2019-10-07 17:03:15 -05:00
/********************************************************************
* This file includes functions to print Verilog modules for a Grid
* ( CLBs , I / Os , heterogeneous blocks etc . )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* System header files */
# include <vector>
# include <fstream>
/* Header files from external libs */
# include "util.h"
# include "vtr_assert.h"
2019-10-08 19:00:04 -05:00
# include "circuit_library_utils.h"
2019-10-07 17:03:15 -05:00
/* Header files for VPR */
# include "vpr_types.h"
# include "globals.h"
/* Header files for FPGA X2P tool suite */
# include "fpga_x2p_naming.h"
2019-10-07 18:39:00 -05:00
# include "fpga_x2p_types.h"
2019-10-07 17:03:15 -05:00
# include "fpga_x2p_utils.h"
2019-10-07 18:39:00 -05:00
# include "fpga_x2p_pbtypes_utils.h"
2019-10-08 15:03:17 -05:00
# include "module_manager_utils.h"
# include "fpga_x2p_globals.h"
2019-10-07 17:03:15 -05:00
/* Header files for Verilog generator */
# include "verilog_global.h"
# include "verilog_utils.h"
# include "verilog_writer_utils.h"
2019-10-10 23:02:46 -05:00
# include "verilog_module_writer.h"
2019-10-07 17:03:15 -05:00
# include "verilog_grid.h"
2019-10-07 22:09:54 -05:00
/********************************************************************
2019-10-08 13:10:26 -05:00
* Print Verilog modules of a primitive node in the pb_graph_node graph
* This generic function can support all the different types of primitive nodes
* i . e . , Look - Up Tables ( LUTs ) , Flip - flops ( FFs ) and hard logic blocks such as adders .
*
* The Verilog module will consist of two parts :
* 1. Logic module of the primitive node
* This module performs the logic function of the block
* 2. Memory module of the primitive node
* This module stores the configuration bits for the logic module
* if the logic module is a programmable resource , such as LUT
2019-10-07 22:09:54 -05:00
*
* Verilog module structure :
*
2019-10-08 13:10:26 -05:00
* Primitive block
2019-10-07 22:09:54 -05:00
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | |
* | + - - - - - - - - - + + - - - - - - - - - + |
* in | - - - - - > | | - - - > | | < - - - - - - | configuration lines
2019-10-08 13:10:26 -05:00
* | | Logic | . . . | Memory | |
2019-10-07 22:09:54 -05:00
* out | < - - - - - | | - - - > | | |
* | + - - - - - - - - - + + - - - - - - - - - + |
* | |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
2019-10-08 13:10:26 -05:00
void print_verilog_primitive_block ( std : : fstream & fp ,
ModuleManager & module_manager ,
const CircuitLibrary & circuit_lib ,
t_sram_orgz_info * cur_sram_orgz_info ,
t_pb_graph_node * primitive_pb_graph_node ,
const e_side & io_side ,
const bool & use_explicit_mapping ) {
2019-10-07 22:09:54 -05:00
/* Ensure a valid file handler */
check_file_handler ( fp ) ;
/* Ensure a valid pb_graph_node */
2019-10-08 13:10:26 -05:00
if ( NULL = = primitive_pb_graph_node ) {
2019-10-07 22:09:54 -05:00
vpr_printf ( TIO_MESSAGE_ERROR ,
2019-10-08 13:10:26 -05:00
" (File:%s,[LINE%d]) Invalid primitive_pb_graph_node! \n " ,
2019-10-07 22:09:54 -05:00
__FILE__ , __LINE__ ) ;
exit ( 1 ) ;
}
/* Find the circuit model id linked to the pb_graph_node */
2019-10-08 13:10:26 -05:00
CircuitModelId & primitive_model = primitive_pb_graph_node - > pb_type - > circuit_model ;
2019-10-07 22:09:54 -05:00
/* Generate the module name for this primitive pb_graph_node*/
2019-10-08 13:10:26 -05:00
std : : string primitive_module_name_prefix ( grid_verilog_file_name_prefix ) ;
/* Add side string to the name if it is valid, this is mainly for I/O block */
2019-10-07 22:09:54 -05:00
if ( NUM_SIDES ! = io_side ) {
Side side_manager ( io_side ) ;
2019-10-08 13:10:26 -05:00
primitive_module_name_prefix + = std : : string ( side_manager . to_string ( ) ) ;
primitive_module_name_prefix + = std : : string ( " _ " ) ;
2019-10-07 22:09:54 -05:00
}
2019-10-08 13:10:26 -05:00
