OpenFPGA/openfpga/src/fpga_bitstream/build_fabric_bitstream.cpp

132 lines
6.3 KiB
C++
Raw Normal View History

2020-02-23 21:58:17 -06:00
/********************************************************************
* This file includes functions to build fabric dependent bitstream
*******************************************************************/
#include <string>
#include <algorithm>
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
#include "vtr_time.h"
#include "openfpga_naming.h"
#include "bitstream_manager_utils.h"
#include "build_fabric_bitstream.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* This function will walk through all the configurable children under a module
* in a recursive way, following a Depth-First Search (DFS) strategy
* For each configuration child, we use its instance name as a key to spot the
* configuration bits in bitstream manager.
* Note that it is guarentee that the instance name in module manager is
* consistent with the block names in bitstream manager
* We use this link to reorganize the bitstream in the sequence of memories as we stored
* in the configurable_children) and configurable_child_instances() of each module of module manager
*******************************************************************/
static
void rec_build_module_fabric_dependent_bitstream(const BitstreamManager& bitstream_manager,
const ConfigBlockId& parent_block,
const ModuleManager& module_manager,
const ModuleId& parent_module,
std::vector<ConfigBitId>& fabric_bitstream) {
/* Depth-first search: if we have any children in the parent_block,
* we dive to the next level first!
*/
if (0 < bitstream_manager.block_children(parent_block).size()) {
for (size_t child_id = 0; child_id < module_manager.configurable_children(parent_module).size(); ++child_id) {
ModuleId child_module = module_manager.configurable_children(parent_module)[child_id];
size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id];
/* Get the instance name and ensure it is not empty */
std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance);
/* Find the child block that matches the instance name! */
ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name);
/* We must have one valid block id! */
if (true != bitstream_manager.valid_block_id(child_block))
VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block));
/* Go recursively */
rec_build_module_fabric_dependent_bitstream(bitstream_manager, child_block,
module_manager, child_module,
fabric_bitstream);
}
/* Ensure that there should be no configuration bits in the parent block */
VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size());
}
/* Note that, reach here, it means that this is a leaf node.
* We add the configuration bits to the fabric_bitstream,
* And then, we can return
*/
for (const ConfigBitId& config_bit : bitstream_manager.block_bits(parent_block)) {
fabric_bitstream.push_back(config_bit);
}
}
/********************************************************************
* A top-level function re-organizes the bitstream for a specific
* FPGA fabric, where configuration bits are organized in the sequence
* that can be directly loaded to the FPGA configuration protocol.
* Support:
* 1. Configuration chain
* 2. Memory decoders
* This function does NOT modify the bitstream database
* Instead, it builds a vector of ids for configuration bits in bitstream manager
*
* This function can be called ONLY after the function build_device_bitstream()
* Note that this function does NOT decode bitstreams from circuit implementation
* It was done in the function build_device_bitstream()
*******************************************************************/
std::vector<ConfigBitId> build_fabric_dependent_bitstream(const BitstreamManager& bitstream_manager,
const ModuleManager& module_manager) {
std::vector<ConfigBitId> fabric_bitstream;
vtr::ScopedStartFinishTimer timer("\nBuild fabric dependent bitstream\n");
/* Get the top module name in module manager, which is our starting point */
std::string top_module_name = generate_fpga_top_module_name();
ModuleId top_module = module_manager.find_module(top_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(top_module));
/* Find the top block in bitstream manager, which has not parents */
std::vector<ConfigBlockId> top_block = find_bitstream_manager_top_blocks(bitstream_manager);
/* Make sure we have only 1 top block and its name matches the top module */
VTR_ASSERT(1 == top_block.size());
VTR_ASSERT(0 == top_module_name.compare(bitstream_manager.block_name(top_block[0])));
rec_build_module_fabric_dependent_bitstream(bitstream_manager, top_block[0],
module_manager, top_module,
fabric_bitstream);
/* Time-consuming sanity check: Uncomment these codes only for debugging!!!
* Check which configuration bits are not touched
*/
/*
for (const ConfigBitId& config_bit : bitstream_manager.bits()) {
std::vector<ConfigBitId>::iterator it = std::find(fabric_bitstream.begin(), fabric_bitstream.end(), config_bit);
if (it == fabric_bitstream.end()) {
std::vector<ConfigBlockId> block_hierarchy = find_bitstream_manager_block_hierarchy(bitstream_manager, bitstream_manager.bit_parent_block(config_bit));
std::string block_hierarchy_name;
for (const ConfigBlockId& temp_block : block_hierarchy) {
block_hierarchy_name += std::string("/") + bitstream_manager.block_name(temp_block);
}
vpr_printf(TIO_MESSAGE_INFO,
"bit (parent_block = %s) is not touched!\n",
block_hierarchy_name.c_str());
}
}
*/
/* Ensure our fabric bitstream is in the same size as device bistream */
VTR_ASSERT(bitstream_manager.bits().size() == fabric_bitstream.size());
return fabric_bitstream;
}
} /* end namespace openfpga */