OpenFPGA/openfpga_flow/benchmarks/iwls2005/pci/rtl/pci_wb_master.v

1174 lines
51 KiB
Coq
Raw Normal View History

//////////////////////////////////////////////////////////////////////
//// ////
//// File name: wb_master.v ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - Tadej Markovic, tadej@opencores.org ////
//// ////
//// All additional information is avaliable in the README.txt ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Tadej Markovic, tadej@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_wb_master.v,v $
// Revision 1.6 2004/01/24 11:54:18 mihad
// Update! SPOCI Implemented!
//
// Revision 1.5 2003/10/24 09:35:40 tadejm
// Added missing signals to 2 sensitivity lists. Everything works the same as before.
//
// Revision 1.4 2003/08/21 20:56:40 tadejm
// WB Master is now WISHBONE B3 compatible.
//
// Revision 1.3 2003/03/14 15:31:57 mihad
// Entered the option to disable no response counter in wb master.
//
// Revision 1.2 2003/01/30 22:01:09 mihad
// Updated synchronization in top level fifo modules.
//
// Revision 1.1 2003/01/27 16:49:31 mihad
// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
//
// Revision 1.7 2002/12/05 12:19:23 mihad
// *** empty log message ***
//
// Revision 1.6 2002/10/11 14:15:29 mihad
// Cleaned up non-blocking assignments in combinatinal logic statements
//
// Revision 1.5 2002/03/05 11:53:47 mihad
// Added some testcases, removed un-needed fifo signals
//
// Revision 1.4 2002/02/19 16:32:37 mihad
// Modified testbench and fixed some bugs
//
// Revision 1.3 2002/02/01 15:25:13 mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2 2001/10/05 08:14:30 mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1 2001/10/02 15:33:47 mihad
// New project directory structure
//
//
`define WB_FSM_BITS 3 // number of bits needed for FSM states
`include "bus_commands.v"
`include "pci_constants.v"
//synopsys translate_off
`include "timescale.v"
//synopsys translate_on
module pci_wb_master
( wb_clock_in, // CLK_I
reset_in, // RST_I
pci_tar_read_request,
pci_tar_address,
pci_tar_cmd,
pci_tar_be,
pci_tar_burst_ok,
pci_cache_line_size,
cache_lsize_not_zero,
wb_read_done_out,
w_attempt,
pcir_fifo_wenable_out,
pcir_fifo_data_out,
pcir_fifo_be_out,
pcir_fifo_control_out,
//pcir_fifo_renable_out, for PCI Target !!!
//pcir_fifo_data_in, for PCI Target !!!
//pcir_fifo_be_in, for PCI Target !!!
//pcir_fifo_control_in, for PCI Target !!!
//pcir_fifo_flush_out, for PCI Target !!!
//pcir_fifo_almost_empty_in, for PCI Target !!!
//pcir_fifo_empty_in, NOT used
//pcir_fifo_transaction_ready_in, NOT used
//pciw_fifo_wenable_out, for PCI Target !!!
//pciw_fifo_addr_data_out, for PCI Target !!!
//pciw_fifo_cbe_out, for PCI Target !!!
//pciw_fifo_control_out, for PCI Target !!!
pciw_fifo_renable_out,
pciw_fifo_addr_data_in,
pciw_fifo_cbe_in,
pciw_fifo_control_in,
//pciw_fifo_flush_out, NOT used
//pciw_fifo_almost_full_in, for PCI Target !!!
//pciw_fifo_full_in, for PCI Target !!!
pciw_fifo_almost_empty_in,
pciw_fifo_empty_in,
pciw_fifo_transaction_ready_in,
pci_error_sig_out,
pci_error_bc,
write_rty_cnt_exp_out,
error_source_out,
read_rty_cnt_exp_out,
wb_cyc_o,
wb_stb_o,
wb_we_o,
wb_cti_o,
wb_bte_o,
wb_sel_o,
wb_adr_o,
wb_dat_i,
wb_dat_o,
wb_ack_i,
wb_rty_i,
wb_err_i
// CYC_O,
// STB_O,
// WE_O,
// SEL_O,
// ADR_O,
// MDATA_I,
// MDATA_O,
// ACK_I,
// RTY_I,
// ERR_I,
);
/*----------------------------------------------------------------------------------------------------------------------
Various parameters needed for state machine and other stuff
----------------------------------------------------------------------------------------------------------------------*/
parameter S_IDLE = `WB_FSM_BITS'h0 ;
parameter S_WRITE = `WB_FSM_BITS'h1 ;
parameter S_WRITE_ERR_RTY = `WB_FSM_BITS'h2 ;
parameter S_READ = `WB_FSM_BITS'h3 ;
parameter S_READ_RTY = `WB_FSM_BITS'h4 ;
parameter S_TURN_ARROUND = `WB_FSM_BITS'h5 ;
/*----------------------------------------------------------------------------------------------------------------------
System signals inputs
wb_clock_in - WISHBONE bus clock input
reset_in - system reset input controlled by bridge's reset logic
----------------------------------------------------------------------------------------------------------------------*/
input wb_clock_in ;
input reset_in ;
/*----------------------------------------------------------------------------------------------------------------------
Control signals from PCI Target for READS to PCIR_FIFO
---------------------------------------------------------------------------------------------------------------------*/
input pci_tar_read_request ; // read request from PCI Target
input [31:0] pci_tar_address ; // address for requested read from PCI Target
input [3:0] pci_tar_cmd ; // command for requested read from PCI Target
input [3:0] pci_tar_be ; // byte enables for requested read from PCI Target
input pci_tar_burst_ok ;
input [7:0] pci_cache_line_size ; // CACHE line size register value for burst length
input cache_lsize_not_zero ;
output wb_read_done_out ; // read done and PCIR_FIFO has data ready
output w_attempt ;
reg wb_read_done_out ;
reg wb_read_done ;
/*----------------------------------------------------------------------------------------------------------------------
PCIR_FIFO control signals used for sinking data into PCIR_FIFO and status monitoring
