OpenFPGA/vpr7_x2p/vpr/SRC/base/SetupGrid.c

226 lines
5.9 KiB
C
Raw Normal View History

2018-07-26 12:28:21 -05:00
/*
Author: Jason Luu
Date: October 8, 2008
Initializes and allocates the physical logic block grid for VPR.
*/
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "util.h"
#include "vpr_types.h"
#include "globals.h"
#include "SetupGrid.h"
#include "read_xml_arch_file.h"
static void CheckGrid(void);
static t_type_ptr find_type_col(INP int x);
/* Create and fill FPGA architecture grid. */
void alloc_and_load_grid(INOUTP int *num_instances_type) {
int i, j;
t_type_ptr type;
#ifdef SHOW_ARCH
FILE *dump;
#endif
/* To remove this limitation, change ylow etc. in t_rr_node to *
* * be ints instead. Used shorts to save memory. */
if ((nx > 32766) || (ny > 32766)) {
vpr_printf(TIO_MESSAGE_ERROR, "nx and ny must be less than 32767, since the router uses shorts (16-bit) to store coordinates.\n");
vpr_printf(TIO_MESSAGE_ERROR, "nx: %d, ny: %d\n", nx, ny);
exit(1);
}
assert(nx >= 1 && ny >= 1);
grid = (struct s_grid_tile **) alloc_matrix(0, (nx + 1), 0, (ny + 1),
sizeof(struct s_grid_tile));
/* Clear the full grid to have no type (NULL), no capacity, etc */
for (i = 0; i <= (nx + 1); ++i) {
for (j = 0; j <= (ny + 1); ++j) {
memset(&grid[i][j], 0, (sizeof(struct s_grid_tile)));
}
}
for (i = 0; i < num_types; i++) {
num_instances_type[i] = 0;
}
/* Nothing goes in the corners. */
grid[0][0].type = grid[nx + 1][0].type = EMPTY_TYPE;
grid[0][ny + 1].type = grid[nx + 1][ny + 1].type = EMPTY_TYPE;
num_instances_type[EMPTY_TYPE->index] = 4;
for (i = 1; i <= nx; i++) {
grid[i][0].blocks = (int *) my_malloc(sizeof(int) * IO_TYPE->capacity);
grid[i][0].type = IO_TYPE;
grid[i][ny + 1].blocks = (int *) my_malloc(
sizeof(int) * IO_TYPE->capacity);
grid[i][ny + 1].type = IO_TYPE;
for (j = 0; j < IO_TYPE->capacity; j++) {
grid[i][0].blocks[j] = EMPTY;
grid[i][ny + 1].blocks[j] = EMPTY;
}
}
for (i = 1; i <= ny; i++) {
grid[0][i].blocks = (int *) my_malloc(sizeof(int) * IO_TYPE->capacity);
grid[0][i].type = IO_TYPE;
grid[nx + 1][i].blocks = (int *) my_malloc(
sizeof(int) * IO_TYPE->capacity);
grid[nx + 1][i].type = IO_TYPE;
for (j = 0; j < IO_TYPE->capacity; j++) {
grid[0][i].blocks[j] = EMPTY;
grid[nx + 1][i].blocks[j] = EMPTY;
}
}
num_instances_type[IO_TYPE->index] = 2 * IO_TYPE->capacity * (nx + ny);
for (i = 1; i <= nx; i++) { /* Interior (LUT) cells */
type = find_type_col(i);
for (j = 1; j <= ny; j++) {
grid[i][j].type = type;
grid[i][j].offset = (j - 1) % type->height;
if (j + grid[i][j].type->height - 1 - grid[i][j].offset > ny) {
grid[i][j].type = EMPTY_TYPE;
grid[i][j].offset = 0;
}
if (type->capacity > 1) {
vpr_printf(TIO_MESSAGE_ERROR, "in FillArch(), expected core blocks to have capacity <= 1 but (%d, %d) has type '%s' and capacity %d.\n",
