add memory module builder
This commit is contained in:
parent
8e381f0581
commit
002c2795fe
|
@ -13,7 +13,7 @@
|
|||
#include "build_mux_modules.h"
|
||||
#include "build_lut_modules.h"
|
||||
#include "build_wire_modules.h"
|
||||
//#include "build_memory_modules.h"
|
||||
#include "build_memory_modules.h"
|
||||
//#include "build_grid_modules.h"
|
||||
//#include "build_routing_modules.h"
|
||||
//#include "build_top_module.h"
|
||||
|
@ -62,8 +62,9 @@ ModuleManager build_device_module_graph(const DeviceContext& vpr_device_ctx,
|
|||
build_wire_modules(module_manager, openfpga_ctx.arch().circuit_lib);
|
||||
|
||||
/* Build memory modules */
|
||||
//build_memory_modules(module_manager, mux_lib, arch.spice->circuit_lib,
|
||||
// arch.sram_inf.verilog_sram_inf_orgz->type);
|
||||
build_memory_modules(module_manager, openfpga_ctx.mux_lib(),
|
||||
openfpga_ctx.arch().circuit_lib,
|
||||
openfpga_ctx.arch().config_protocol.type());
|
||||
|
||||
/* Build grid and programmable block modules */
|
||||
//build_grid_modules(module_manager, arch.spice->circuit_lib, mux_lib,
|
||||
|
|
|
@ -0,0 +1,715 @@
|
|||
/*********************************************************************
|
||||
* This file includes functions to generate Verilog submodules for
|
||||
* the memories that are affiliated to multiplexers and other programmable
|
||||
* circuit models, such as IOPADs, LUTs, etc.
|
||||
********************************************************************/
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
|
||||
/* Headers from vtrutil library */
|
||||
#include "vtr_log.h"
|
||||
#include "vtr_time.h"
|
||||
#include "vtr_assert.h"
|
||||
|
||||
#include "mux_graph.h"
|
||||
#include "module_manager.h"
|
||||
#include "circuit_library_utils.h"
|
||||
#include "module_manager_utils.h"
|
||||
#include "mux_utils.h"
|
||||
|
||||
#include "openfpga_reserved_words.h"
|
||||
#include "openfpga_naming.h"
|
||||
|
||||
#include "build_memory_modules.h"
|
||||
|
||||
/* begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
/*********************************************************************
|
||||
* Add module nets to connect an input port of a memory module to
|
||||
* an input port of its child module
|
||||
* Restriction: this function is really designed for memory modules
|
||||
* 1. It assumes that input port name of child module is the same as memory module
|
||||
* 2. It assumes exact pin-to-pin mapping:
|
||||
* j-th pin of input port of the i-th child module is wired to the j + i*W -th
|
||||
* pin of input port of the memory module, where W is the size of port
|
||||
********************************************************************/
|
||||
static
|
||||
void add_module_input_nets_to_mem_modules(ModuleManager& module_manager,
|
||||
const ModuleId& mem_module,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const std::vector<CircuitPortId>& circuit_ports,
|
||||
const ModuleId& child_module,
|
||||
const size_t& child_index,
|
||||
const size_t& child_instance) {
|
||||
/* Wire inputs of parent module to inputs of child modules */
|
||||
for (const auto& port : circuit_ports) {
|
||||
ModulePortId src_port_id = module_manager.find_module_port(mem_module, circuit_lib.port_prefix(port));
|
||||
ModulePortId sink_port_id = module_manager.find_module_port(child_module, circuit_lib.port_prefix(port));
|
||||
for (size_t pin_id = 0; pin_id < module_manager.module_port(mem_module, sink_port_id).pins().size(); ++pin_id) {
|
||||
ModuleNetId net = module_manager.create_module_net(mem_module);
|
||||
/* Source pin is shifted by the number of memories */
|
||||
size_t src_pin_id = child_index * circuit_lib.port_size(port) + module_manager.module_port(mem_module, src_port_id).pins()[pin_id];
|
||||
/* Source node of the input net is the input of memory module */
|
||||
module_manager.add_module_net_source(mem_module, net, mem_module, 0, src_port_id, src_pin_id);
|
||||
/* Sink node of the input net is the input of sram module */
|
||||
size_t sink_pin_id = module_manager.module_port(child_module, sink_port_id).pins()[pin_id];
|
||||
module_manager.add_module_net_sink(mem_module, net, child_module, child_instance, sink_port_id, sink_pin_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Add module nets to connect an output port of a memory module to
|
||||
* an output port of its child module
|
||||
* Restriction: this function is really designed for memory modules
|
||||
* 1. It assumes that output port name of child module is the same as memory module
|
||||
* 2. It assumes exact pin-to-pin mapping:
|
||||
* j-th pin of output port of the i-th child module is wired to the j + i*W -th
|
||||
* pin of output port of the memory module, where W is the size of port
|
||||
********************************************************************/
|
||||
static
|
||||