---------------------------------------------------------------------------------------------------------------------*/
output pcir_fifo_wenable_out ; // PCIR_FIFO write enable output
output [31:0] pcir_fifo_data_out ; // data output to PCIR_FIFO
output [3:0] pcir_fifo_be_out ; // byte enable output to PCIR_FIFO
output [3:0] pcir_fifo_control_out ; // control bus output to PCIR_FIFO
reg [31:0] pcir_fifo_data_out ;
reg pcir_fifo_wenable_out ;
reg pcir_fifo_wenable ;
reg [3:0] pcir_fifo_control_out ;
reg [3:0] pcir_fifo_control ;
/*----------------------------------------------------------------------------------------------------------------------
PCIW_FIFO control signals used for fetching data from PCIW_FIFO and status monitoring
---------------------------------------------------------------------------------------------------------------------*/
output pciw_fifo_renable_out ; // read enable for PCIW_FIFO output
input [31:0] pciw_fifo_addr_data_in ; // address and data input from PCIW_FIFO
input [3:0] pciw_fifo_cbe_in ; // command and byte_enables from PCIW_FIFO
input [3:0] pciw_fifo_control_in ; // control bus input from PCIW_FIFO
input pciw_fifo_almost_empty_in ; // almost empty status indicator from PCIW_FIFO
input pciw_fifo_empty_in ; // empty status indicator from PCIW_FIFO
input pciw_fifo_transaction_ready_in ; // write transaction is ready in PCIW_FIFO
reg pciw_fifo_renable_out ;
reg pciw_fifo_renable ;
/*----------------------------------------------------------------------------------------------------------------------
Control INPUT / OUTPUT signals for configuration space reporting registers !!!
---------------------------------------------------------------------------------------------------------------------*/
output pci_error_sig_out ; // When error occures (on WB bus, retry counter, etc.)
output [3:0] pci_error_bc ; // bus command at which error occured !
output write_rty_cnt_exp_out ; // Signaling that RETRY counter has expired during write transaction!
output read_rty_cnt_exp_out ; // Signaling that RETRY counter has expired during read transaction!
// if error_source is '0' other side didn't respond
// if error_source is '1' other side RETRIED for max retry counter value
output error_source_out ; // Signaling error source - '0' other WB side signaled error OR didn't respond
// if '1' wridge counted max value in retry counter because of RTY responds
reg pci_error_sig_out ;
reg write_rty_cnt_exp_out ;
reg read_rty_cnt_exp_out ;
reg error_source_out ;
/*----------------------------------------------------------------------------------------------------------------------
WISHBONE bus interface signals - can be connected directly to WISHBONE bus
---------------------------------------------------------------------------------------------------------------------*/
output wb_cyc_o; // cycle indicator output
output wb_stb_o; // strobe output - data is valid when strobe and cycle indicator are high
output wb_we_o; // write enable output - 1 - write operation, 0 - read operation
output [2:0] wb_cti_o; // WB B3 - cycle type identifier
output [1:0] wb_bte_o; // WB B3 - burst type
output [3:0] wb_sel_o; // Byte select outputs
output [31:0] wb_adr_o; // WISHBONE address output
input [31:0] wb_dat_i; // WISHBONE interface input data bus
output [31:0] wb_dat_o; // WISHBONE interface output data bus
input wb_ack_i; // Acknowledge input - qualifies valid data on data output bus or received data on data input bus
input wb_rty_i; // retry input - signals from WISHBONE slave that cycle should be terminated and retried later
input wb_err_i; // Signals from WISHBONE slave that access resulted in an error
reg wb_cyc_o;
reg wb_stb_o;
reg wb_we_o;
reg [2:0] wb_cti_o;
reg [1:0] wb_bte_o;
reg [3:0] wb_sel_o;
reg [31:0] wb_dat_o;
/*###########################################################################################################
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
LOGIC, COUNTERS, STATE MACHINE and some control register bits
=============================================================
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
###########################################################################################################*/
reg last_data_transferred ; // signal is set by STATE MACHINE after each complete transfere !
// wire for write attempt - 1 when PCI Target attempt to write and PCIW_FIFO has a write transaction ready
reg w_attempt;
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in)
w_attempt <= #`FF_DELAY 1'b0;
else
begin
if (pciw_fifo_transaction_ready_in && ~pciw_fifo_empty_in)
w_attempt <= #`FF_DELAY 1'b1;
else
if (last_data_transferred)
w_attempt <= #`FF_DELAY 1'b0;
end
end
// wire for read attempt - 1 when PCI Target is attempting a read and PCIR_FIFO is not full !
// because of transaction ordering, PCI Master must not start read untill all writes are done -> at that
// moment PCIW_FIFO is empty !!! (when read is pending PCI Target will block new reads and writes)
wire r_attempt = ( pci_tar_read_request && !w_attempt && pciw_fifo_empty_in ) ;
// Signal is used for reads on WB, when there is retry!
reg first_wb_data_access ;
reg last_data_from_pciw_fifo ; // signal tells when there is last data in pciw_fifo
reg last_data_from_pciw_fifo_reg ;
reg last_data_to_pcir_fifo ; // signal tells when there will be last data for pcir_fifo
// Logic used in State Machine logic implemented out of State Machine because of less delay!