std : : string primitive_module_name = generate_physical_block_module_name ( primitive_module_name_prefix , primitive_pb_graph_node - > pb_type ) ;
/* Create a module of the primitive LUT and register it to module manager */
ModuleId primitive_module = module_manager . add_module ( primitive_module_name ) ;
/* Ensure that the module has been created and thus unique! */
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = primitive_module ) ;
/* Find the global ports required by the primitive node, and add them to the module */
2019-10-08 15:03:17 -05:00
std : : vector < CircuitPortId > primitive_model_global_ports = circuit_lib . model_global_ports ( primitive_model , true ) ;
2019-10-08 13:10:26 -05:00
for ( auto port : primitive_model_global_ports ) {
2019-10-08 15:03:17 -05:00
/* The global I/O of the FPGA has a special name */
2019-10-08 13:10:26 -05:00
BasicPort module_port ( circuit_lib . port_lib_name ( port ) , circuit_lib . port_size ( port ) ) ;
2019-10-08 15:03:17 -05:00
module_manager . add_port ( primitive_module , module_port , ModuleManager : : MODULE_GLOBAL_PORT ) ;
2019-10-08 13:10:26 -05:00
}
2019-10-08 15:03:17 -05:00
2019-10-08 13:10:26 -05:00
/* Find the inout ports required by the primitive node, and add them to the module
* This is mainly due to the I / O blocks , which have inout ports for the top - level fabric
2019-10-07 22:09:54 -05:00
*/
2019-10-08 15:03:17 -05:00
if ( SPICE_MODEL_IOPAD = = circuit_lib . model_type ( primitive_model ) ) {
std : : vector < CircuitPortId > primitive_model_inout_ports = circuit_lib . model_ports_by_type ( primitive_model , SPICE_MODEL_PORT_INOUT ) ;
for ( auto port : primitive_model_inout_ports ) {
BasicPort module_port ( generate_fpga_global_io_port_name ( std : : string ( gio_inout_prefix ) , circuit_lib , primitive_model ) , circuit_lib . port_size ( port ) ) ;
module_manager . add_port ( primitive_module , module_port , ModuleManager : : MODULE_INOUT_PORT ) ;
}
2019-10-08 13:10:26 -05:00
}
2019-10-08 15:03:17 -05:00
/* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here.
* Since we have linked pb_type ports to circuit models when setting up FPGA - X2P ,
* no ports of the circuit model will be missing here
*/
2019-10-11 22:43:47 -05:00
add_primitive_pb_type_ports_to_module_manager ( module_manager , primitive_module , primitive_pb_graph_node - > pb_type ) ;
2019-10-07 22:09:54 -05:00
2019-10-08 13:10:26 -05:00
/* Add configuration ports */
2019-10-08 19:00:04 -05:00
/* Shared SRAM ports*/
size_t num_shared_config_bits = find_circuit_num_shared_config_bits ( circuit_lib , primitive_model , cur_sram_orgz_info - > type ) ;
if ( 0 < num_shared_config_bits ) {
/* Check: this SRAM organization type must be memory-bank ! */
VTR_ASSERT ( SPICE_SRAM_MEMORY_BANK = = cur_sram_orgz_info - > type ) ;
/* Generate a list of ports */
add_reserved_sram_ports_to_module_manager ( module_manager , primitive_module ,
num_shared_config_bits ) ;
}
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model * mem_model = NULL ;
get_sram_orgz_info_mem_model ( cur_sram_orgz_info , & mem_model ) ;
CircuitModelId sram_model = circuit_lib . model ( mem_model - > name ) ;
VTR_ASSERT ( CircuitModelId : : INVALID ( ) ! = sram_model ) ;
/* Regular (independent) SRAM ports */
size_t num_config_bits = find_circuit_num_config_bits ( circuit_lib , primitive_model ) ;
if ( 0 < num_config_bits ) {
add_sram_ports_to_module_manager ( module_manager , primitive_module ,
circuit_lib , sram_model , cur_sram_orgz_info - > type ,
num_config_bits ) ;
}
2019-10-07 22:09:54 -05:00
2019-10-08 22:29:42 -05:00
/* Find the module id in the module manager */
ModuleId logic_module = module_manager . find_module ( circuit_lib . model_name ( primitive_model ) ) ;
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = logic_module ) ;
size_t logic_instance_id = module_manager . num_instance ( primitive_module , logic_module ) ;