void add_module_output_nets_to_mem_modules(ModuleManager& module_manager,
|
||||
const ModuleId& mem_module,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const std::vector<CircuitPortId>& circuit_ports,
|
||||
const ModuleId& child_module,
|
||||
const size_t& child_index,
|
||||
const size_t& child_instance) {
|
||||
/* Wire inputs of parent module to inputs of child modules */
|
||||
for (const auto& port : circuit_ports) {
|
||||
ModulePortId src_port_id = module_manager.find_module_port(child_module, circuit_lib.port_prefix(port));
|
||||
ModulePortId sink_port_id = module_manager.find_module_port(mem_module, circuit_lib.port_prefix(port));
|
||||
for (size_t pin_id = 0; pin_id < module_manager.module_port(child_module, src_port_id).pins().size(); ++pin_id) {
|
||||
ModuleNetId net = module_manager.create_module_net(mem_module);
|
||||
/* Source pin is shifted by the number of memories */
|
||||
size_t src_pin_id = module_manager.module_port(child_module, src_port_id).pins()[pin_id];
|
||||
/* Source node of the input net is the input of memory module */
|
||||
module_manager.add_module_net_source(mem_module, net, child_module, child_instance, src_port_id, src_pin_id);
|
||||
/* Sink node of the input net is the input of sram module */
|
||||
size_t sink_pin_id = child_index * circuit_lib.port_size(port) + module_manager.module_port(mem_module, sink_port_id).pins()[pin_id];
|
||||
module_manager.add_module_net_sink(mem_module, net, mem_module, 0, sink_port_id, sink_pin_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Add module nets to connect an output port of a configuration-chain
|
||||
* memory module to an output port of its child module
|
||||
* Restriction: this function is really designed for memory modules
|
||||
* 1. It assumes that output port name of child module is the same as memory module
|
||||
* 2. It assumes exact pin-to-pin mapping:
|
||||
* j-th pin of output port of the i-th child module is wired to the j + i*W -th
|
||||
* pin of output port of the memory module, where W is the size of port
|
||||
* 3. It assumes fixed port name for output ports
|
||||
*
|
||||
* We cache the module nets that have been created because they will be used later
|
||||
********************************************************************/
|
||||
static
|
||||
std::vector<ModuleNetId> add_module_output_nets_to_chain_mem_modules(ModuleManager& module_manager,
|
||||
const ModuleId& mem_module,
|
||||
const std::string& mem_module_output_name,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const CircuitPortId& circuit_port,
|
||||
const ModuleId& child_module,
|
||||
const size_t& child_index,
|
||||
const size_t& child_instance) {
|
||||
std::vector<ModuleNetId> module_nets;
|
||||
|
||||
/* Wire inputs of parent module to inputs of child modules */
|
||||
ModulePortId src_port_id = module_manager.find_module_port(child_module, circuit_lib.port_prefix(circuit_port));
|
||||
ModulePortId sink_port_id = module_manager.find_module_port(mem_module, mem_module_output_name);
|
||||
for (size_t pin_id = 0; pin_id < module_manager.module_port(child_module, src_port_id).pins().size(); ++pin_id) {
|
||||
ModuleNetId net = module_manager.create_module_net(mem_module);
|
||||
/* Source pin is shifted by the number of memories */
|
||||
size_t src_pin_id = module_manager.module_port(child_module, src_port_id).pins()[pin_id];
|
||||
/* Source node of the input net is the input of memory module */
|
||||
module_manager.add_module_net_source(mem_module, net, child_module, child_instance, src_port_id, src_pin_id);
|
||||
/* Sink node of the input net is the input of sram module */
|
||||
size_t sink_pin_id = child_index * circuit_lib.port_size(circuit_port) + module_manager.module_port(mem_module, sink_port_id).pins()[pin_id];
|
||||
module_manager.add_module_net_sink(mem_module, net, mem_module, 0, sink_port_id, sink_pin_id);
|
||||
|
||||
/* Cache the nets */
|
||||
module_nets.push_back(net);
|
||||
}
|
||||
|
||||
return module_nets;
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Connect all the memory modules under the parent module in a chain
|
||||
*
|
||||
* +--------+ +--------+ +--------+
|
||||
* ccff_head --->| Memory |--->| Memory |--->... --->| Memory |----> ccff_tail
|
||||
* | Module | | Module | | Module |
|
||||
* | [0] | | [1] | | [N-1] |
|
||||
* +--------+ +--------+ +--------+
|
||||
* For the 1st memory module:
|
||||
* net source is the configuration chain head of the primitive module
|
||||
* net sink is the configuration chain head of the next memory module
|
||||
*
|
||||
* For the rest of memory modules:
|
||||
* net source is the configuration chain tail of the previous memory module
|
||||
* net sink is the configuration chain head of the next memory module
|
||||
*
|
||||
* Note that:
|
||||
* This function is designed for memory modules ONLY!