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in)
last_data_from_pciw_fifo <= #`FF_DELAY 1'b0 ;
else
begin
if ((pciw_fifo_renable_out) &&
(pciw_fifo_control_in[`LAST_CTRL_BIT] || pciw_fifo_almost_empty_in)) // if last data is going to be transfered
last_data_from_pciw_fifo <= #`FF_DELAY 1'b1 ; // signal for last data from PCIW_FIFO
else
last_data_from_pciw_fifo <= #`FF_DELAY 1'b0 ;
end
end
reg read_count_load;
reg read_count_enable;
reg [(`PCIR_ADDR_LENGTH - 1):0] max_read_count ;
always@(pci_cache_line_size or cache_lsize_not_zero or pci_tar_cmd)
begin
if (cache_lsize_not_zero)
if ( (pci_cache_line_size >= `PCIR_DEPTH) || (~pci_tar_cmd[1] && ~pci_tar_cmd[0]) )
// If cache line size is larger than FIFO or BC_MEM_READ_MUL command is performed!
max_read_count = `PCIR_DEPTH - 1'b1;
else
max_read_count = pci_cache_line_size ;
else
max_read_count = 1'b1;
end
reg [(`PCIR_ADDR_LENGTH - 1):0] read_count ;
// cache line bound indicator - it signals when data for one complete cacheline was read
wire read_bound_comb = ~|( { read_count[(`PCIR_ADDR_LENGTH - 1):2], read_count[0] } ) ;
reg read_bound ;
always@(posedge wb_clock_in or posedge reset_in)
begin
if ( reset_in )
read_bound <= #`FF_DELAY 1'b0 ;
else if (read_count_load)
read_bound <= #`FF_DELAY 1'b0 ;
else if ( read_count_enable )
read_bound <= #`FF_DELAY read_bound_comb ;
end
// down counter with load
always@(posedge reset_in or posedge wb_clock_in)
begin
if (reset_in)
read_count <= #`FF_DELAY 0 ;
else
if (read_count_load)
read_count <= #`FF_DELAY max_read_count ;
else
if (read_count_enable)
read_count <= #`FF_DELAY read_count - 1'b1 ;
end
// Logic used in State Machine logic implemented out of State Machine because of less delay!
// definition of signal telling, when there is last data written into FIFO
always@(pci_tar_cmd or pci_tar_burst_ok or read_bound)
begin
// burst is OK for reads when there is ((MEM_READ_LN or MEM_READ_MUL) and AD[1:0]==2'b00) OR
// (MEM_READ and Prefetchable_IMAGE and AD[1:0]==2'b00) -> pci_tar_burst_ok
case ({pci_tar_cmd, pci_tar_burst_ok})
{`BC_MEM_READ, 1'b1},
{`BC_MEM_READ_LN, 1'b1} :
begin // when burst cycle
if (read_bound)
last_data_to_pcir_fifo = 1'b1 ;
else
last_data_to_pcir_fifo = 1'b0 ;
end
{`BC_MEM_READ_MUL, 1'b1} :
begin // when burst cycle
if (read_bound)
last_data_to_pcir_fifo = 1'b1 ;
else
last_data_to_pcir_fifo = 1'b0 ;
end
default :
// {`BC_IO_READ, 1'b0},
// {`BC_IO_READ, 1'b1},
// {`BC_MEM_READ, 1'b0},
// {`BC_MEM_READ_LN, 1'b0},
// {`BC_MEM_READ_MUL, 1'b0}:
begin // when single cycle
last_data_to_pcir_fifo = 1'b1 ;
end
endcase
end
reg wait_for_wb_response ;
`ifdef PCI_WBM_NO_RESPONSE_CNT_DISABLE
wire set_retry = 1'b0 ;
`else
reg [3:0] wb_no_response_cnt ;
reg [3:0] wb_response_value ;
reg set_retry ; //
// internal WB no response retry generator counter!
always@(posedge reset_in or posedge wb_clock_in)
begin
if (reset_in)
wb_no_response_cnt <= #`FF_DELAY 4'h0 ;
else
wb_no_response_cnt <= #`FF_DELAY wb_response_value ;
end
// internal WB no response retry generator logic
always@(wait_for_wb_response or wb_no_response_cnt)
begin
if (wb_no_response_cnt == 4'h8) // when there isn't response for 8 clocks, set internal retry
begin
wb_response_value = 4'h0 ;
set_retry = 1'b1 ;
end
else
begin
if (wait_for_wb_response)
wb_response_value = wb_no_response_cnt + 1'h1 ; // count clocks when no response
else
wb_response_value = 4'h0 ;
set_retry = 1'b0 ;
end
end
`endif
wire retry = wb_rty_i || set_retry ; // retry signal - logic OR function between wb_rty_i and internal WB no response retry!
reg [7:0] rty_counter ; // output from retry counter
reg [7:0] rty_counter_in ; // input value - output value + 1 OR output value
reg rty_counter_almost_max_value ; // signal tells when retry counter riches maximum value - 1!
