102,8 @@ echo -e "Testing tiles with pins only on top and right sides";
|
|||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/top_right_custom_pins --debug --show_thread_logs
|
||||
echo -e "Testing tiles with pins only on bottom and right sides";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/bottom_right_custom_pins --debug --show_thread_logs
|
||||
echo -e "Testing tiles with I/O in center grid";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/tile_organization/tileable_io --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing global port definition from tiles";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/global_tile_ports/global_tile_clock --debug --show_thread_logs
|
||||
|
|
|
@ -1003,7 +1003,7 @@ std::string generate_grid_block_netlist_name(const std::string& block_name,
|
|||
/* Add the name of physical block */
|
||||
std::string module_name(block_name);
|
||||
|
||||
if (true == is_block_io) {
|
||||
if ((true == is_block_io) && (NUM_SIDES != io_side)) {
|
||||
SideManager side_manager(io_side);
|
||||
module_name += std::string("_");
|
||||
module_name += std::string(side_manager.to_string());
|
||||
|
|
|
@ -157,8 +157,6 @@ void update_pb_pin_with_post_routing_results(const DeviceContext& device_ctx,
|
|||
if (true == is_empty_type(device_ctx.grid[x][y].type)) {
|
||||
continue;
|
||||
}
|
||||
/* We must have an regular (non-I/O) type here */
|
||||
VTR_ASSERT(false == is_io_type(device_ctx.grid[x][y].type));
|
||||
/* Get the mapped blocks to this grid */
|
||||
for (const ClusterBlockId& cluster_blk_id : placement_ctx.grid_blocks[x][y].blocks) {
|
||||
/* Skip invalid ids */
|
||||
|
|
|
@ -99,6 +99,65 @@ IoLocationMap build_fabric_io_location_map(const ModuleManager& module_manager,
|
|||
}
|
||||
}
|
||||
|
||||
/* Walk through all the center grids, which may include I/O grids */
|
||||
for (size_t ix = 1; ix < grids.width() - 1; ++ix) {
|
||||
for (size_t iy = 1; iy < grids.height() - 1; ++iy) {
|
||||
/* Bypass EMPTY grid */
|
||||
if (true == is_empty_type(grids[ix][iy].type)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Skip width or height > 1 tiles (mostly heterogeneous blocks) */
|
||||
if ( (0 < grids[ix][iy].width_offset)
|
||||
|| (0 < grids[ix][iy].height_offset)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
t_physical_tile_type_ptr grid_type = grids[ix][iy].type;
|
||||
|
||||
/* Find the module name for this type of grid */
|
||||
std::string grid_module_name_prefix(GRID_MODULE_NAME_PREFIX);
|
||||
std::string grid_module_name = generate_grid_block_module_name(grid_module_name_prefix, std::string(grid_type->name), is_io_type(grid_type), NUM_SIDES);
|
||||
ModuleId grid_module = module_manager.find_module(grid_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
|
||||
|
||||
/* Find all the GPIO ports in the grid module */
|
||||
|
||||
/* MUST DO: register in io location mapping!
|
||||
* I/O location mapping is a critical look-up for testbench generators
|
||||
* As we add the I/O grid instances to top module by following order:
|
||||
* TOP -> RIGHT -> BOTTOM -> LEFT
|
||||
* The I/O index will increase in this way as well.
|
||||
* This organization I/O indices is also consistent to the way
|
||||
* that GPIOs are wired in function connect_gpio_module()
|
||||
*
|
||||
* Note: if you change the GPIO function, you should update here as well!