2019-10-10 23:02:46 -05:00
/* Add the logic module as a child of primitive module */
2019-10-08 22:29:42 -05:00
module_manager . add_child_module ( primitive_module , logic_module ) ;
2019-10-10 23:02:46 -05:00
/* Add nets to connect the logic model ports to pb_type ports */
add_primitive_pb_type_module_nets ( module_manager , primitive_module , logic_module , logic_instance_id , circuit_lib , primitive_pb_graph_node - > pb_type ) ;
2019-10-11 14:07:14 -05:00
/* Add the associated memory module as a child of primitive module */
std : : string memory_module_name = generate_memory_module_name ( circuit_lib , primitive_model , sram_model , std : : string ( verilog_mem_posfix ) ) ;
ModuleId memory_module = module_manager . find_module ( memory_module_name ) ;
2019-10-11 19:00:37 -05:00
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std : : vector < ModuleId > memory_modules ;
std : : vector < size_t > memory_instances ;
2019-10-11 14:07:14 -05:00
/* If there is no memory module required, we can skip the assocated net addition */
if ( ModuleId : : INVALID ( ) ! = memory_module ) {
size_t memory_instance_id = module_manager . num_instance ( primitive_module , memory_module ) ;
/* Add the memory module as a child of primitive module */
module_manager . add_child_module ( primitive_module , memory_module ) ;
/* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
memory_module , memory_instance_id ,
circuit_lib , primitive_model ) ;
2019-10-11 19:00:37 -05:00
/* Record memory-related information */
memory_modules . push_back ( memory_module ) ;
memory_instances . push_back ( memory_instance_id ) ;
}
/* Add all the nets to connect configuration ports from memory module to primitive modules
* This is a one - shot addition that covers all the memory modules in this primitive module !
*/
if ( false = = memory_modules . empty ( ) ) {
add_module_nets_memory_config_bus ( module_manager , primitive_module ,
memory_modules , memory_instances ,
2019-10-11 20:47:36 -05:00
cur_sram_orgz_info - > type , circuit_lib . design_tech_type ( sram_model ) ) ;
2019-10-11 14:07:14 -05:00
}
/* Write the verilog module */
2019-10-10 23:02:46 -05:00
write_verilog_module_to_file ( fp , module_manager , primitive_module , use_explicit_mapping ) ;
2019-10-07 22:09:54 -05:00
/* Add an empty line as a splitter */
fp < < std : : endl ;
}
2019-10-12 22:55:53 -05:00
/********************************************************************
* This function add a net for a pin - to - pin connection defined in pb_graph
* It supports two cases for the pin - to - pin connection
* 1. The net source is a pb_graph_pin while the net sink is a pin of an interconnection
* 2. The net source is a pin of an interconnection while the net sink a pb_graph_pin
* The type is enabled by an argument pin2pin_interc_type
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_pin2pin_net ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
const ModuleId & interc_module ,
const size_t & interc_instance ,
const std : : string & interc_port_name ,
2019-10-13 12:11:19 -05:00
const size_t & interc_pin_id ,
2019-10-12 22:55:53 -05:00
const std : : string & module_name_prefix ,
t_pb_graph_pin * pb_graph_pin ,
const enum e_spice_pin2pin_interc_type & pin2pin_interc_type ) {
ModuleNetId pin2pin_net = module_manager . create_module_net ( pb_module ) ;
/* Find port and pin ids for the module, which is the parent of pb_graph_pin */
t_pb_type * pin_pb_type = pb_graph_pin - > parent_node - > pb_type ;
/* Find the module contains the source pin */
ModuleId pin_pb_type_module = module_manager . find_module ( generate_physical_block_module_name ( module_name_prefix , pin_pb_type ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pin_pb_type_module ) ) ;
size_t pin_pb_type_instance = 0 ; /* Deposite the instance with a zero, which is the default value is the source module is actually pb_module itself */