reg reset_rty_cnt ; // signal for asynchronous reset of retry counter after each complete transfere
// sinchronous signal after each transfere and asynchronous signal 'reset_rty_cnt' after reset
// for reseting the retry counter
always@(posedge reset_in or posedge wb_clock_in)
begin
if (reset_in)
reset_rty_cnt <= #`FF_DELAY 1'b1 ; // asynchronous set when reset signal is active
else
reset_rty_cnt <= #`FF_DELAY wb_ack_i || wb_err_i || last_data_transferred ; // synchronous set after completed transfere
end
// Retry counter register control
always@(posedge reset_in or posedge wb_clock_in)
begin
if (reset_in)
rty_counter <= #`FF_DELAY 8'h00 ;
else
begin
if (reset_rty_cnt)
rty_counter <= #`FF_DELAY 8'h00 ;
else if (retry)
rty_counter <= #`FF_DELAY rty_counter_in ;
end
end
// Retry counter logic
always@(rty_counter)
begin
if(rty_counter == `WB_RTY_CNT_MAX - 1'b1) // stop counting
begin
rty_counter_in = rty_counter ;
rty_counter_almost_max_value = 1'b1 ;
end
else
begin
rty_counter_in = rty_counter + 1'b1 ; // count up
rty_counter_almost_max_value = 1'b0 ;
end
end
reg [31:0] addr_cnt_out ; // output value from address counter to WB ADDRESS output
reg [31:0] addr_cnt_in ; // input address value to address counter
reg addr_into_cnt ; // control signal for loading starting address into counter
reg addr_into_cnt_reg ;
reg addr_count ; // control signal for count enable
reg [3:0] bc_register ; // used when error occures during writes!
// wb address counter register control
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in) // reset counter
begin
addr_cnt_out <= #`FF_DELAY 32'h0000_0000 ;
bc_register <= #`FF_DELAY 4'h0 ;
addr_into_cnt_reg <= #`FF_DELAY 1'b0;
end
else
begin
addr_cnt_out <= #`FF_DELAY addr_cnt_in ; // count up or hold value depending on cache line counter logic
addr_into_cnt_reg <= #`FF_DELAY addr_into_cnt;
if (addr_into_cnt)
bc_register <= #`FF_DELAY pciw_fifo_cbe_in ;
end
end
// when '1', the bus command is IO command - not supported commands are checked in pci_decoder modules
wire io_memory_bus_command = !pci_tar_cmd[3] && !pci_tar_cmd[2] ;
// wb address counter logic
always@(addr_into_cnt or r_attempt or addr_count or pciw_fifo_addr_data_in or pci_tar_address or addr_cnt_out or
io_memory_bus_command)
begin
if (addr_into_cnt) // load starting address into counter
begin
if (r_attempt)
begin // if read request, then load read addresss from PCI Target
addr_cnt_in = {pci_tar_address[31:2], pci_tar_address[1] && io_memory_bus_command,
pci_tar_address[0] && io_memory_bus_command} ;
end
else
begin // if not read request, then load write address from PCIW_FIFO
addr_cnt_in = pciw_fifo_addr_data_in[31:0] ;
end
end
else
if (addr_count)
begin
addr_cnt_in = addr_cnt_out + 3'h4 ; // count up for 32-bit alligned address
end
else
begin
addr_cnt_in = addr_cnt_out ;
end
end
reg retried ; // Signal is output value from FF and is set for one clock period after retried_d is set
reg retried_d ; // Signal is set whenever cycle is retried and is input to FF for delaying -> used in S_IDLE state
reg retried_write;
reg rty_i_delayed; // Dignal used for determinig the source of retry!
reg first_data_is_burst ; // Signal is set in S_WRITE or S_READ states, when data transfere is burst!
reg first_data_is_burst_reg ;
wire burst_transfer ; // This signal is set when data transfere is burst and is reset with RESET or last data transfered
reg burst_chopped; // This signal is set when WB_SEL_O is changed during burst write transaction
reg burst_chopped_delayed;
// FFs output signals tell, when there is first data out from FIFO (for BURST checking)
// and for delaying retried signal
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in) // reset signals
begin
retried <= #`FF_DELAY 1'b0 ;
retried_write <= #`FF_DELAY 1'b0 ;
rty_i_delayed <= #`FF_DELAY 1'B0 ;
end
else
begin
retried <= #`FF_DELAY retried_d ; // delaying retried signal
retried_write <= #`FF_DELAY retried ;
rty_i_delayed <= #`FF_DELAY wb_rty_i ;
end
end
// Determinig if first data is a part of BURST or just a single transfere!