|
||||
* Do not use it to replace the
|
||||
* add_module_nets_cmos_memory_chain_config_bus() !!!
|
||||
*********************************************************************/
|
||||
static
|
||||
void add_module_nets_to_cmos_memory_chain_module(ModuleManager& module_manager,
|
||||
const ModuleId& parent_module,
|
||||
const std::vector<ModuleNetId>& output_nets,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const CircuitPortId& model_input_port,
|
||||
const CircuitPortId& model_output_port) {
|
||||
/* Counter for the nets */
|
||||
size_t net_counter = 0;
|
||||
|
||||
for (size_t mem_index = 0; mem_index < module_manager.configurable_children(parent_module).size(); ++mem_index) {
|
||||
ModuleId net_src_module_id;
|
||||
size_t net_src_instance_id;
|
||||
ModulePortId net_src_port_id;
|
||||
|
||||
ModuleId net_sink_module_id;
|
||||
size_t net_sink_instance_id;
|
||||
ModulePortId net_sink_port_id;
|
||||
|
||||
if (0 == mem_index) {
|
||||
/* Find the port name of configuration chain head */
|
||||
std::string src_port_name = generate_configuration_chain_head_name();
|
||||
net_src_module_id = parent_module;
|
||||
net_src_instance_id = 0;
|
||||
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
|
||||
|
||||
/* Find the port name of next memory module */
|
||||
std::string sink_port_name = circuit_lib.port_prefix(model_input_port);
|
||||
net_sink_module_id = module_manager.configurable_children(parent_module)[mem_index];
|
||||
net_sink_instance_id = module_manager.configurable_child_instances(parent_module)[mem_index];
|
||||
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
|
||||
} else {
|
||||
/* Find the port name of previous memory module */
|
||||
std::string src_port_name = circuit_lib.port_prefix(model_output_port);
|
||||
net_src_module_id = module_manager.configurable_children(parent_module)[mem_index - 1];
|
||||
net_src_instance_id = module_manager.configurable_child_instances(parent_module)[mem_index - 1];
|
||||
net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
|
||||
|
||||
/* Find the port name of next memory module */
|
||||
std::string sink_port_name = circuit_lib.port_prefix(model_input_port);
|
||||
net_sink_module_id = module_manager.configurable_children(parent_module)[mem_index];
|
||||
net_sink_instance_id = module_manager.configurable_child_instances(parent_module)[mem_index];
|
||||
net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
|
||||
}
|
||||
|
||||
/* Get the pin id for source port */
|
||||
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
|
||||
/* Get the pin id for sink port */
|
||||
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
|
||||
/* Port sizes of source and sink should match */
|
||||
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
|
||||
|
||||
/* Create a net for each pin */
|
||||
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
|
||||
/* Create a net and add source and sink to it */
|
||||
ModuleNetId net;
|
||||
if (0 == mem_index) {
|
||||
net = module_manager.create_module_net(parent_module);
|
||||
} else {
|
||||
net = output_nets[net_counter];
|
||||
}
|
||||
/* Add net source */
|
||||
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
|
||||
/* Add net sink */
|
||||
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
|
||||
|
||||
/* Update net counter */
|
||||
if (0 < mem_index) {
|
||||
net_counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* For the last memory module:
|
||||
* net source is the configuration chain tail of the previous memory module
|
||||
* net sink is the configuration chain tail of the primitive module
|
||||
*/
|
||||
/* Find the port name of previous memory module */
|
||||
std::string src_port_name = circuit_lib.port_prefix(model_output_port);
|
||||
ModuleId net_src_module_id = module_manager.configurable_children(parent_module).back();
|
||||
size_t net_src_instance_id = module_manager.configurable_child_instances(parent_module).back();
|
||||
ModulePortId net_src_port_id = module_manager.find_module_port(net_src_module_id, src_port_name);
|
||||
|
||||
/* Find the port name of next memory module */
|
||||
std::string sink_port_name = generate_configuration_chain_tail_name();
|
||||
ModuleId net_sink_module_id = parent_module;
|
||||
size_t net_sink_instance_id = 0;
|
||||
ModulePortId net_sink_port_id = module_manager.find_module_port(net_sink_module_id, sink_port_name);
|
||||
|
||||
/* Get the pin id for source port */
|
||||
BasicPort net_src_port = module_manager.module_port(net_src_module_id, net_src_port_id);
|
||||
/* Get the pin id for sink port */
|
||||
BasicPort net_sink_port = module_manager.module_port(net_sink_module_id, net_sink_port_id);
|
||||
/* Port sizes of source and sink should match */
|
||||
VTR_ASSERT(net_src_port.get_width() == net_sink_port.get_width());
|
||||
|
||||
/* Create a net for each pin */
|
||||
for (size_t pin_id = 0; pin_id < net_src_port.pins().size(); ++pin_id) {
|
||||
/* Create a net and add source and sink to it */
|
||||
ModuleNetId net = output_nets[net_counter];
|
||||
/* Add net source */
|
||||
module_manager.add_module_net_source(parent_module, net, net_src_module_id, net_src_instance_id, net_src_port_id, net_src_port.pins()[pin_id]);
|
||||
/* Add net sink */
|
||||