if ( pin_pb_type_module ! = pb_module ) {
pin_pb_type_instance = pb_graph_pin - > parent_node - > placement_index ;
/* Ensure this is an valid instance */
VTR_ASSERT ( pin_pb_type_instance < module_manager . num_instance ( pb_module , pin_pb_type_module ) ) ;
}
ModulePortId pin_module_port_id = module_manager . find_module_port ( pin_pb_type_module , generate_pb_type_port_name ( pb_graph_pin - > port ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_port_id ( pin_pb_type_module , pin_module_port_id ) ) ;
size_t pin_module_pin_id = pb_graph_pin - > pin_number ;
/* Ensure this is an valid pin index */
VTR_ASSERT ( pin_module_pin_id < module_manager . module_port ( pin_pb_type_module , pin_module_port_id ) . get_width ( ) ) ;
/* Find port and pin ids for the interconnection module */
ModulePortId interc_port_id = module_manager . find_module_port ( interc_module , interc_port_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_port_id ( interc_module , interc_port_id ) ) ;
/* Ensure this is an valid pin index */
VTR_ASSERT ( interc_pin_id < module_manager . module_port ( interc_module , interc_port_id ) . get_width ( ) ) ;
/* Add net sources and sinks:
* For input - to - input connection , net_source is pin_graph_pin , while net_sink is interc pin
* For output - to - output connection , net_source is interc pin , while net_sink is pin_graph pin
*/
switch ( pin2pin_interc_type ) {
case INPUT2INPUT_INTERC :
module_manager . add_module_net_source ( pb_module , pin2pin_net , pin_pb_type_module , pin_pb_type_instance , pin_module_port_id , pin_module_pin_id ) ;
module_manager . add_module_net_sink ( pb_module , pin2pin_net , interc_module , interc_instance , interc_port_id , interc_pin_id ) ;
break ;
case OUTPUT2OUTPUT_INTERC :
module_manager . add_module_net_source ( pb_module , pin2pin_net , interc_module , interc_instance , interc_port_id , interc_pin_id ) ;
module_manager . add_module_net_sink ( pb_module , pin2pin_net , pin_pb_type_module , pin_pb_type_instance , pin_module_port_id , pin_module_pin_id ) ;
break ;
default :
vpr_printf ( TIO_MESSAGE_ERROR ,
" (File:%s, [LINE%d]) Invalid pin-to-pin interconnection type! \n " ,
__FILE__ , __LINE__ ) ;
exit ( 1 ) ;
}
}
/********************************************************************
* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* src_pb_graph_node . [ in | out ] _pins - - - - - - - - - - - - - - - - - > des_pb_graph_node . [ in | out ] pins
* / | \
* |
* input_pins , edges , output_pins
*
* This function does the following task :
* 1. identify pin interconnection type ,
* 2. Identify the number of fan - in ( Consider interconnection edges of only selected mode )
* 3. Add mux / direct connection as a child module to pb_module
* 4. Add nets related to the mux / direction
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_pin_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
2019-10-13 12:11:19 -05:00
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
2019-10-12 22:55:53 -05:00
const CircuitLibrary & circuit_lib ,
const std : : string & module_name_prefix ,
t_pb_graph_pin * des_pb_graph_pin ,
t_mode * physical_mode ) {
/* Find the number of fan-in and detailed interconnection information
* related to the destination pb_graph_pin
*/
int fan_in = 0 ;
t_interconnect * cur_interc = NULL ;
find_interc_fan_in_des_pb_graph_pin ( des_pb_graph_pin , physical_mode , & cur_interc , & fan_in ) ;
/* If no interconnection is needed, we can return early */
if ( ( NULL = = cur_interc ) | | ( 0 = = fan_in ) ) {
return ;
}
/* Initialize the interconnection type that will be physically implemented in module */
enum e_interconnect verilog_interc_type = determine_actual_pb_interc_type ( cur_interc , fan_in ) ;
2019-10-13 12:11:19 -05:00
/* Find input ports of the wire module */