always@(addr_into_cnt or r_attempt or pci_tar_burst_ok or max_read_count or
pciw_fifo_control_in or pciw_fifo_empty_in)
begin
if (addr_into_cnt)
begin
if (r_attempt)
begin
// burst is OK for reads when there is ((MEM_READ_LN or MEM_READ_MUL) and AD[1:0]==2'b00) OR
// (MEM_READ and Prefetchable_IMAGE and AD[1:0]==2'b00) -> pci_tar_burst_ok
if (pci_tar_burst_ok && (max_read_count != 8'h1))
first_data_is_burst = 1'b1 ;
else
first_data_is_burst = 1'b0 ;
end
else
begin
first_data_is_burst = 1'b0 ;
end
end
else
first_data_is_burst = pciw_fifo_control_in[`BURST_BIT] && ~pciw_fifo_empty_in &&
~pciw_fifo_control_in[`LAST_CTRL_BIT] /*&& ~pciw_fifo_control_in[`DATA_ERROR_CTRL_BIT]*/;
end
// FF for seting and reseting burst_transfer signal
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in)
begin
burst_chopped <= #`FF_DELAY 1'b0;
burst_chopped_delayed <= #`FF_DELAY 1'b0;
first_data_is_burst_reg <= #`FF_DELAY 1'b0 ;
end
else
begin
if (pciw_fifo_transaction_ready_in)
begin
if (pciw_fifo_control_in[`DATA_ERROR_CTRL_BIT])
burst_chopped <= #`FF_DELAY 1'b1;
else if (wb_ack_i || wb_err_i || wb_rty_i)
burst_chopped <= #`FF_DELAY 1'b0;
end
else
burst_chopped <= #`FF_DELAY 1'b0;
burst_chopped_delayed <= #`FF_DELAY burst_chopped;
if (last_data_transferred || first_data_is_burst)
first_data_is_burst_reg <= #`FF_DELAY ~last_data_transferred ;
end
end
assign burst_transfer = first_data_is_burst || first_data_is_burst_reg ;
reg [(`WB_FSM_BITS - 1):0] c_state ; //current state register
reg [(`WB_FSM_BITS - 1):0] n_state ; //next state input to current state register
//##################################
// WISHBONE B3 master state machine
//##################################
// state machine register control and registered outputs (without wb_adr_o counter)
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in) // reset state machine to S_IDLE state
begin
c_state <= #`FF_DELAY S_IDLE;
wb_cyc_o <= #`FF_DELAY 1'b0;
wb_stb_o <= #`FF_DELAY 1'b0;
wb_we_o <= #`FF_DELAY 1'b0;
wb_cti_o <= #`FF_DELAY 3'h2;
wb_bte_o <= #`FF_DELAY 2'h0;
wb_sel_o <= #`FF_DELAY 4'h0;
wb_dat_o <= #`FF_DELAY 32'h0;
pcir_fifo_data_out <= #`FF_DELAY 32'h0;
pcir_fifo_control_out <= #`FF_DELAY 4'h0;
pcir_fifo_wenable_out <= #`FF_DELAY 1'b0;
end
else
begin
c_state <= #`FF_DELAY n_state;
wb_bte_o <= #`FF_DELAY 2'h0;
case (n_state) // synthesis parallel_case full_case
S_WRITE:
begin
wb_cyc_o <= #`FF_DELAY ~addr_into_cnt;
wb_stb_o <= #`FF_DELAY ~addr_into_cnt;
wb_we_o <= #`FF_DELAY ~addr_into_cnt;
// if '1' then next burst BE is not equat to current one => burst is chopped into singles
// OR if last data is going to be transfered
if ((wb_stb_o && wb_ack_i) || addr_into_cnt_reg || (~wb_cyc_o && (retried || burst_chopped_delayed)))
begin
if (burst_transfer && ~pciw_fifo_control_in[`DATA_ERROR_CTRL_BIT] &&
~(pciw_fifo_renable_out && (pciw_fifo_control_in[`LAST_CTRL_BIT] || pciw_fifo_almost_empty_in)))
wb_cti_o <= #`FF_DELAY 3'h2;
else
wb_cti_o <= #`FF_DELAY 3'h7;
end
if ((pciw_fifo_renable_out && ~addr_into_cnt) || addr_into_cnt_reg)
begin
wb_sel_o <= #`FF_DELAY ~pciw_fifo_cbe_in;
wb_dat_o <= #`FF_DELAY pciw_fifo_addr_data_in;
end
end
S_WRITE_ERR_RTY:
begin
wb_cyc_o <= #`FF_DELAY 1'b0;
wb_stb_o <= #`FF_DELAY 1'b0;
wb_we_o <= #`FF_DELAY 1'b0;
wb_cti_o <= #`FF_DELAY 3'h2;
// stay the same as previous
//wb_sel_o <= #`FF_DELAY 4'h0;
//wb_dat_o <= #`FF_DELAY 32'h0;
end
S_READ:
begin
wb_cyc_o <= #`FF_DELAY ~addr_into_cnt;
wb_stb_o <= #`FF_DELAY ~addr_into_cnt;
wb_we_o <= #`FF_DELAY 1'b0;
if ((wb_stb_o && wb_ack_i) || addr_into_cnt_reg || (~wb_cyc_o && retried))
begin
if (burst_transfer && ~read_bound_comb)
wb_cti_o <= #`FF_DELAY 3'h2;
else
wb_cti_o <= #`FF_DELAY 3'h7;
end
if (burst_transfer)
wb_sel_o <= #`FF_DELAY 4'hF;
else
wb_sel_o <= #`FF_DELAY ~pci_tar_be;
// no need to change att all
//wb_dat_o <= #`FF_DELAY 32'h0;
end
S_READ_RTY:
begin
wb_cyc_o <= #`FF_DELAY 1'b0;
wb_stb_o <= #`FF_DELAY 1'b0;
wb_we_o <= #`FF_DELAY 1'b0;
wb_cti_o <= #`FF_DELAY 3'h2;
// no need to change att all
//wb_sel_o <= #`FF_DELAY 4'h0;
//wb_dat_o <= #`FF_DELAY 32'h0;
end
S_TURN_ARROUND:
begin
wb_cyc_o <= #`FF_DELAY 1'b0;
wb_stb_o <= #`FF_DELAY 1'b0;
wb_we_o <= #`FF_DELAY 1'b0;
wb_cti_o <= #`FF_DELAY 3'h2;
// no need to change att all
//wb_sel_o <= #`FF_DELAY 4'h0;
//wb_dat_o <= #`FF_DELAY 32'h0;
end
default: // S_IDLE:
begin
wb_cyc_o <= #`FF_DELAY 1'b0;
wb_stb_o <= #`FF_DELAY 1'b0;
wb_we_o <= #`FF_DELAY 1'b0;