|
||||
*/
|
||||
for (int z = 0; z < grids[ix][iy].type->capacity; ++z) {
|
||||
for (const ModuleManager::e_module_port_type& module_io_port_type : MODULE_IO_PORT_TYPES) {
|
||||
for (const ModulePortId& gpio_port_id : module_manager.module_port_ids_by_type(grid_module, module_io_port_type)) {
|
||||
/* Only care mappable I/O */
|
||||
if (false == module_manager.port_is_mappable_io(grid_module, gpio_port_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const BasicPort& gpio_port = module_manager.module_port(grid_module, gpio_port_id);
|
||||
|
||||
auto curr_io_index = io_counter.find(gpio_port.get_name());
|
||||
/* Index always start from zero */
|
||||
if (curr_io_index == io_counter.end()) {
|
||||
io_counter[gpio_port.get_name()] = 0;
|
||||
}
|
||||
io_location_map.set_io_index(ix, iy, z,
|
||||
gpio_port.get_name(),
|
||||
io_counter[gpio_port.get_name()]);
|
||||
io_counter[gpio_port.get_name()]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check all the GPIO ports in the top-level module has been mapped */
|
||||
std::string top_module_name = generate_fpga_top_module_name();
|
||||
ModuleId top_module = module_manager.find_module(top_module_name);
|
||||
|
|
|
@ -66,7 +66,7 @@ void add_grid_module_duplicated_pb_type_ports(ModuleManager& module_manager,
|
|||
* Otherwise, we will iterate all the 4 sides
|
||||
*/
|
||||
if (true == is_io_type(grid_type_descriptor)) {
|
||||
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
|
||||
grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side);
|
||||
} else {
|
||||
grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT};
|
||||
}
|
||||
|
@ -147,12 +147,9 @@ void add_grid_module_net_connect_duplicated_pb_graph_pin(ModuleManager& module_m
|
|||
* Otherwise, we will iterate all the 4 sides
|
||||
*/
|
||||
if (true == is_io_type(grid_type_descriptor)) {
|
||||
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
|
||||
grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side);
|
||||
} else {
|
||||
grid_pin_sides.push_back(TOP);
|
||||
grid_pin_sides.push_back(RIGHT);
|
||||
grid_pin_sides.push_back(BOTTOM);
|
||||
grid_pin_sides.push_back(LEFT);
|
||||
grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT};
|
||||
}
|
||||
|
||||
/* num_pins/capacity = the number of pins that each type_descriptor has.
|
||||
|
|
|
@ -23,13 +23,19 @@ namespace openfpga {
|
|||
* 2. I/O grids on the right side of FPGA only have ports on its left side
|
||||
* 3. I/O grids on the bottom side of FPGA only have ports on its top side
|
||||
* 4. I/O grids on the left side of FPGA only have ports on its right side
|
||||
* 5. I/O grids in the center part of FPGA can have ports on any side
|
||||
*******************************************************************/
|
||||
e_side find_grid_module_pin_side(t_physical_tile_type_ptr grid_type_descriptor,
|
||||
const e_side& border_side) {
|
||||
std::vector<e_side> find_grid_module_pin_sides(t_physical_tile_type_ptr grid_type_descriptor,
|
||||
const e_side& border_side) {
|
||||
/* We must have an regular (non-I/O) type here */
|
||||
VTR_ASSERT(true == is_io_type(grid_type_descriptor));
|
||||
SideManager side_manager(border_side);
|
||||
return side_manager.get_opposite();
|
||||
|
||||
if (NUM_SIDES == border_side) {
|
||||
return {TOP, RIGHT, BOTTOM, LEFT};
|
||||
}
|
||||
|
||||
return std::vector<e_side>(1, side_manager.get_opposite());
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
|
@ -50,12 +56,9 @@ void add_grid_module_net_connect_pb_graph_pin(ModuleManager& module_manager,
|
|||
* Otherwise, we will iterate all the 4 sides
|
||||
*/
|
||||
if (true == is_io_type(grid_type_descriptor)) {
|
||||
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
|
||||
grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side);
|
||||
} else {
|
||||
grid_pin_sides.push_back(TOP);
|
||||
grid_pin_sides.push_back(RIGHT);
|
||||
grid_pin_sides.push_back(BOTTOM);
|
||||
grid_pin_sides.push_back(LEFT);
|
||||
grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT};
|
||||
}
|
||||
|
||||
/* num_pins/capacity = the number of pins that each type_descriptor has.