module_manager.add_module_net_sink(parent_module, net, net_sink_module_id, net_sink_instance_id, net_sink_port_id, net_sink_port.pins()[pin_id]);
|
||||
|
||||
/* Update net counter */
|
||||
net_counter++;
|
||||
}
|
||||
|
||||
VTR_ASSERT(net_counter == output_nets.size());
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Flat memory modules
|
||||
*
|
||||
* in[0] in[1] in[N]
|
||||
* | | |
|
||||
* v v v
|
||||
* +-------+ +-------+ +-------+
|
||||
* | SRAM | | SRAM | ... | SRAM |
|
||||
* | [0] | | [1] | | [N-1] |
|
||||
* +-------+ +-------+ +-------+
|
||||
* | | ... |
|
||||
* v v v
|
||||
* +------------------------------------+
|
||||
* | Multiplexer Configuration port |
|
||||
*
|
||||
********************************************************************/
|
||||
static
|
||||
void build_memory_standalone_module(ModuleManager& module_manager,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const std::string& module_name,
|
||||
const CircuitModelId& sram_model,
|
||||
const size_t& num_mems) {
|
||||
/* Get the global ports required by the SRAM */
|
||||
std::vector<enum e_circuit_model_port_type> global_port_types;
|
||||
global_port_types.push_back(CIRCUIT_MODEL_PORT_CLOCK);
|
||||
global_port_types.push_back(CIRCUIT_MODEL_PORT_INPUT);
|
||||
std::vector<CircuitPortId> sram_global_ports = circuit_lib.model_global_ports_by_type(sram_model, global_port_types, true, false);
|
||||
/* Get the input ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_input_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
||||
/* Get the output ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_output_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
||||
|
||||
/* Create a module and add to the module manager */
|
||||
ModuleId mem_module = module_manager.add_module(module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(mem_module));
|
||||
|
||||
/* Add each input port */
|
||||
for (const auto& port : sram_input_ports) {
|
||||
BasicPort input_port(circuit_lib.port_prefix(port), num_mems);
|
||||
module_manager.add_port(mem_module, input_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
/* Add each output port: port width should match the number of memories */
|
||||
for (const auto& port : sram_output_ports) {
|
||||
BasicPort output_port(circuit_lib.port_prefix(port), num_mems);
|
||||
module_manager.add_port(mem_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
||||
}
|
||||
|
||||
/* Find the sram module in the module manager */
|
||||
ModuleId sram_mem_module = module_manager.find_module(circuit_lib.model_name(sram_model));
|
||||
|
||||
/* Instanciate each submodule */
|
||||
for (size_t i = 0; i < num_mems; ++i) {
|
||||
size_t sram_mem_instance = module_manager.num_instance(mem_module, sram_mem_module);
|
||||
module_manager.add_child_module(mem_module, sram_mem_module);
|
||||
module_manager.add_configurable_child(mem_module, sram_mem_module, sram_mem_instance);
|
||||
|
||||
/* Build module nets */
|
||||
/* Wire inputs of parent module to inputs of child modules */
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_input_ports, sram_mem_module, i, sram_mem_instance);
|
||||
/* Wire inputs of parent module to outputs of child modules */
|
||||
add_module_output_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_output_ports, sram_mem_module, i, sram_mem_instance);
|
||||
}
|
||||
|
||||
/* Add global ports to the pb_module:
|
||||
* This is a much easier job after adding sub modules (instances),
|
||||
* we just need to find all the global ports from the child modules and build a list of it
|
||||
*/
|
||||
add_module_global_ports_from_child_modules(module_manager, mem_module);
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Scan-chain organization
|
||||
*
|
||||
* +-------+ +-------+ +-------+
|
||||
* scan-chain--->| CCFF |--->| CCFF |--->... --->| CCFF |---->scan-chain
|
||||
* input&clock | [0] | | [1] | | [N-1] | output
|
||||
* +-------+ +-------+ +-------+
|
||||
* | | ... |
|
||||
* v v v
|
||||
* +-----------------------------------------+
|
||||
* | Multiplexer Configuration port |
|
||||
*
|
||||
********************************************************************/
|
||||
static
|
||||
void build_memory_chain_module(ModuleManager& module_manager,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const std::string& module_name,
|
||||
const CircuitModelId& sram_model,
|
||||
const size_t& num_mems) {
|
||||
|
||||
/* Get the input ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_input_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
||||
/* Should have only 1 input port */
|
||||
VTR_ASSERT( 1 == sram_input_ports.size() );
|
||||
/* Get the output ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_output_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
||||
/* Should have only 1 or 2 output port */
|
||||
VTR_ASSERT( (1 == sram_output_ports.size()) || ( 2 == sram_output_ports.size()) );
|
||||
|
||||
/* Create a module and add to the module manager */
|
||||
ModuleId mem_module = module_manager.add_module(module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(mem_module));
|
||||
|
||||
/* Add an input port, which is the head of configuration chain in the module */
|
||||
/* TODO: restriction!!!