wb_cti_o <= #`FF_DELAY 3'h2;
// no need to change att all
//wb_sel_o <= #`FF_DELAY 4'h0;
//wb_dat_o <= #`FF_DELAY 32'h0;
end
endcase
pcir_fifo_data_out <= #`FF_DELAY wb_dat_i;
pcir_fifo_control_out <= #`FF_DELAY pcir_fifo_control ;
pcir_fifo_wenable_out <= #`FF_DELAY pcir_fifo_wenable ;
end
end
assign wb_adr_o = addr_cnt_out ;
// state machine logic
always@(c_state or
wb_ack_i or
wb_rty_i or
wb_err_i or
w_attempt or
r_attempt or
retried or
burst_chopped or
burst_chopped_delayed or
rty_i_delayed or
pci_tar_read_request or
rty_counter_almost_max_value or
set_retry or
last_data_to_pcir_fifo or
first_wb_data_access or
pciw_fifo_control_in or
pciw_fifo_empty_in or
burst_transfer or
last_data_from_pciw_fifo_reg
)
begin
case (c_state)
S_IDLE:
begin
// Default values for signals not used in this state
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_count = 1'b0 ;
read_count_enable = 1'b0 ;
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
retried_d = 1'b0 ;
last_data_transferred = 1'b0 ;
wb_read_done = 1'b0 ;
wait_for_wb_response = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ;
pci_error_sig_out = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
case ({w_attempt, r_attempt, retried})
3'b101 : // Write request for PCIW_FIFO to WB bus transaction
begin // If there was retry, the same transaction must be initiated
pciw_fifo_renable = 1'b0 ; // the same data
addr_into_cnt = 1'b0 ; // the same address
read_count_load = 1'b0 ; // no need for cache line when there is write
n_state = S_WRITE ;
end
3'b100 : // Write request for PCIW_FIFO to WB bus transaction
begin // If there is new transaction
if (burst_chopped_delayed)
begin
addr_into_cnt = 1'b0 ; // address must not be latched into address counter
pciw_fifo_renable = 1'b1 ; // first location is address (in FIFO), next will be data
end
else
begin
if (pciw_fifo_control_in[`ADDR_CTRL_BIT])
addr_into_cnt = 1'b1 ; // address must be latched into address counter
else
addr_into_cnt = 1'b0 ;
pciw_fifo_renable = 1'b1 ; // first location is address (in FIFO), next will be data
end
read_count_load = 1'b0 ; // no need for cache line when there is write
n_state = S_WRITE ;
end
3'b011 : // Read request from PCI Target for WB bus to PCIR_FIFO transaction
begin // If there was retry, the same transaction must be initiated
addr_into_cnt = 1'b0 ; // the same address
read_count_load = 1'b0 ; // cache line counter must not be changed for retried read
pciw_fifo_renable = 1'b0 ; // don't read from FIFO, when read transaction from WB to FIFO
n_state = S_READ ;
end
3'b010 : // Read request from PCI Target for WB bus to PCIR_FIFO transaction
begin // If there is new transaction
addr_into_cnt = 1'b1 ; // address must be latched into counter from separate request bus
read_count_load = 1'b1 ; // cache line size must be latched into its counter
pciw_fifo_renable = 1'b0 ; // don't read from FIFO, when read transaction from WB to FIFO
n_state = S_READ ;
end
default : // stay in IDLE state
begin
pciw_fifo_renable = 1'b0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
n_state = S_IDLE ;
end
endcase
end
S_WRITE: // WRITE from PCIW_FIFO to WB bus
begin
// Default values for signals not used in this state
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
read_count_enable = 1'b0 ;
wb_read_done = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
case ({wb_ack_i, wb_err_i, wb_rty_i})
3'b100 : // If writting of one data is acknowledged
begin
addr_count = 1'b1 ; // prepare next address if there will be burst
retried_d = 1'b0 ; // there was no retry
pci_error_sig_out = 1'b0 ; // there was no error
error_source_out = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ; // there was no retry
wait_for_wb_response = 1'b0 ;
// if last data was transfered !
if (last_data_from_pciw_fifo_reg)
begin
n_state = S_TURN_ARROUND;
if (~pciw_fifo_empty_in)
pciw_fifo_renable = 1'b0 ; // prepare next value (address when new trans., data when burst tran.)
else
pciw_fifo_renable = 1'b0 ;
last_data_transferred = 1'b1 ; // signal for last data transfered
end
// next burst data has different byte enables !
else if (burst_transfer && burst_chopped)
begin
n_state = S_IDLE ;
pciw_fifo_renable = 1'b0 ; // next value (address when new trans., data when burst tran.)
last_data_transferred = 1'b0 ;
end
else
begin
n_state = S_WRITE ;
pciw_fifo_renable = 1'b1 ; // prepare next value (address when new trans., data when burst tran.)