std : : vector < CircuitPortId > interc_model_inputs = circuit_lib . model_ports_by_type ( cur_interc - > circuit_model , SPICE_MODEL_PORT_INPUT , true ) ; /* the last argument to guarantee that we ignore any global inputs */
/* Find output ports of the wire module */
std : : vector < CircuitPortId > interc_model_outputs = circuit_lib . model_ports_by_type ( cur_interc - > circuit_model , SPICE_MODEL_PORT_OUTPUT , true ) ; /* the last argument to guarantee that we ignore any global ports */
/* Ensure that we have only 1 input port and 1 output port, this is valid for both wire and MUX */
VTR_ASSERT ( 1 = = interc_model_inputs . size ( ) ) ;
VTR_ASSERT ( 1 = = interc_model_outputs . size ( ) ) ;
2019-10-12 22:55:53 -05:00
/* Branch on the type of physical implementation,
* We add instances of programmable interconnection
*/
switch ( verilog_interc_type ) {
case DIRECT_INTERC : {
/* Ensure direct interc has only one fan-in */
VTR_ASSERT ( 1 = = fan_in ) ;
/* For more than one mode defined, the direct interc has more than one input_edge ,
* We need to find which edge is connected the pin we want
*/
int iedge = 0 ;
for ( iedge = 0 ; iedge < des_pb_graph_pin - > num_input_edges ; iedge + + ) {
if ( cur_interc = = des_pb_graph_pin - > input_edges [ iedge ] - > interconnect ) {
break ;
}
}
t_pb_graph_pin * src_pb_graph_pin = des_pb_graph_pin - > input_edges [ iedge ] - > input_pins [ 0 ] ;
/* Ensure that circuit model is a wire */
VTR_ASSERT ( SPICE_MODEL_WIRE = = circuit_lib . model_type ( cur_interc - > circuit_model ) ) ;
/* Find the wire module in the module manager */
ModuleId wire_module = module_manager . find_module ( circuit_lib . model_name ( cur_interc - > circuit_model ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( wire_module ) ) ;
/* Get the instance id and add an instance of wire */
size_t wire_instance = module_manager . num_instance ( pb_module , wire_module ) ;
module_manager . add_child_module ( pb_module , wire_module ) ;
2019-10-13 12:11:19 -05:00
/* Ensure input and output ports of the wire model has only 1 pin respectively */
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_inputs [ 0 ] ) ) ;
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_outputs [ 0 ] ) ) ;
2019-10-12 22:55:53 -05:00
/* Add nets to connect the wires to ports of pb_module */
/* First net is to connect input of src_pb_graph_node to input of the wire module */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
wire_module , wire_instance ,
2019-10-13 12:11:19 -05:00
circuit_lib . port_lib_name ( interc_model_inputs [ 0 ] ) ,
0 , /* wire input port has only 1 pin */
2019-10-12 22:55:53 -05:00
module_name_prefix ,
src_pb_graph_pin ,
INPUT2INPUT_INTERC ) ;
/* Second net is to connect output of the wire module to output of des_pb_graph_pin */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
wire_module , wire_instance ,
2019-10-13 12:11:19 -05:00
circuit_lib . port_lib_name ( interc_model_outputs [ 0 ] ) ,
0 , /* wire output port has only 1 pin */
2019-10-12 22:55:53 -05:00
module_name_prefix ,
des_pb_graph_pin ,
OUTPUT2OUTPUT_INTERC ) ;
break ;
}
case COMPLETE_INTERC :
case MUX_INTERC : {
/* Check: MUX should have at least 2 fan_in */
VTR_ASSERT ( ( 2 = = fan_in ) | | ( 2 < fan_in ) ) ;
/* Ensure that circuit model is a MUX */
VTR_ASSERT ( SPICE_MODEL_MUX = = circuit_lib . model_type ( cur_interc - > circuit_model ) ) ;
/* Find the wire module in the module manager */
ModuleId mux_module = module_manager . find_module ( generate_mux_subckt_name ( circuit_lib , cur_interc - > circuit_model , fan_in , std : : string ( ) ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( mux_module ) ) ;
/* Instanciate the MUX */
size_t mux_instance = module_manager . num_instance ( pb_module , mux_module ) ;
module_manager . add_child_module ( pb_module , mux_module ) ;
2019-10-13 12:11:19 -05:00
/* Instanciate a memory module for the MUX */
std : : string mux_mem_module_name = generate_mux_subckt_name ( circuit_lib ,
cur_interc - > circuit_model ,
fan_in ,
std : : string ( verilog_mem_posfix ) ) ;
ModuleId mux_mem_module = module_manager . find_module ( mux_mem_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( mux_mem_module ) ) ;
size_t mux_mem_instance = module_manager . num_instance ( pb_module , mux_mem_module ) ;
module_manager . add_child_module ( pb_module , mux_mem_module ) ;
/* Add nets to connect SRAM ports of the MUX to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus ( module_manager , pb_module ,
mux_module , mux_instance ,
mux_mem_module , mux_mem_instance ,
circuit_lib , cur_interc - > circuit_model ) ;
/* Update memory modules and memory instance list */
memory_modules . push_back ( mux_mem_module ) ;
memory_instances . push_back ( mux_mem_instance ) ;
/* Ensure output port of the MUX model has only 1 pin,
* while the input port size is dependent on the architecture conext ,
* no constaints on the circuit model definition
*/
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_outputs [ 0 ] ) ) ;
/* Create nets to wire between the MUX and PB module */
/* Add a net to wire the inputs of the multiplexer to its source pb_graph_pin inside pb_module
* Here is a tricky part .
* Not every input edges from the destination pb_graph_pin is used in the physical_model of pb_type
* So , we will skip these input edges when building nets
*/
int mux_input_pin_id = 0 ;
2019-10-12 22:55:53 -05:00
for ( int iedge = 0 ; iedge < des_pb_graph_pin - > num_input_edges ; iedge + + ) {
if ( physical_mode ! = des_pb_graph_pin - > input_edges [ iedge ] - > interconnect - > parent_mode ) {
continue ;
}
2019-10-13 12:11:19 -05:00
/* Ensure that the input edge has only 1 input pin! */
2019-10-12 22:55:53 -05:00
check_pb_graph_edge ( * ( des_pb_graph_pin - > input_edges [ iedge ] ) ) ;
2019-10-13 12:11:19 -05:00
t_pb_graph_pin * src_pb_graph_pin = des_pb_graph_pin - > input_edges [ iedge ] - > input_pins [ 0 ] ;
/* Add a net, set its source and sink */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
mux_module , mux_instance ,
circuit_lib . port_lib_name ( interc_model_inputs [ 0 ] ) ,
mux_input_pin_id ,
module_name_prefix ,
src_pb_graph_pin ,
INPUT2INPUT_INTERC ) ;
mux_input_pin_id + + ;
2019-10-12 22:55:53 -05:00
}
2019-10-13 12:11:19 -05:00
/* Ensure all the fan_in has been covered */
VTR_ASSERT ( mux_input_pin_id = = fan_in ) ;
2019-10-12 22:55:53 -05:00
2019-10-13 12:11:19 -05:00
/* Add a net to wire the output of the multiplexer to des_pb_graph_pin */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
mux_module , mux_instance ,
circuit_lib . port_lib_name ( interc_model_outputs [ 0 ] ) ,
0 , /* MUX should have only 1 pin in its output port */
module_name_prefix ,
des_pb_graph_pin ,
OUTPUT2OUTPUT_INTERC ) ;
2019-10-12 22:55:53 -05:00
break ;
}
default :
vpr_printf ( TIO_MESSAGE_ERROR ,
2019-10-13 12:11:19 -05:00
" (File:%s,[LINE%d])Invalid interconnection type for %s [at Architecture XML LINE%d]! \n " ,
2019-10-12 22:55:53 -05:00
__FILE__ , __LINE__ , cur_interc - > name , cur_interc - > line_num ) ;
exit ( 1 ) ;
}
}
/********************************************************************
* Add modules and nets for programmable / non - programmable interconnections
* which end to a port of pb_module
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections / multiplexer
*
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - +
* | - - - > | | - - - > | |
* | . . . | Multiplexers | . . . | |
* | - - - > | | - - - > | |
* | + - - - - - - - - - - - - - - + | des_pb_ |
* | | graph_node |
* | + - - - - - - - - - - - - - - + | |
* | - - - > | | - - - > | |
* | . . . | Direct | . . . | |
* | - - - > | Connections | - - - > | |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - +
* |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* Note : this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module ! ! !
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_port_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
2019-10-13 12:11:19 -05:00
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
2019-10-12 22:55:53 -05:00
const CircuitLibrary & circuit_lib ,
t_pb_graph_node * des_pb_graph_node ,
const std : : string & module_name_prefix ,
const e_spice_pb_port_type & pb_port_type ,
t_mode * physical_mode ) {
switch ( pb_port_type ) {
case SPICE_PB_PORT_INPUT : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_input_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_input_pins [ iport ] ; + + ipin ) {
/* Get the selected edge of current pin*/
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
module_name_prefix ,
& ( des_pb_graph_node - > input_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
case SPICE_PB_PORT_OUTPUT : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_output_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_output_pins [ iport ] ; + + ipin ) {
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
module_name_prefix ,
& ( des_pb_graph_node - > output_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
case SPICE_PB_PORT_CLOCK : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_clock_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_clock_pins [ iport ] ; + + ipin ) {
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
module_name_prefix ,
& ( des_pb_graph_node - > clock_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
default :
vpr_printf ( TIO_MESSAGE_ERROR ,
2019-10-13 12:11:19 -05:00
" (File:%s,[LINE%d]) Invalid pb port type! \n " ,
2019-10-12 22:55:53 -05:00
__FILE__ , __LINE__ ) ;
exit ( 1 ) ;
}
}
/********************************************************************
* TODO :
* Add modules and nets for programmable / non - programmable interconnections
* inside a module of pb_type
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections / multiplexer
*
* Pb_module
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - + + - - - - - - - - - - - - - - + |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | . . . | Multiplexers | . . . | | . . . | Multiplexers | . . . |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | + - - - - - - - - - - - - - - + | Child | + - - - - - - - - - - - - - - + |
* | | Pb_modules | |
* | + - - - - - - - - - - - - - - + | | + - - - - - - - - - - - - - - + |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | . . . | Direct | . . . | | . . . | Direct | . . . |
* | - - - > | Connections | - - - > | | - - - > | Connections | - - - > |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - + + - - - - - - - - - - - - - - + |
* | |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* Note : this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module ! ! !
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
2019-10-13 12:11:19 -05:00
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
2019-10-12 22:55:53 -05:00
const CircuitLibrary & circuit_lib ,
t_pb_graph_node * physical_pb_graph_node ,
const std : : string & module_name_prefix ,
const int & physical_mode_index ) {
/* Check cur_pb_graph_node*/
if ( NULL = = physical_pb_graph_node ) {
vpr_printf ( TIO_MESSAGE_ERROR ,
" (File:%s,[LINE%d]) Invalid cur_pb_graph_node. \n " ,
__FILE__ , __LINE__ ) ;
exit ( 1 ) ;
}
/* Assign physical mode */
t_mode * physical_mode = & ( physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] ) ;
/* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* child_pb_graph_node . output_pins - - - - - - - - - - - - - - - - - > cur_pb_graph_node . outpins
* / | \
* |
* input_pins , edges , output_pins
*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
physical_pb_graph_node ,
module_name_prefix ,
SPICE_PB_PORT_OUTPUT ,
physical_mode ) ;
/* We check input_pins of child_pb_graph_node and its the input_edges
* Built the interconnections between inputs of cur_pb_graph_node and inputs of child_pb_graph_node
* cur_pb_graph_node . input_pins - - - - - - - - - - - - - - - - - > child_pb_graph_node . input_pins
* / | \
* |
* input_pins , edges , output_pins
*/
for ( int child = 0 ; child < physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] . num_pb_type_children ; + + child ) {
for ( int inst = 0 ; inst < physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] . pb_type_children [ child ] . num_pb ; + + inst ) {
t_pb_graph_node * child_pb_graph_node = & ( physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode_index ] [ child ] [ inst ] ) ;
/* For each child_pb_graph_node input pins*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
child_pb_graph_node ,
module_name_prefix ,
SPICE_PB_PORT_INPUT ,
physical_mode ) ;
/* For each child_pb_graph_node clock pins*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
2019-10-13 12:11:19 -05:00
memory_modules , memory_instances ,
2019-10-12 22:55:53 -05:00
circuit_lib ,
child_pb_graph_node ,
module_name_prefix ,
SPICE_PB_PORT_CLOCK ,
physical_mode ) ;
}
}
}
2019-10-07 18:39:00 -05:00
/********************************************************************
* Print Verilog modules of physical blocks inside a grid ( CLB , I / O . etc . )
* This function will traverse the graph of complex logic block ( t_pb_graph_node )
* in a recursive way , using a Depth First Search ( DFS ) algorithm .