|
||||
* consider only the first input of the CCFF model as the D port,
|
||||
* which will be connected to the head of the chain
|
||||
*/
|
||||
BasicPort chain_head_port(generate_configuration_chain_head_name(),
|
||||
circuit_lib.port_size(sram_input_ports[0]));
|
||||
module_manager.add_port(mem_module, chain_head_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
/* Add an output port, which is the tail of configuration chain in the module */
|
||||
/* TODO: restriction!!!
|
||||
* consider only the first output of the CCFF model as the Q port,
|
||||
* which will be connected to the tail of the chain
|
||||
*/
|
||||
BasicPort chain_tail_port(generate_configuration_chain_tail_name(),
|
||||
circuit_lib.port_size(sram_output_ports[0]));
|
||||
module_manager.add_port(mem_module, chain_tail_port, ModuleManager::MODULE_OUTPUT_PORT);
|
||||
|
||||
/* Add each output port: port width should match the number of memories */
|
||||
for (size_t iport = 0; iport < sram_output_ports.size(); ++iport) {
|
||||
std::string port_name;
|
||||
if (0 == iport) {
|
||||
port_name = generate_configuration_chain_data_out_name();
|
||||
} else {
|
||||
VTR_ASSERT( 1 == iport);
|
||||
port_name = generate_configuration_chain_inverted_data_out_name();
|
||||
}
|
||||
BasicPort output_port(port_name, num_mems);
|
||||
module_manager.add_port(mem_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
||||
}
|
||||
|
||||
/* Find the sram module in the module manager */
|
||||
ModuleId sram_mem_module = module_manager.find_module(circuit_lib.model_name(sram_model));
|
||||
|
||||
/* Cache the output nets for non-inverted data output */
|
||||
std::vector<ModuleNetId> mem_output_nets;
|
||||
|
||||
/* Instanciate each submodule */
|
||||
for (size_t i = 0; i < num_mems; ++i) {
|
||||
size_t sram_mem_instance = module_manager.num_instance(mem_module, sram_mem_module);
|
||||
module_manager.add_child_module(mem_module, sram_mem_module);
|
||||
module_manager.add_configurable_child(mem_module, sram_mem_module, sram_mem_instance);
|
||||
|
||||
/* Build module nets to wire outputs of sram modules to outputs of memory module */
|
||||
for (size_t iport = 0; iport < sram_output_ports.size(); ++iport) {
|
||||
std::string port_name;
|
||||
if (0 == iport) {
|
||||
port_name = generate_configuration_chain_data_out_name();
|
||||
} else {
|
||||
VTR_ASSERT( 1 == iport);
|
||||
port_name = generate_configuration_chain_inverted_data_out_name();
|
||||
}
|
||||
std::vector<ModuleNetId> output_nets = add_module_output_nets_to_chain_mem_modules(module_manager, mem_module,
|
||||
port_name, circuit_lib, sram_output_ports[iport],
|
||||
sram_mem_module, i, sram_mem_instance);
|
||||
/* Cache only for regular data outputs */
|
||||
if (0 == iport) {
|
||||
mem_output_nets.insert(mem_output_nets.end(), output_nets.begin(), output_nets.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Build module nets to wire the configuration chain */
|
||||
add_module_nets_to_cmos_memory_chain_module(module_manager, mem_module, mem_output_nets,
|
||||
circuit_lib, sram_input_ports[0], sram_output_ports[0]);
|
||||
|
||||
|
||||
/* Add global ports to the pb_module:
|
||||
* This is a much easier job after adding sub modules (instances),
|
||||
* we just need to find all the global ports from the child modules and build a list of it
|
||||
*/
|
||||
add_module_global_ports_from_child_modules(module_manager, mem_module);
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Memory bank organization
|
||||
*
|
||||
* Bit lines(BL/BLB) Word lines (WL/WLB)
|
||||
* | |
|
||||
* v v
|
||||
* +------------------------------------+
|
||||
* | Memory Module Configuration port |
|
||||
* +------------------------------------+
|
||||
* | | |
|
||||
* v v v
|
||||
* +-------+ +-------+ +-------+
|
||||
* | SRAM | | SRAM | ... | SRAM |
|
||||
* | [0] | | [1] | | [N-1] |
|
||||
* +-------+ +-------+ +-------+
|
||||
* | | ... |
|
||||
* v v v
|
||||
* +------------------------------------+
|
||||
* | Multiplexer Configuration port |
|
||||
*
|
||||
********************************************************************/
|
||||
static
|
||||
void build_memory_bank_module(ModuleManager& module_manager,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const std::string& module_name,