last_data_transferred = 1'b0 ;
end
end
3'b010 : // If writting of one data is terminated with ERROR
begin
if (~pciw_fifo_empty_in)
pciw_fifo_renable = 1'b1 ; // prepare next value (address when new trans., data when cleaning FIFO)
else
pciw_fifo_renable = 1'b0 ;
addr_count = 1'b0 ; // no need for new address
retried_d = 1'b0 ; // there was no retry
last_data_transferred = 1'b1 ; // signal for last data transfered
pci_error_sig_out = 1'b1 ; // segnal for error reporting
error_source_out = 1'b0 ; // error source from other side of WB bus
write_rty_cnt_exp_out = 1'b0 ; // there was no retry
wait_for_wb_response = 1'b0 ;
if (last_data_from_pciw_fifo_reg) // if last data was transfered
n_state = S_TURN_ARROUND ; // go to S_TURN_ARROUND for new transfere
else // if there wasn't last data of transfere
n_state = S_WRITE_ERR_RTY ; // go here to clean this write transaction from PCIW_FIFO
end
3'b001 : // If writting of one data is retried
begin
addr_count = 1'b0 ;
last_data_transferred = 1'b0 ;
retried_d = 1'b1 ; // there was a retry
wait_for_wb_response = 1'b0 ;
if(rty_counter_almost_max_value) // If retry counter reached maximum allowed value
begin
if (last_data_from_pciw_fifo_reg) // if last data was transfered
pciw_fifo_renable = 1'b0 ;
else // if there wasn't last data of transfere
pciw_fifo_renable = 1'b1 ;
n_state = S_WRITE_ERR_RTY ; // go here to clean this write transaction from PCIW_FIFO
write_rty_cnt_exp_out = 1'b1 ; // signal for reporting write counter expired
pci_error_sig_out = 1'b1 ;
error_source_out = 1'b1 ; // error ocuerd because of retry counter
end
else
begin
pciw_fifo_renable = 1'b0 ;
n_state = S_IDLE ; // go to S_IDLE state for retrying the transaction
write_rty_cnt_exp_out = 1'b0 ; // retry counter hasn't expired yet
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
end
end
default :
begin
addr_count = 1'b0 ;
last_data_transferred = 1'b0 ;
wait_for_wb_response = 1'b1 ; // wait for WB device to response (after 8 clocks RTY CNT is incremented)
error_source_out = 1'b0 ; // if error ocures, error source is from other WB bus side
if((rty_counter_almost_max_value)&&(set_retry)) // when no WB response and RTY CNT reached maximum allowed value
begin
retried_d = 1'b1 ;
if (last_data_from_pciw_fifo_reg) // if last data was transfered
pciw_fifo_renable = 1'b0 ;
else // if there wasn't last data of transfere
pciw_fifo_renable = 1'b1 ;
n_state = S_WRITE_ERR_RTY ; // go here to clean this write transaction from PCIW_FIFO
write_rty_cnt_exp_out = 1'b1 ; // signal for reporting write counter expired
pci_error_sig_out = 1'b1 ; // signal for error reporting
end
else
begin
pciw_fifo_renable = 1'b0 ;
retried_d = 1'b0 ;
n_state = S_WRITE ; // stay in S_WRITE state to wait WB to response
write_rty_cnt_exp_out = 1'b0 ; // retry counter hasn't expired yet
pci_error_sig_out = 1'b0 ;
end
end
endcase
end
S_WRITE_ERR_RTY: // Clean current write transaction from PCIW_FIFO if ERROR or Retry counter expired occures
begin
pciw_fifo_renable = !last_data_from_pciw_fifo_reg ; // put out next data (untill last data or FIFO empty)
last_data_transferred = 1'b1 ; // after exiting this state, negedge of this signal is used
// Default values for signals not used in this state
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
read_count_enable = 1'b0 ;
addr_count = 1'b0 ;
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
retried_d = 1'b0 ;
wb_read_done = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
wait_for_wb_response = 1'b0 ;
// If last data is cleaned out from PCIW_FIFO
if (last_data_from_pciw_fifo_reg)
n_state = S_IDLE ;
else
n_state = S_WRITE_ERR_RTY ; // Clean until last data is cleaned out from FIFO
end
S_READ: // READ from WB bus to PCIR_FIFO
begin
// Default values for signals not used in this state
pciw_fifo_renable = 1'b0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ;
case ({wb_ack_i, wb_err_i, wb_rty_i})
3'b100 : // If reading of one data is acknowledged
begin
pcir_fifo_wenable = 1'b1 ; // enable writting data into PCIR_FIFO
addr_count = 1'b1 ; // prepare next address if there will be burst
read_count_enable = 1'b1 ; // decrease counter value for cache line size
retried_d = 1'b0 ; // there was no retry
read_rty_cnt_exp_out = 1'b0 ; // there was no retry
wait_for_wb_response = 1'b0 ;
// if last data was transfered
if (last_data_to_pcir_fifo)
begin
pcir_fifo_control[`LAST_CTRL_BIT] = 1'b1 ; // FIFO must indicate LAST data transfered
pcir_fifo_control[`DATA_ERROR_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`UNUSED_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`ADDR_CTRL_BIT] = 1'b0 ;
last_data_transferred = 1'b1 ; // signal for last data transfered
wb_read_done = 1'b1 ; // signal last data of read transaction for PCI Target
n_state = S_TURN_ARROUND ;
end
else // if not last data transfered
begin
pcir_fifo_control = 4'h0 ; // ZERO for control code
last_data_transferred = 1'b0 ; // not last data transfered
wb_read_done = 1'b0 ; // read is not done yet
n_state = S_READ ;
end
end
3'b010 : // If reading of one data is terminated with ERROR
begin
pcir_fifo_wenable = 1'b1 ; // enable for writting to FIFO data with ERROR
addr_count = 1'b0 ; // no need for new address
pcir_fifo_control[`LAST_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`DATA_ERROR_CTRL_BIT] = 1'b1 ; // FIFO must indicate the DATA with ERROR
pcir_fifo_control[`UNUSED_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`ADDR_CTRL_BIT] = 1'b0 ;
last_data_transferred = 1'b1 ; // signal for last data transfered
wb_read_done = 1'b1 ; // signal last data of read transaction for PCI Target
read_count_enable = 1'b0 ; // no need for cache line, when error occures
n_state = S_TURN_ARROUND ;
retried_d = 1'b0 ; // there was no retry
wait_for_wb_response = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ; // there was no retry
end
3'b001 : // If reading of one data is retried
begin
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_count = 1'b0 ;
read_count_enable = 1'b0 ;
wait_for_wb_response = 1'b0 ;
case ({first_wb_data_access, rty_counter_almost_max_value})
2'b10 :
begin // if first data of the cycle (CYC_O) is retried - after each retry CYC_O goes inactive
n_state = S_IDLE ; // go to S_IDLE state for retrying the transaction
read_rty_cnt_exp_out = 1'b0 ; // retry counter hasn't expired yet
last_data_transferred = 1'b0 ;
wb_read_done = 1'b0 ;
retried_d = 1'b1 ; // there was a retry
end
2'b11 :
begin // if retry counter reached maximum value
n_state = S_READ_RTY ; // go here to wait for PCI Target to remove read request
read_rty_cnt_exp_out = 1'b1 ; // signal for reporting read counter expired
last_data_transferred = 1'b0 ;
wb_read_done = 1'b0 ;
retried_d = 1'b1 ; // there was a retry
end
default : // if retry occures after at least 1 data was transferred without breaking cycle (CYC_O inactive)
begin // then PCI device will retry access!
