-``size="<int>"`` Specify the driving strength of inverter/buffer. For a buffer, the size is the driving strength of the inverter at the second level. Note that we consider a two-level structure for a buffer here.
-``num_level="<int>"`` Define the number of levels of a tapered inverter/buffer. This is required when users need an inverter or a buffer consisting of >2 stages
..note:: For power-gated inverters: all the control signals must be set as ``config_enable`` so that the testbench generation will generate testing waveforms. If the power-gated inverters are auto-generated , all the ``config_enable`` signals must be ``global`` signals as well. If the pwoer-gated inverters come from user-defined netlists, restrictions on ``global`` signals are free.
- f_per_stage is set to 4. Then 2nd stage output strength is 4* the 1st stage output strength (so 4*1 = 4) and the 3rd stage output strength is 4* the 2nd stage output strength (so 4*4 = 16).
-``topology="transmission_gate|pass_transistor"`` Specify the circuit topology for the pass-gate logic. A transmission gate consists of a *n*-type transistor and a *p*-type transistor. The pass transistor consists of only a *n*-type transistor.
-``nmos_size="<float>"`` the size of *n*-type transistor in a transmission gate or pass_transistor, expressed in terms of the minimum width ``min_width`` defined in the transistor model in :ref:`technology_library`.
-``pmos_size="<float>"`` the size of *p*-type transistor in a transmission gate, expressed in terms of the minimum width ``min_width`` defined in the transistor model in :ref:`technology_library`.
..note:: The circuit designs of SRAMs are highly dependent on the technology node and well optimized by engineers. Therefore, FPGA-Verilog/SPICE requires users to provide their customized SRAM Verilog/SPICE/Verilog netlists. A sample Verilog/SPICE netlist of SRAM can be found in the directory SpiceNetlists in the released package. FPGA-Verilog/SPICE assumes that all the LUTs and MUXes employ the SRAM circuit design. Therefore, currently only one SRAM type is allowed to be defined.
..note:: The information of input and output buffer should be clearly specified according to the customized Verilog/SPICE netlist! The existence of input/output buffers will influence the decision in creating testbenches, which may leads to larger errors in power analysis.
..note:: OpenFPGA always assume that a ``WL`` port should be the write/read enable signal, while a ``BL`` port is the data input.
..note:: When the ``frame_based`` type of configuration procotol is specified, the configurable latch or a SRAM with ``BL`` and ``WL`` should be specified.
The circuit model in the type of ``gate`` aims to support direct mapping to standard cells or customized cells provided by technology vendors or users.
-``topology="AND|OR|MUX2"`` Specify the logic functionality of a gate. As for standard cells, the size of each port is limited to 1. Currently, only 2-input and single-output logic gates are supported.
- A 2-input MUX gate with two inputs ``in0`` and ``in1``, a select port ``sel`` and an output port ``out``
- The Verilog of MUX2 gate is provided by the user in the netlist ``sc_mux.v``
- The use of ``lib_name`` to bind to a Verilog module with different port names.
- When binding to the Verilog module, the inputs will be swapped. In other words, ``in0`` of the circuit model will be wired to the input ``B`` of the MUX2 cell, while ``in1`` of the circuit model will be wired to the input ``A`` of the MUX2 cell.
..note:: OpenFPGA requires a fixed truth table for the ``MUX2`` gate. When the select signal sel is enabled, the first input, i.e., ``in0``, will be propagated to the output, i.e., ``out``. If your standard cell provider does not offer the exact truth table, you can simply swap the inputs as shown in the example.
-``structure="tree|multi-level|one-level"`` Specify the multiplexer structure for a multiplexer. The structure option is only valid for SRAM-based multiplexers. For RRAM-based multiplexers, currently we only support the one-level structure
-``add_const_input="true|false"`` Specify if an extra input should be added to the multiplexer circuits. For example, an 4-input multiplexer will be turned to a 5-input multiplexer. The extra input will be wired to a constant value, which can be specified through the XML syntax ``const_input_val``.
-``const_input_val="0|1"`` Specify the constant value, to which the extra input will be connected. By default it is 0. This syntax is only valid when the ``add_const_input`` is set to true.
-``local_encoder="true|false"``. Specify if a local encoder should be added to the multiplexer circuits. The local encoder will interface the SRAM inputs of multiplexing structure and SRAMs. It can encode the one-hot codes (that drive the select port of multiplexing structure) to a binary code. For example, 8-bit ``00000001`` will be encoded to 3-bit ``000``. This will help reduce the number of SRAM cells used in FPGAs as well as configuration time (especially for scan-chain configuration protocols). But it may cost an area overhead.
..note:: For tree-like multiplexers, they can be built with standard cell MUX2. To enable this, users should define a ``circuit_model``, which describes a 2-input multiplexer (See details and examples in how to define a logic gate using ``circuit_model``. In this case, the ``circuit_model_name`` in the ``pass_gate_logic`` should be the name of MUX2 ``circuit_model``.
:numref:`fig_mux1` illustrates an example of multiplexer modelling, which consists of input/output buffers and a transmission-gate-based tree structure.
.._fig_mux1:
..figure:: ./figures/mux1lvl.png
:scale:60%
:alt:Detailed one level Multiplexer
An example of a one level multiplexer with transistor-level design parameters
:numref:`fig_mux` illustrates an example of multiplexer modelling, which consists of input/output buffers and a transmission-gate-based tree structure.
.._fig_mux:
..figure:: ./figures/mux.png
:scale:100%
:alt:Examples of Mux-tree
An example of a tree-like multiplexer with transistor-level design parameters
If we arbitrarily fix the number of Mux entries at 4, the following code could illustrate (a):
The auto-generated LUTs are based on a tree-like multiplexer, whose gates of the transistors are used as the inputs of LUTs and the drains/sources of the transistors are used for configurable memories (SRAMs).
..note:: In the context of LUT, ``input_buffer`` corresponds to the buffer for the datapath inputs of multiplexers inside a LUT. ``lut_input_buffer`` corresponds to the buffer at the inputs of a LUT
Define transistor-level description for the buffer locating at intermediate stages of internal multiplexer of a LUT.
-``exist="true|false"`` Specify if the input buffer should exist at intermediate stages
-``circuit_model_name="<string>"`` Specify the ``circuit_model`` that will be used to build these buffers
-``location_map="[1|-]"`` Customize the location of buffers in intermediate stages. Users can define an integer array consisting of '1' and '-'. For example, ``-1-1-`` indicates buffer inseration to every two stages of the LUT multiplexer tree, considering a 6-input LUT.
..note:: For a LUT, three types of ports (``input``, ``output`` and ``sram``) should be defined. If the user provides an customized Verilog/SPICE netlist, the bandwidth of ports should be defined to the same as the Verilog/SPICE netlist. To support customizable LUTs, each type of port contain special keywords.
-``tri_state_map="[-|1]"`` Customize which inputs are fixed to constant values when the LUT is in fracturable modes. For example, ``tri_state_map="----11"`` indicates that the last two inputs will be fixed to be logic '1' when a 6-input LUT is in fracturable modes.
-``circuit_model_name="<string>"`` Specify the circuit model to build logic gates in order to tri-state the inputs in fracturable LUT modes. It is required to use an ``AND`` gate to force logic '0' or an ``OR`` gate to force logic '1' for the input ports.
-``lut_frac_level="<int>"`` Specify the level in LUT multiplexer tree where the output port are wired to. For example, ``lut_frac_level="4"`` in a fracturable LUT6 means that the output are potentially wired to the 4th stage of a LUT multiplexer and it is an output of a LUT4.
-``lut_output_mask="<int>"`` Describe which fracturable outputs are used. For instance, in a 6-LUT, there are potentially four LUT4 outputs can be wired out. ``lut_output_mask="0,2"`` indicates that only the first and the thrid LUT4 outputs will be used in fracturable mode.
-``mode_select="true|false"`` Specify if this port is used to switch the LUT between different operating modes, the SRAM bits of a fracturable LUT consists of two parts: configuration memory and mode selecting.
-``circuit_model_name="<string>"`` Specify the circuit model to be drive the SRAM port. Typically, the circuit model should be in the type of ``ccff`` or ``sram``.
-``default_val="0|1"`` Specify the default value for the SRAM port. The default value will be used in generating testbenches for unused LUTs
..note:: The size of a mode-selection SRAM port should be consistent to the number of '1s' or '0s' in the ``tri_state_map``.
..note:: The circuit designs of flip-flops are highly dependent on the technology node and well optimized by engineers. Therefore, FPGA-Verilog/SPICE requires users to provide their customized FF Verilog/SPICE/Verilog netlists. A sample Verilog/SPICE netlist of FF can be found in the directory SpiceNetlists in the released package.
The information of input and output buffer should be clearly specified according to the customized SPICE netlist! The existence of input/output buffers will influence the decision in creating SPICE testbenches, which may leads to larger errors in power analysis.
..note:: FPGA-Verilog/SPICE currently support only one clock domain in the FPGA. Therefore there should be only one clock port to be defined and the size of the clock port should be 1.
..note:: In a valid FPGA architecture, users should provide at least either a ``ccff`` or ``sram`` circuit model, so that the configurations can loaded to core logic.
- A regular flip-flop which is defined in a Verilog netlist ``ff.v`` and a SPICE netlist ``ff.sp``
- The flip-flop has ``set`` and ``reset`` functionalities
- The flip-flop port names defined differently in standard cell library and VPR architecture. The ``lib_name`` capture the port name defined in standard cells, while ``prefix`` capture the port name defined in ``pb_type`` of VPR architecture file
..note:: The information of input and output buffer should be clearly specified according to the customized Verilog/SPICE netlist! The existence of input/output buffers will influence the decision in creating SPICE testbenches, which may leads to larger errors in power analysis.
FPGA architecture requires two type of wire segments:
-``wire``, which targets the local wires inside the logic blocks. The wire has one input and one output, directly connecting the output of a driver and the input of the downstream unit, respectively
-``chan_wire``, especially targeting the channel wires. The channel wires have one input and two outputs, one of which is connected to the inputs of Connection Boxes while the other is connected to the inputs of Switch Boxes. Two outputs are created because from the view of layout, the inputs of Connection Boxes are typically connected to the middle point of channel wires, which has less parasitic resistances and capacitances than connected to the ending point.
..note:: FPGA-Verilog/SPICE can auto-generate the Verilog/SPICE model for wires while also allows users to provide their customized Verilog/SPICE netlists.
..note:: The information of input and output buffer should be clearly specified according to the customized netlist! The existence of input/output buffers will influence the decision in creating testbenches, which may leads to larger errors in power analysis.
- The routing wire will be modelled as a 1-level π-type RC wire model with a total resistance of :math:`103.84\Omega` and a total capacitance of :math:`13.89fF`
Therefore, FPGA-Verilog/SPICE requires users to provide their customized Verilog/SPICE/Verilog netlists. A sample Verilog/SPICE netlist of an I/O pad can be found in the directory SpiceNetlists in the released package.
..note:: The information of input and output buffer should be clearly specified according to the customized netlist! The existence of input/output buffers will influence the decision in creating testbenches, which may leads to larger errors in power analysis.