|
||||
const CircuitModelId& sram_model,
|
||||
const size_t& num_mems) {
|
||||
/* Get the global ports required by the SRAM */
|
||||
std::vector<enum e_circuit_model_port_type> global_port_types;
|
||||
global_port_types.push_back(CIRCUIT_MODEL_PORT_CLOCK);
|
||||
global_port_types.push_back(CIRCUIT_MODEL_PORT_INPUT);
|
||||
std::vector<CircuitPortId> sram_global_ports = circuit_lib.model_global_ports_by_type(sram_model, global_port_types, true, false);
|
||||
/* Get the input ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_input_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
||||
/* A SRAM cell with BL/WL should not have any input */
|
||||
VTR_ASSERT( 0 == sram_input_ports.size() );
|
||||
/* Get the output ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_output_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
||||
/* Get the BL/WL ports from the SRAM */
|
||||
std::vector<CircuitPortId> sram_bl_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_BL, true);
|
||||
std::vector<CircuitPortId> sram_blb_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_BLB, true);
|
||||
std::vector<CircuitPortId> sram_wl_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_WL, true);
|
||||
std::vector<CircuitPortId> sram_wlb_ports = circuit_lib.model_ports_by_type(sram_model, CIRCUIT_MODEL_PORT_WLB, true);
|
||||
|
||||
/* Create a module and add to the module manager */
|
||||
ModuleId mem_module = module_manager.add_module(module_name);
|
||||
VTR_ASSERT(true == module_manager.valid_module_id(mem_module));
|
||||
|
||||
/* Add module ports: the ports come from the SRAM modules */
|
||||
/* Add each input port */
|
||||
for (const auto& port : sram_input_ports) {
|
||||
BasicPort input_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, input_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
/* Add each output port: port width should match the number of memories */
|
||||
for (const auto& port : sram_output_ports) {
|
||||
BasicPort output_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
||||
}
|
||||
/* Add each output port: port width should match the number of memories */
|
||||
for (const auto& port : sram_bl_ports) {
|
||||
BasicPort bl_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, bl_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
for (const auto& port : sram_blb_ports) {
|
||||
BasicPort blb_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, blb_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
for (const auto& port : sram_wl_ports) {
|
||||
BasicPort wl_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, wl_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
for (const auto& port : sram_wlb_ports) {
|
||||
BasicPort wlb_port(circuit_lib.port_prefix(port), num_mems * circuit_lib.port_size(port));
|
||||
module_manager.add_port(mem_module, wlb_port, ModuleManager::MODULE_INPUT_PORT);
|
||||
}
|
||||
|
||||
/* Find the sram module in the module manager */
|
||||
ModuleId sram_mem_module = module_manager.find_module(circuit_lib.model_name(sram_model));
|
||||
|
||||
/* Instanciate each submodule */
|
||||
for (size_t i = 0; i < num_mems; ++i) {
|
||||
/* Memory seed module instanciation */
|
||||
size_t sram_instance = module_manager.num_instance(mem_module, sram_mem_module);
|
||||
module_manager.add_child_module(mem_module, sram_mem_module);
|
||||
|
||||
/* Build module nets */
|
||||
/* Wire inputs of parent module to inputs of child modules */
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_input_ports, sram_mem_module, i, sram_instance);
|
||||
/* Wire inputs of parent module to outputs of child modules */
|
||||
add_module_output_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_output_ports, sram_mem_module, i, sram_instance);
|
||||
/* Wire BL/WLs of parent module to BL/WLs of child modules */
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_bl_ports, sram_mem_module, i, sram_instance);
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_blb_ports, sram_mem_module, i, sram_instance);
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_wl_ports, sram_mem_module, i, sram_instance);
|
||||
add_module_input_nets_to_mem_modules(module_manager, mem_module, circuit_lib, sram_wlb_ports, sram_mem_module, i, sram_instance);
