141 lines
3.0 KiB
C
141 lines
3.0 KiB
C
|
#include "tommath_private.h"
|
||
|
#ifdef BN_MP_SQRT_C
|
||
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||
|
/* SPDX-License-Identifier: Unlicense */
|
||
|
|
||
|
#ifndef NO_FLOATING_POINT
|
||
|
#include <float.h>
|
||
|
#include <math.h>
|
||
|
#if (MP_DIGIT_BIT != 28) || (FLT_RADIX != 2) || (DBL_MANT_DIG != 53) || (DBL_MAX_EXP != 1024)
|
||
|
#define NO_FLOATING_POINT
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
/* this function is less generic than mp_n_root, simpler and faster */
|
||
|
mp_err mp_sqrt(const mp_int *arg, mp_int *ret)
|
||
|
{
|
||
|
mp_err err;
|
||
|
mp_int t1, t2;
|
||
|
#ifndef NO_FLOATING_POINT
|
||
|
int i, j, k;
|
||
|
volatile double d;
|
||
|
mp_digit dig;
|
||
|
#endif
|
||
|
|
||
|
/* must be positive */
|
||
|
if (arg->sign == MP_NEG) {
|
||
|
return MP_VAL;
|
||
|
}
|
||
|
|
||
|
/* easy out */
|
||
|
if (MP_IS_ZERO(arg)) {
|
||
|
mp_zero(ret);
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
|
||
|
#ifndef NO_FLOATING_POINT
|
||
|
|
||
|
i = (arg->used / 2) - 1;
|
||
|
j = 2 * i;
|
||
|
if ((err = mp_init_size(&t1, i+2)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
if ((err = mp_init(&t2)) != MP_OKAY) {
|
||
|
goto E2;
|
||
|
}
|
||
|
|
||
|
for (k = 0; k < i; ++k) {
|
||
|
t1.dp[k] = (mp_digit) 0;
|
||
|
}
|
||
|
|
||
|
/* Estimate the square root using the hardware floating point unit. */
|
||
|
|
||
|
d = 0.0;
|
||
|
for (k = arg->used-1; k >= j; --k) {
|
||
|
d = ldexp(d, MP_DIGIT_BIT) + (double)(arg->dp[k]);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point, d is the nearest floating point number to the most
|
||
|
* significant 1 or 2 mp_digits of arg. Extract its square root.
|
||
|
*/
|
||
|
|
||
|
d = sqrt(d);
|
||
|
|
||
|
/* dig is the most significant mp_digit of the square root */
|
||
|
|
||
|
dig = (mp_digit) ldexp(d, -MP_DIGIT_BIT);
|
||
|
|
||
|
/*
|
||
|
* If the most significant digit is nonzero, find the next digit down
|
||
|
* by subtracting MP_DIGIT_BIT times thie most significant digit.
|
||
|
* Subtract one from the result so that our initial estimate is always
|
||
|
* low.
|
||
|
*/
|
||
|
|
||
|
if (dig) {
|
||
|
t1.used = i+2;
|
||
|
d -= ldexp((double) dig, MP_DIGIT_BIT);
|
||
|
if (d >= 1.0) {
|
||
|
t1.dp[i+1] = dig;
|
||
|
t1.dp[i] = ((mp_digit) d) - 1;
|
||
|
} else {
|
||
|
t1.dp[i+1] = dig-1;
|
||
|
t1.dp[i] = MP_DIGIT_MAX;
|
||
|
}
|
||
|
} else {
|
||
|
t1.used = i+1;
|
||
|
t1.dp[i] = ((mp_digit) d) - 1;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
if ((err = mp_init_copy(&t1, arg)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
if ((err = mp_init(&t2)) != MP_OKAY) {
|
||
|
goto E2;
|
||
|
}
|
||
|
|
||
|
/* First approx. (not very bad for large arg) */
|
||
|
mp_rshd(&t1, t1.used/2);
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* t1 > 0 */
|
||
|
if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
/* And now t1 > sqrt(arg) */
|
||
|
do {
|
||
|
if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
|
||
|
goto E1;
|
||
|
}
|
||
|
/* t1 >= sqrt(arg) >= t2 at this point */
|
||
|
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||
|
|
||
|
mp_exch(&t1, ret);
|
||
|
|
||
|
E1:
|
||
|
mp_clear(&t2);
|
||
|
E2:
|
||
|
mp_clear(&t1);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
#endif
|