n_state = S_TURN_ARROUND ; // go to S_TURN_ARROUND state
read_rty_cnt_exp_out = 1'b0 ; // retry counter hasn't expired
last_data_transferred = 1'b1 ;
wb_read_done = 1'b1 ;
retried_d = 1'b0 ; // retry must not be retried, since there is not a first data
end
endcase
end
default :
begin
addr_count = 1'b0 ;
read_count_enable = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
wait_for_wb_response = 1'b1 ; // wait for WB device to response (after 8 clocks RTY CNT is incremented)
if((rty_counter_almost_max_value)&&(set_retry)) // when no WB response and RTY CNT reached maximum allowed value
begin
retried_d = 1'b1 ;
n_state = S_TURN_ARROUND ; // go here to stop read request
pcir_fifo_wenable = 1'b1 ;
pcir_fifo_control[`LAST_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`DATA_ERROR_CTRL_BIT] = 1'b1 ; // FIFO must indicate the DATA with ERROR
pcir_fifo_control[`UNUSED_CTRL_BIT] = 1'b0 ;
pcir_fifo_control[`ADDR_CTRL_BIT] = 1'b0 ;
last_data_transferred = 1'b1 ;
wb_read_done = 1'b1 ;
end
else
begin
retried_d = 1'b0 ;
n_state = S_READ ; // stay in S_READ state to wait WB to response
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
last_data_transferred = 1'b0 ;
wb_read_done = 1'b0 ;
end
end
endcase
end
S_READ_RTY: // Wait for PCI Target to remove read request, when retry counter reaches maximum value!
begin
// Default values for signals not used in this state
pciw_fifo_renable = 1'b0 ;
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
read_count_enable = 1'b0 ;
addr_count = 1'b0 ;
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
retried_d = 1'b0 ;
wb_read_done = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
wait_for_wb_response = 1'b0 ;
// wait for PCI Target to remove read request
if (pci_tar_read_request)
begin
n_state = S_READ_RTY ; // stay in this state until read request is removed
last_data_transferred = 1'b0 ;
end
else // when read request is removed
begin
n_state = S_IDLE ;
last_data_transferred = 1'b1 ; // when read request is removed, there is "last" data
end
end
// Turn arround cycle after writting to PCIR_FIFO (for correct data when reading from PCIW_FIFO)
default: // S_TURN_ARROUND:
begin
// Default values for signals not used in this state
pciw_fifo_renable = 1'b0 ;
pcir_fifo_wenable = 1'b0 ;
pcir_fifo_control = 4'h0 ;
addr_into_cnt = 1'b0 ;
read_count_load = 1'b0 ;
read_count_enable = 1'b0 ;
addr_count = 1'b0 ;
pci_error_sig_out = 1'b0 ;
error_source_out = 1'b0 ;
retried_d = 1'b0 ;
last_data_transferred = 1'b1 ;
wb_read_done = 1'b0 ;
write_rty_cnt_exp_out = 1'b0 ;
read_rty_cnt_exp_out = 1'b0 ;
wait_for_wb_response = 1'b0 ;
n_state = S_IDLE ;
end
endcase
end
// Signal for retry monitor in state machine when there is read and first (or single) data access
wire ack_rty_response = wb_ack_i || wb_rty_i ;
// Signal first_wb_data_access is set when no WB cycle present till end of first data access of WB cycle on WB bus
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in)
first_wb_data_access = 1'b1 ;
else
begin
if (~wb_cyc_o)
first_wb_data_access = 1'b1 ;
else if (ack_rty_response)
first_wb_data_access = 1'b0 ;
end
end
// Signals to FIFO
assign pcir_fifo_be_out = 4'hf ; // pci_tar_be ;
// Signals to Conf. space
assign pci_error_bc = bc_register ;
always@(posedge wb_clock_in or posedge reset_in)
begin
if (reset_in)
wb_read_done_out <= #`FF_DELAY 1'b0 ;
else
wb_read_done_out <= #`FF_DELAY wb_read_done ;
end
always@(pciw_fifo_renable or addr_into_cnt_reg or pciw_fifo_control_in or pciw_fifo_empty_in)
begin
pciw_fifo_renable_out = pciw_fifo_renable || addr_into_cnt_reg ;
last_data_from_pciw_fifo_reg = pciw_fifo_control_in[`ADDR_CTRL_BIT] || pciw_fifo_empty_in ;
end
endmodule