|
||||
}
|
||||
|
||||
/* TODO: if a local memory decoder is required, instanciate it here */
|
||||
|
||||
/* Add global ports to the pb_module:
|
||||
* This is a much easier job after adding sub modules (instances),
|
||||
* we just need to find all the global ports from the child modules and build a list of it
|
||||
*/
|
||||
add_module_global_ports_from_child_modules(module_manager, mem_module);
|
||||
}
|
||||
|
||||
|
||||
/*********************************************************************
|
||||
* Generate Verilog modules for the memories that are used
|
||||
* by a circuit model
|
||||
* The organization of memory circuit will depend on the style of
|
||||
* configuration protocols
|
||||
* Currently, we support
|
||||
* 1. Flat SRAM organization
|
||||
* 2. Configuration chain
|
||||
* 3. Memory bank (memory decoders)
|
||||
********************************************************************/
|
||||
static
|
||||
void build_memory_module(ModuleManager& module_manager,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const e_config_protocol_type& sram_orgz_type,
|
||||
const std::string& module_name,
|
||||
const CircuitModelId& sram_model,
|
||||
const size_t& num_mems) {
|
||||
switch (sram_orgz_type) {
|
||||
case CONFIG_MEM_STANDALONE:
|
||||
build_memory_standalone_module(module_manager, circuit_lib,
|
||||
module_name, sram_model, num_mems);
|
||||
break;
|
||||
case CONFIG_MEM_SCAN_CHAIN:
|
||||
build_memory_chain_module(module_manager, circuit_lib,
|
||||
module_name, sram_model, num_mems);
|
||||
break;
|
||||
case CONFIG_MEM_MEMORY_BANK:
|
||||
build_memory_bank_module(module_manager, circuit_lib,
|
||||
module_name, sram_model, num_mems);
|
||||
break;
|
||||
default:
|
||||
VTR_LOG_ERROR("Invalid SRAM organization!\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*********************************************************************
|
||||
* Generate Verilog modules for the memories that are used
|
||||
* by multiplexers
|
||||
*
|
||||
* +----------------+
|
||||
* mem_in --->| Memory Module |---> mem_out
|
||||
* +----------------+
|
||||
* | | ... | |
|
||||
* v v v v SRAM ports of multiplexer
|
||||
* +---------------------+
|
||||
* in--->| Multiplexer Module |---> out
|
||||
* +---------------------+
|
||||
********************************************************************/
|
||||
static
|
||||
void build_mux_memory_module(ModuleManager& module_manager,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const e_config_protocol_type& sram_orgz_type,
|
||||
const CircuitModelId& mux_model,
|
||||
const MuxGraph& mux_graph) {
|
||||
/* Find the actual number of configuration bits, based on the mux graph
|
||||
* Due to the use of local decoders inside mux, this may be
|
||||
*/
|
||||
size_t num_config_bits = find_mux_num_config_bits(circuit_lib, mux_model, mux_graph, sram_orgz_type);
|
||||
/* Multiplexers built with different technology is in different organization */
|
||||
switch (circuit_lib.design_tech_type(mux_model)) {
|
||||
case CIRCUIT_MODEL_DESIGN_CMOS: {
|
||||
/* Generate module name */
|
||||
std::string module_name = generate_mux_subckt_name(circuit_lib, mux_model,
|
||||
find_mux_num_datapath_inputs(circuit_lib, mux_model, mux_graph.num_inputs()),
|
||||
std::string(MEMORY_MODULE_POSTFIX));
|
||||
|
||||
/* Get the sram ports from the mux */
|
||||
std::vector<CircuitModelId> sram_models = find_circuit_sram_models(circuit_lib, mux_model);
|
||||
VTR_ASSERT( 1 == sram_models.size() );
|
||||
|
||||
build_memory_module(module_manager, circuit_lib, sram_orgz_type, module_name, sram_models[0], num_config_bits);
|
||||
break;
|
||||
}
|
||||
case CIRCUIT_MODEL_DESIGN_RRAM:
|
||||
/* We do not need a memory submodule for RRAM MUX,
|
||||
* RRAM are embedded in the datapath
|
||||
* TODO: generate local encoders for RRAM-based multiplexers here!!!
|
||||
*/
|
||||
break;
|
||||
default:
|
||||
VTR_LOG_ERROR("Invalid design technology of multiplexer '%s'\n",
|
||||
circuit_lib.model_name(mux_model).c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* Build modules for
|
||||
* the memories that are affiliated to multiplexers and other programmable
|
||||
* circuit models, such as IOPADs, LUTs, etc.