i, j, grid[i][j].type->name, grid[i][j].type->capacity);
exit(1);
}
grid[i][j].blocks = (int *) my_malloc(sizeof(int));
grid[i][j].blocks[0] = EMPTY;
if (grid[i][j].offset == 0) {
num_instances_type[grid[i][j].type->index]++;
}
}
}
CheckGrid();
#ifdef SHOW_ARCH
/* DEBUG code */
dump = my_fopen("grid_type_dump.txt", "w", 0);
for (j = (ny + 1); j >= 0; --j)
{
for (i = 0; i <= (nx + 1); ++i)
{
fprintf(dump, "%c", grid[i][j].type->name[1]);
}
fprintf(dump, "\n");
}
fclose(dump);
#endif
}
void freeGrid() {
int i, j;
if (grid == NULL) {
return;
}
for (i = 0; i <= (nx + 1); ++i) {
for (j = 0; j <= (ny + 1); ++j) {
free(grid[i][j].blocks);
}
}
free_matrix(grid, 0, nx + 1, 0, sizeof(struct s_grid_tile));
grid = NULL;
}
static void CheckGrid() {
int i, j;
/* Check grid is valid */
for (i = 0; i <= (nx + 1); ++i) {
for (j = 0; j <= (ny + 1); ++j) {
if (NULL == grid[i][j].type) {
vpr_printf(TIO_MESSAGE_ERROR, "grid[%d][%d] has no type.\n", i, j);
exit(1);
}
if (grid[i][j].usage != 0) {
vpr_printf(TIO_MESSAGE_ERROR, "grid[%d][%d] has non-zero usage (%d) before netlist load.\n", i, j, grid[i][j].usage);
exit(1);
}
if ((grid[i][j].offset < 0)
|| (grid[i][j].offset >= grid[i][j].type->height)) {
vpr_printf(TIO_MESSAGE_ERROR, "grid[%d][%d] has invalid offset (%d).\n", i, j, grid[i][j].offset);
exit(1);
}
if ((NULL == grid[i][j].blocks)
&& (grid[i][j].type->capacity > 0)) {
vpr_printf(TIO_MESSAGE_ERROR, "grid[%d][%d] has no block list allocated.\n", i, j);
exit(1);
}
}
}
}
static t_type_ptr find_type_col(INP int x) {
int i, j;
int start, repeat;
float rel;
boolean match;
int priority, num_loc;
t_type_ptr column_type;
priority = FILL_TYPE->grid_loc_def[0].priority;
column_type = FILL_TYPE;
for (i = 0; i < num_types; i++) {
if (&type_descriptors[i] == IO_TYPE
|| &type_descriptors[i] == EMPTY_TYPE
|| &type_descriptors[i] == FILL_TYPE)
continue;
num_loc = type_descriptors[i].num_grid_loc_def;
for (j = 0; j < num_loc; j++) {
if (priority < type_descriptors[i].grid_loc_def[j].priority) {
match = FALSE;
if (type_descriptors[i].grid_loc_def[j].grid_loc_type
== COL_REPEAT) {
start = type_descriptors[i].grid_loc_def[j].start_col;
repeat = type_descriptors[i].grid_loc_def[j].repeat;
if (start < 0) {
start += (nx + 1);
}
if (x == start) {
match = TRUE;
} else if (repeat > 0 && x > start && start > 0) {
if ((x - start) % repeat == 0) {
match = TRUE;
}
}
} else if (type_descriptors[i].grid_loc_def[j].grid_loc_type
== COL_REL) {
rel = type_descriptors[i].grid_loc_def[j].col_rel;
if (nint(rel * nx) == x) {
match = TRUE;
}
}
if (match) {
priority = type_descriptors[i].grid_loc_def[j].priority;
column_type = &type_descriptors[i];
}
}
}
}
return column_type;
}