OpenFPGA/libs/EXTERNAL/libtatum/scripts/plot_level_scaling.py

140 lines
4.1 KiB
Python
Raw Normal View History

2020-01-03 21:42:17 -06:00
#!/usr/bin/env python
import sys, argparse
import csv
import os
import matplotlib.pyplot as plt
import numpy as np
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("csv_file", default=None, help="CSV file with level runtimes")
parser.add_argument("--scale_size", default=False, action="store_true", help="Scale point size by serial level runtime")
parser.add_argument("--average", default=False, action="store_true", help="Draw average lines")
parser.add_argument("-f", default=None, help="Output filename")
args = parser.parse_args()
return args
def main():
args = parse_args()
data = {}
with open(args.csv_file) as f:
csv_reader = csv.DictReader(f)
for field in csv_reader.fieldnames:
data[field] = []
for row in csv_reader:
for field in csv_reader.fieldnames:
data[field].append(float(row[field]))
for series_name, data_values in data.iteritems():
print "\tSeries: ", series_name
print "\t# Values: ", len(data_values)
#Calculate derived series
derived_series = {}
speedup_fwd = {}
speedup_bck = {}
size_factor = 0
if args.scale_size:
size_factor = 2000
size_min = 10
serial_total = sum(data['serial_fwd'][:] + data['serial_bck'][:])
for i in xrange(len(data['serial_fwd'])):
width = data['Width'][i]
serial_fwd = data['serial_fwd'][i]
serial_bck = data['serial_bck'][i]
parrallel_fwd = data['parallel_fwd'][i]
parrallel_bck = data['parallel_bck'][i]
if parrallel_fwd != 0.0:
speedup = serial_fwd / parrallel_fwd
serial_frac = serial_fwd / serial_total
val = (speedup, serial_frac)
try:
speedup_fwd[width].append(val)
except KeyError:
speedup_fwd[width] = [val]
if parrallel_bck != 0.0:
speedup = serial_bck / parrallel_bck
serial_frac = serial_bck / serial_total
val = (speedup, serial_frac)
try:
speedup_bck[width].append(val)
except KeyError:
speedup_bck[width] = [val]
fwd_x = []
fwd_y = []
fwd_s = []
for width, values in speedup_fwd.iteritems():
for speedup, serial_frac in values:
fwd_x.append(width)
fwd_y.append(speedup)
fwd_s.append(size_factor*serial_frac + size_min)
bck_x = []
bck_y = []
bck_s = []
for width, values in speedup_bck.iteritems():
for speedup, serial_frac in values:
bck_x.append(width)
bck_y.append(speedup)
bck_s.append(size_factor*serial_frac + size_min)
#Averages
fwd_x_avg = []
fwd_y_avg = []
for width, values in sorted(speedup_fwd.iteritems()):
speedups = [x[0] for x in values]
avg = sum(speedups) / len(speedups)
#print "Width, avg", width, values, speedups
fwd_x_avg.append(width)
fwd_y_avg.append(avg)
bck_x_avg = []
bck_y_avg = []
for width, values in sorted(speedup_bck.iteritems()):
speedups = [x[0] for x in values]
avg = sum(speedups) / len(speedups)
#print "Width, avg", width, values, speedups
bck_x_avg.append(width)
bck_y_avg.append(avg)
plt.scatter(fwd_x, fwd_y, fwd_s, c='b', label="speedup_fwd")
plt.scatter(bck_x, bck_y, bck_s, c='g', label="speedup_bck")
if args.average:
plt.plot(fwd_x_avg, fwd_y_avg, c='b', label="Average FWD Speed-Up")
plt.plot(bck_x_avg, bck_y_avg, c='g', label="Average BCK Speed-Up")
plt.xscale("log")
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
ymin = 0
xmin = 1
plt.ylim(ymin,ymax)
plt.xlim(xmin,xmax)
plt.title(os.path.splitext(os.path.basename(args.csv_file))[0])
plt.xlabel("Level Width")
plt.ylabel("Parallel Speed-Up")
plt.legend(loc='upper left')
if args.f:
plt.savefig(args.f, dpi=300)
else:
plt.show()
def runningMean(x, N):
return np.convolve(x, np.ones((N,))/N, mode='same')
if __name__ == "__main__":
main()