|
||||
*
|
||||
* We keep the memory modules separated from the multiplexers and other
|
||||
* programmable circuit models, for the sake of supporting
|
||||
* various configuration schemes.
|
||||
* By following such organiztion, the Verilog modules of the circuit models
|
||||
* implements the functionality (circuit logic) only, while the memory Verilog
|
||||
* modules implements the memory circuits as well as configuration protocols.
|
||||
* For example, the local decoders of multiplexers are implemented in the
|
||||
* memory modules.
|
||||
* Take another example, the memory circuit can implement the scan-chain or
|
||||
* memory-bank organization for the memories.
|
||||
********************************************************************/
|
||||
void build_memory_modules(ModuleManager& module_manager,
|
||||
const MuxLibrary& mux_lib,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const e_config_protocol_type& sram_orgz_type) {
|
||||
vtr::ScopedStartFinishTimer timer("Build memory modules");
|
||||
|
||||
/* Create the memory circuits for the multiplexer */
|
||||
for (auto mux : mux_lib.muxes()) {
|
||||
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
|
||||
CircuitModelId mux_model = mux_lib.mux_circuit_model(mux);
|
||||
/* Bypass the non-MUX circuit models (i.e., LUTs).
|
||||
* They should be handled in a different way
|
||||
* Memory circuits of LUT includes both regular and mode-select ports
|
||||
*/
|
||||
if (CIRCUIT_MODEL_MUX != circuit_lib.model_type(mux_model)) {
|
||||
continue;
|
||||
}
|
||||
/* Create a Verilog module for the memories used by the multiplexer */
|
||||
build_mux_memory_module(module_manager, circuit_lib, sram_orgz_type, mux_model, mux_graph);
|
||||
}
|
||||
|
||||
/* Create the memory circuits for non-MUX circuit models.
|
||||
* In this case, the memory modules are designed to interface
|
||||
* the mode-select ports
|
||||
*/
|
||||
for (const auto& model : circuit_lib.models()) {
|
||||
/* Bypass MUXes, they have already been considered */
|
||||
if (CIRCUIT_MODEL_MUX == circuit_lib.model_type(model)) {
|
||||
continue;
|
||||
}
|
||||
/* Bypass those modules without any SRAM ports */
|
||||
std::vector<CircuitPortId> sram_ports = circuit_lib.model_ports_by_type(model, CIRCUIT_MODEL_PORT_SRAM, true);
|
||||
if (0 == sram_ports.size()) {
|
||||
continue;
|
||||
}
|
||||
/* Find the name of memory module */
|
||||
/* Get the total number of SRAMs */
|
||||
size_t num_mems = 0;
|
||||
for (const auto& port : sram_ports) {
|
||||
num_mems += circuit_lib.port_size(port);
|
||||
}
|
||||
/* Get the circuit model for the memory circuit used by the multiplexer */
|
||||
std::vector<CircuitModelId> sram_models = find_circuit_sram_models(circuit_lib, model);
|
||||
/* Should have only 1 SRAM model */
|
||||
VTR_ASSERT( 1 == sram_models.size() );
|
||||
|
||||
/* Create the module name for the memory block */
|
||||
std::string module_name = generate_memory_module_name(circuit_lib, model, sram_models[0], std::string(MEMORY_MODULE_POSTFIX));
|
||||
|
||||
/* Create a Verilog module for the memories used by the circuit model */
|
||||
build_memory_module(module_manager, circuit_lib, sram_orgz_type, module_name, sram_models[0], num_mems);
|
||||
}
|
||||
}
|
||||
|
||||
} /* end namespace openfpga */
|
|
@ -0,0 +1,25 @@
|
|||
#ifndef BUILD_MEMORY_MODULES_H
|
||||
#define BUILD_MEMORY_MODULES_H
|
||||
|
||||
/********************************************************************
|
||||
* Include header files that are required by function declaration
|
||||
*******************************************************************/
|
||||
#include "circuit_library.h"
|
||||
#include "mux_library.h"
|
||||
#include "module_manager.h"
|
||||
|
||||
/********************************************************************
|
||||
* Function declaration
|
||||
*******************************************************************/
|
||||
|
||||
/* begin namespace openfpga */
|
||||
namespace openfpga {
|
||||
|
||||
void build_memory_modules(ModuleManager& module_manager,
|
||||
const MuxLibrary& mux_lib,
|
||||
const CircuitLibrary& circuit_lib,
|
||||
const e_config_protocol_type& sram_orgz_type);
|
||||
|
||||
} /* end namespace openfpga */
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue