119 lines
3.3 KiB
C
119 lines
3.3 KiB
C
|
#include "tommath_private.h"
|
||
|
#ifdef BN_S_MP_INVMOD_FAST_C
|
||
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||
|
/* SPDX-License-Identifier: Unlicense */
|
||
|
|
||
|
/* computes the modular inverse via binary extended euclidean algorithm,
|
||
|
* that is c = 1/a mod b
|
||
|
*
|
||
|
* Based on slow invmod except this is optimized for the case where b is
|
||
|
* odd as per HAC Note 14.64 on pp. 610
|
||
|
*/
|
||
|
mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c)
|
||
|
{
|
||
|
mp_int x, y, u, v, B, D;
|
||
|
mp_sign neg;
|
||
|
mp_err err;
|
||
|
|
||
|
/* 2. [modified] b must be odd */
|
||
|
if (MP_IS_EVEN(b)) {
|
||
|
return MP_VAL;
|
||
|
}
|
||
|
|
||
|
/* init all our temps */
|
||
|
if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* x == modulus, y == value to invert */
|
||
|
if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
/* we need y = |a| */
|
||
|
if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
/* if one of x,y is zero return an error! */
|
||
|
if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) {
|
||
|
err = MP_VAL;
|
||
|
goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||
|
if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR;
|
||
|
if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR;
|
||
|
mp_set(&D, 1uL);
|
||
|
|
||
|
top:
|
||
|
/* 4. while u is even do */
|
||
|
while (MP_IS_EVEN(&u)) {
|
||
|
/* 4.1 u = u/2 */
|
||
|
if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
/* 4.2 if B is odd then */
|
||
|
if (MP_IS_ODD(&B)) {
|
||
|
if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
/* B = B/2 */
|
||
|
if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* 5. while v is even do */
|
||
|
while (MP_IS_EVEN(&v)) {
|
||
|
/* 5.1 v = v/2 */
|
||
|
if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
/* 5.2 if D is odd then */
|
||
|
if (MP_IS_ODD(&D)) {
|
||
|
/* D = (D-x)/2 */
|
||
|
if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
/* D = D/2 */
|
||
|
if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* 6. if u >= v then */
|
||
|
if (mp_cmp(&u, &v) != MP_LT) {
|
||
|
/* u = u - v, B = B - D */
|
||
|
if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR;
|
||
|
} else {
|
||
|
/* v - v - u, D = D - B */
|
||
|
if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR;
|
||
|
|
||
|
if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* if not zero goto step 4 */
|
||
|
if (!MP_IS_ZERO(&u)) {
|
||
|
goto top;
|
||
|
}
|
||
|
|
||
|
/* now a = C, b = D, gcd == g*v */
|
||
|
|
||
|
/* if v != 1 then there is no inverse */
|
||
|
if (mp_cmp_d(&v, 1uL) != MP_EQ) {
|
||
|
err = MP_VAL;
|
||
|
goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* b is now the inverse */
|
||
|
neg = a->sign;
|
||
|
while (D.sign == MP_NEG) {
|
||
|
if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* too big */
|
||
|
while (mp_cmp_mag(&D, b) != MP_LT) {
|
||
|
if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
mp_exch(&D, c);
|
||
|
c->sign = neg;
|
||
|
err = MP_OKAY;
|
||
|
|
||
|
LBL_ERR:
|
||
|
mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
|
||
|
return err;
|
||
|
}
|
||
|
#endif
|