OpenFPGA/openfpga/src/fabric/build_grid_module_utils.cpp

119 lines
6.1 KiB
C++
Raw Normal View History

2020-02-12 21:25:05 -06:00
/********************************************************************
* This file includes most utilized functions for grid module builders
*******************************************************************/
/* Headers from vtrutil library */
#include "vtr_assert.h"
/* Headers from openfpgautil library */
#include "openfpga_side_manager.h"
/* Headers from vpr library */
#include "vpr_utils.h"
#include "openfpga_naming.h"
#include "build_grid_module_utils.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Find the side where I/O pins locate on a grid I/O block
* 1. I/O grids on the top side of FPGA only have ports on its bottom side
* 2. I/O grids on the right side of FPGA only have ports on its left side
* 3. I/O grids on the bottom side of FPGA only have ports on its top side
* 4. I/O grids on the left side of FPGA only have ports on its right side
* 5. I/O grids in the center part of FPGA can have ports on any side
2020-02-12 21:25:05 -06:00
*******************************************************************/
std::vector<e_side> find_grid_module_pin_sides(t_physical_tile_type_ptr grid_type_descriptor,
const e_side& border_side) {
2020-02-12 21:25:05 -06:00
/* We must have an regular (non-I/O) type here */
VTR_ASSERT(true == is_io_type(grid_type_descriptor));
SideManager side_manager(border_side);
if (NUM_SIDES == border_side) {
return {TOP, RIGHT, BOTTOM, LEFT};
}
return std::vector<e_side>(1, side_manager.get_opposite());
2020-02-12 21:25:05 -06:00
}
/********************************************************************
* Add module nets to connect a port of child pb_module
* to the grid module
*******************************************************************/
void add_grid_module_net_connect_pb_graph_pin(ModuleManager& module_manager,
const ModuleId& grid_module,
const ModuleId& child_module,
const size_t& child_instance,
const VprDeviceAnnotation& vpr_device_annotation,
2020-02-12 21:25:05 -06:00
t_physical_tile_type_ptr grid_type_descriptor,
t_pb_graph_pin* pb_graph_pin,
const e_side& border_side,
const e_pin2pin_interc_type& pin2pin_interc_type) {
/* Find the pin side for I/O grids*/
std::vector<e_side> grid_pin_sides;
/* For I/O grids, we care only one side
* Otherwise, we will iterate all the 4 sides
*/
if (true == is_io_type(grid_type_descriptor)) {
grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side);
2020-02-12 21:25:05 -06:00
} else {
grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT};
2020-02-12 21:25:05 -06:00
}
/* num_pins/capacity = the number of pins that each type_descriptor has.
* Capacity defines the number of type_descriptors in each grid
* so the pin index at grid level = pin_index_in_type_descriptor
* + type_descriptor_index_in_capacity * num_pins_per_type_descriptor
*/
size_t grid_pin_index = pb_graph_pin->pin_count_in_cluster
+ child_instance * grid_type_descriptor->num_pins / grid_type_descriptor->capacity;
int pin_height = grid_type_descriptor->pin_height_offset[grid_pin_index];
int pin_width = grid_type_descriptor->pin_width_offset[grid_pin_index];
for (const e_side& side : grid_pin_sides) {
if (true != grid_type_descriptor->pinloc[pin_width][pin_height][side][grid_pin_index]) {
continue;
}
/* Reach here, it means this pin is on this side */
/* Create a net to connect the grid pin to child module pin */
ModuleNetId net = module_manager.create_module_net(grid_module);
/* Find the port in grid_module */
BasicPort pin_info = vpr_device_annotation.physical_tile_pin_port_info(grid_type_descriptor, grid_pin_index);
VTR_ASSERT(true == pin_info.is_valid());
int subtile_index = vpr_device_annotation.physical_tile_pin_subtile_index(grid_type_descriptor, grid_pin_index);
VTR_ASSERT(OPEN != subtile_index && subtile_index < grid_type_descriptor->capacity);
std::string grid_port_name = generate_grid_port_name(pin_width, pin_height, subtile_index, side, pin_info);
2020-02-12 21:25:05 -06:00
ModulePortId grid_module_port_id = module_manager.find_module_port(grid_module, grid_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_module_port_id));
/* Grid port always has only 1 pin, it is assumed when adding these ports to the module
* if you need a change, please also change the port adding codes
*/
size_t grid_module_pin_id = 0;
/* Find the port in child module */
std::string child_module_port_name = generate_pb_type_port_name(pb_graph_pin->port);
ModulePortId child_module_port_id = module_manager.find_module_port(child_module, child_module_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(child_module, child_module_port_id));
size_t child_module_pin_id = pb_graph_pin->pin_number;
/* Add net sources and sinks:
* For input-to-input connection, net_source is grid pin, while net_sink is pb_graph_pin
* For output-to-output connection, net_source is pb_graph_pin, while net_sink is grid pin
*/
switch (pin2pin_interc_type) {
case INPUT2INPUT_INTERC:
module_manager.add_module_net_source(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id);
module_manager.add_module_net_sink(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id);
break;
case OUTPUT2OUTPUT_INTERC:
module_manager.add_module_net_source(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id);
module_manager.add_module_net_sink(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id);
break;
default:
VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid pin-to-pin interconnection type!\n");
2020-02-12 21:25:05 -06:00
exit(1);
}
}
}
} /* end namespace openfpga */