|
||||
|
|
|
@ -17,8 +17,8 @@
|
|||
/* begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
e_side find_grid_module_pin_side(t_physical_tile_type_ptr grid_type_descriptor,
|
||||
const e_side& border_side);
|
||||
std::vector<e_side> find_grid_module_pin_sides(t_physical_tile_type_ptr grid_type_descriptor,
|
||||
const e_side& border_side);
|
||||
|
||||
void add_grid_module_net_connect_pb_graph_pin(ModuleManager& module_manager,
|
||||
const ModuleId& grid_module,
|
||||
|
|
|
@ -52,7 +52,7 @@ void add_grid_module_pb_type_ports(ModuleManager& module_manager,
|
|||
* Otherwise, we will iterate all the 4 sides
|
||||
*/
|
||||
if (true == is_io_type(grid_type_descriptor)) {
|
||||
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
|
||||
grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side);
|
||||
} else {
|
||||
grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT};
|
||||
}
|
||||
|
@ -981,11 +981,6 @@ void build_physical_tile_module(ModuleManager& module_manager,
|
|||
const e_side& border_side,
|
||||
const bool& duplicate_grid_pin,
|
||||
const bool& verbose) {
|
||||
/* Check code: if this is an IO block, the border side MUST be valid */
|
||||
if (true == is_io_type(phy_block_type)) {
|
||||
VTR_ASSERT(NUM_SIDES != border_side);
|
||||
}
|
||||
|
||||
/* Create a Module for the top-level physical block, and add to module manager */
|
||||
std::string grid_module_name = generate_grid_block_module_name(std::string(GRID_MODULE_NAME_PREFIX),
|
||||
std::string(phy_block_type->name),
|
||||
|
|
|
@ -120,8 +120,6 @@ vtr::Matrix<size_t> add_top_module_grid_instances(ModuleManager& module_manager,
|
|||
grid_instance_ids[ix][iy] = grid_instance_ids[root_grid_coord.x()][root_grid_coord.y()];
|
||||
continue;
|
||||
}
|
||||
/* We should not meet any I/O grid */
|
||||
VTR_ASSERT(false == is_io_type(grids[ix][iy].type));
|
||||
/* Add a grid module to top_module*/
|
||||
vtr::Point<size_t> grid_coord(ix, iy);
|
||||
grid_instance_ids[ix][iy] = add_top_module_grid_instance(module_manager, top_module,
|
||||
|
|
|
@ -710,8 +710,6 @@ void build_grid_bitstream(BitstreamManager& bitstream_manager,
|
|||
|| (0 < grids[ix][iy].height_offset) ) {
|
||||
continue;
|
||||
}
|
||||
/* We should not meet any I/O grid */
|
||||
VTR_ASSERT(true != is_io_type(grids[ix][iy].type));
|
||||
/* Add a grid module to top_module*/
|
||||
vtr::Point<size_t> grid_coord(ix, iy);
|
||||
build_physical_block_bitstream(bitstream_manager, top_block, module_manager,
|
||||
|
|
|
@ -463,6 +463,11 @@ void build_connection_block_bitstreams(BitstreamManager& bitstream_manager,
|
|||
ModuleId cb_module = module_manager.find_module(cb_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(cb_module));
|
||||
|
||||
/* Bypass empty blocks which have none configurable children */
|
||||
if (0 == count_module_manager_module_configurable_children(module_manager, cb_module)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Create a block for the bitstream which corresponds to the Switch block */
|
||||
ConfigBlockId cb_configurable_block = bitstream_manager.add_block(generate_connection_block_module_name(cb_type, cb_coord));
|
||||
/* Set switch block as a child of top block */
|
||||
|
@ -530,6 +535,11 @@ void build_routing_bitstream(BitstreamManager& bitstream_manager,
|
|||
ModuleId sb_module = module_manager.find_module(sb_module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(sb_module));
|
||||
|
||||
/* Bypass empty blocks which have none configurable children */
|
||||
if (0 == count_module_manager_module_configurable_children(module_manager, sb_module)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Create a block for the bitstream which corresponds to the Switch block */
|
||||
ConfigBlockId sb_configurable_block = bitstream_manager.add_block(generate_switch_block_module_name(sb_coord));
|
||||
/* Set switch block as a child of top block */
|
||||
|
|
|
@ -618,9 +618,6 @@ void print_analysis_sdc_disable_unused_grids(std::fstream& fp,
|
|||
/* Process unused core grids */
|
||||
for (size_t ix = 1; ix < grids.width() - 1; ++ix) {
|
||||
for (size_t iy = 1; iy < grids.height() - 1; ++iy) {
|
||||
/* We should not meet any I/O grid */
|
||||
VTR_ASSERT(false == is_io_type(grids[ix][iy].type));
|
||||
|
||||
print_analysis_sdc_disable_unused_grid(fp, vtr::Point<size_t>(ix, iy),
|
||||
grids, device_annotation, cluster_annotation, place_annotation,
|
||||
module_manager, NUM_SIDES);
|
||||
|
|
|
@ -286,11 +286,6 @@ void print_verilog_physical_tile_netlist(NetlistManager& netlist_manager,
|
|||
t_physical_tile_type_ptr phy_block_type,
|
||||
const e_side& border_side,
|
||||
const bool& use_explicit_mapping) {
|
||||
/* Check code: if this is an IO block, the border side MUST be valid */
|
||||
if (true == is_io_type(phy_block_type)) {
|
||||
VTR_ASSERT(NUM_SIDES != border_side);
|
||||
}
|
||||
|
||||
/* Give a name to the Verilog netlist */
|
||||
/* Create the file name for Verilog */
|
||||
std::string verilog_fname(subckt_dir
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/fix_device_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=2x2
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileableIO_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/or2/or2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = or2
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -5,7 +5,8 @@ Please reveal the following architecture features in the names to help quickly s
|
|||
* The keyword 'frac' is to specify if fracturable LUT is used or not.
|
||||
* The keyword 'Native' is to specify if fracturable LUT design is a native one (without mode switch) or a standard one (with mode switch).
|
||||
- N<le\_size>: Number of logic elements for a CLB. If you have multiple CLB architectures, this should be largest number.
|
||||
- tileable: If the routing architecture is tileable or not.
|
||||
- tileable<IO>: If the routing architecture is tileable or not.
|
||||
* The keyword 'IO' specifies if the I/O tile is tileable or not
|
||||
- adder\_chain: If hard adder/carry chain is used inside CLBs
|
||||
- register\_chain: If shift register chain is used inside CLBs
|
||||
- scan\_chain: If scan chain testing infrastructure is used inside CLBs
|
||||
|
|
|
@ -0,0 +1,293 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="top">io.outpad</loc>
|
||||
<loc side="right">io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!-- Perimeter of 'EMPTY' blocks -->
|
||||
<perimeter type="EMPTY" priority="100"/>
|
||||
<!--Fill with 'io'-->
|
||||
<fill type="io" priority="10"/>
|
||||
<!-- Build an inner region of clbs -->
|
||||
<region type="clb" startx="2" endx="W-3" starty="2" endy="H-3" priority="101"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="6" height="6">
|
||||
<!-- Perimeter of 'EMPTY' blocks -->
|
||||
<perimeter type="EMPTY" priority="100"/>
|
||||
<!--Fill with 'io'-->
|
||||
<fill type="io" priority="10"/>
|
||||
<!-- Build an inner region of clbs -->
|
||||
<region type="clb" startx="2" endx="W-3" starty="2" endy="H-3" priority="101"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -52,11 +52,15 @@ e_side determine_io_grid_pin_side(const vtr::Point<size_t>& device_size,
|
|||
return TOP; /* Such I/O has only Top side pins */
|
||||
} else if (0 == grid_coordinate.x()) { /* LEFT side IO of FPGA */
|
||||
return RIGHT; /* Such I/O has only Right side pins */
|
||||
} else {
|
||||
VTR_LOGF_ERROR(__FILE__, __LINE__,
|
||||
"I/O Grid is in the center part of FPGA! Currently unsupported!\n");
|
||||
exit(1);
|
||||
} else if ((grid_coordinate.x() < device_size.x()) && (grid_coordinate.y() < device_size.y())) {
|
||||
/* I/O grid in the center grid */
|
||||
return NUM_SIDES;
|
||||
}
|
||||
VTR_LOGF_ERROR(__FILE__, __LINE__,
|
||||
"Invalid coordinate (%lu, %lu) for I/O Grid whose size is (%lu, %lu)!\n",
|
||||
grid_coordinate.x(), grid_coordinate.y(),
|
||||
device_size.x(), device_size.y());
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* Deteremine the side of a pin of a grid */
|
||||
|
@ -111,7 +115,7 @@ size_t get_grid_num_pins(const t_grid_tile& cur_grid,
|
|||
for (const e_side& side : {TOP, RIGHT, BOTTOM, LEFT}) {
|
||||
/* skip unwanted sides */
|
||||
if ( (true == is_io_type(cur_grid.type))
|
||||
&& (side != io_side) ) {
|
||||
&& (side != io_side) && (NUM_SIDES != io_side)) {
|
||||
continue;
|
||||
}
|
||||
/* Get pin list */
|
||||
|
|
|
@ -379,7 +379,7 @@ void load_one_grid_opin_nodes_basic_info(RRGraph& rr_graph,
|
|||
SideManager side_manager(side);
|
||||
/* skip unwanted sides */
|
||||
if ( (true == is_io_type(cur_grid.type))
|
||||
&& (side != io_side_manager.to_size_t()) ) {
|
||||
&& (side != io_side_manager.to_size_t()) && (NUM_SIDES != io_side) ) {
|
||||
continue;
|
||||
}
|
||||
/* Find OPINs */
|
||||
|
@ -442,7 +442,7 @@ void load_one_grid_ipin_nodes_basic_info(RRGraph& rr_graph,
|
|||
SideManager side_manager(side);
|
||||
/* skip unwanted sides */
|
||||
if ( (true == is_io_type(cur_grid.type))
|
||||
&& (side != io_side_manager.to_size_t()) ) {
|
||||
&& (side != io_side_manager.to_size_t()) && (NUM_SIDES != io_side) ) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue