OpenFPGA/openfpga_flow/benchmarks/pipelined_8bit_adder/pipelined_8bit_adder.v

100 lines
2.3 KiB
Coq
Raw Normal View History

// //
// ERI summit demo-benchmark //
// pipelined_8b_adder.v //
// by Aurelien //
// //
/////////////////////////////////////
//-----------------------------------------------------
// Design Name : pipelined_8bit_adder
// File Name : pipelined_8bit_adder.v
// Function : Pipelined 8-bit adders, whose sum and carry outputs
// are cached in a memory
// Coder : Aurelien Alacchi
//-----------------------------------------------------
`timescale 1 ns/ 1 ps
// To match the port definition in BLIF format, so that we can do verification
// Each input/output bus is expanded here.
// In future, we should be able to support buses in verification!
module pipelined_8bit_adder(
input clk,
input ren,
input wen,
input raddr_0_,
input raddr_1_,
input raddr_2_,
input raddr_3_,
input raddr_4_,
input raddr_5_,
input waddr_0_,
input waddr_1_,
input waddr_2_,
input waddr_3_,
input waddr_4_,
input waddr_5_,
input a_0_,
input a_1_,
input a_2_,
input a_3_,
input a_4_,
input a_5_,
input a_6_,
input b_0_,
input b_1_,
input b_2_,
input b_3_,
input b_4_,
input b_5_,
input b_6_,
output q_0_,
output q_1_,
output q_2_,
output q_3_,
output q_4_,
output q_5_,
output q_6_,
output q_7_);
wire [5:0] raddr = { raddr_5_, raddr_4_, raddr_3_, raddr_2_, raddr_1_, raddr_0_ };
wire [5:0] waddr = { waddr_5_, waddr_4_, waddr_3_, waddr_2_, waddr_1_, waddr_0_ };
wire [6:0] a = { a_6_, a_5_, a_4_, a_3_, a_2_, a_1_, a_0_ };
wire [6:0] b = { b_6_, b_5_, b_4_, b_3_, b_2_, b_1_, b_0_ };
wire [7:0] q = { q_7_, q_6_, q_5_, q_4_, q_3_, q_2_, q_1_, q_0_ };
reg[7:0] ram[63:0];
reg[6:0] a_st0;
reg[6:0] a_st1;
reg[6:0] b_st0;
reg[6:0] b_st1;
reg[8:0] waddr_st0;
reg[8:0] waddr_st1;
reg wen_st0;
reg wen_st1;
reg[7:0] q_int;
wire[7:0] AplusB;
assign AplusB = a_st1 + b_st1;
assign q = q_int;
always@(posedge clk) begin
waddr_st0 <= waddr;
waddr_st1 <= waddr_st0;
a_st0 <= a;
a_st1 <= a_st0;
b_st0 <= b;
b_st1 <= b_st0;
wen_st0 <= wen;
wen_st1 <= wen_st0;
if(wen_st1) begin
ram[waddr_st1] <= AplusB;
end
if(ren) begin
q_int <= ram[raddr];
end
end
endmodule