* As such , primitive physical blocks ( LUTs , FFs , etc . ) , leaf node of the pb_graph
* will be printed out first , while the top - level will be printed out in the last
*
* Note : this function will print a unique Verilog module for each type of
* t_pb_graph_node , i . e . , t_pb_type , in the graph , in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes .
*
* Note : DFS is the right way . Do NOT use BFS .
* DFS can guarantee that all the sub - modules can be registered properly
* to its parent in module manager
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void print_verilog_physical_blocks_rec ( std : : fstream & fp ,
ModuleManager & module_manager ,
const CircuitLibrary & circuit_lib ,
const MuxLibrary & mux_lib ,
t_sram_orgz_info * cur_sram_orgz_info ,
t_pb_graph_node * physical_pb_graph_node ,
2019-10-07 22:09:54 -05:00
const e_side & io_side ,
2019-10-07 18:39:00 -05:00
const bool & use_explicit_mapping ) {
/* Check the file handler*/
check_file_handler ( fp ) ;
/* Check cur_pb_graph_node*/
if ( NULL = = physical_pb_graph_node ) {
vpr_printf ( TIO_MESSAGE_ERROR ,
" (File:%s,[LINE%d]) Invalid cur_pb_graph_node. \n " ,
__FILE__ , __LINE__ ) ;
exit ( 1 ) ;
}
/* Get the pb_type definition related to the node */
t_pb_type * physical_pb_type = physical_pb_graph_node - > pb_type ;
/* Find the mode that physical implementation of a pb_type */
int physical_mode_index = find_pb_type_physical_mode_index ( ( * physical_pb_type ) ) ;
/* For non-leaf node in the pb_type graph:
* Recursively Depth - First Generate all the child pb_type at the level
*/
if ( FALSE = = is_primitive_pb_type ( physical_pb_type ) ) {
for ( int ipb = 0 ; ipb < physical_pb_type - > modes [ physical_mode_index ] . num_pb_type_children ; + + ipb ) {
/* Go recursive to visit the children */
print_verilog_physical_blocks_rec ( fp , module_manager , circuit_lib , mux_lib ,
cur_sram_orgz_info ,
& ( physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode_index ] [ ipb ] [ 0 ] ) ,
2019-10-07 22:09:54 -05:00
io_side ,
2019-10-07 18:39:00 -05:00
use_explicit_mapping ) ;
}
}
/* For leaf node, a primitive Verilog module will be generated */
if ( TRUE = = is_primitive_pb_type ( physical_pb_type ) ) {
2019-10-08 13:10:26 -05:00
print_verilog_primitive_block ( fp , module_manager , circuit_lib ,
2019-10-07 22:09:54 -05:00
cur_sram_orgz_info ,
physical_pb_graph_node ,
io_side ,
use_explicit_mapping ) ;
2019-10-07 18:39:00 -05:00
/* Finish for primitive node, return */
return ;
}
2019-10-07 22:09:54 -05:00
/* Generate the name of the Verilog module for this pb_type */
std : : string pb_module_name_prefix ( grid_verilog_file_name_prefix ) ;
/* Add side string to the name if it is valid */
if ( NUM_SIDES ! = io_side ) {
Side side_manager ( io_side ) ;
pb_module_name_prefix + = std : : string ( side_manager . to_string ( ) ) ;
pb_module_name_prefix + = std : : string ( " _ " ) ;
}
std : : string pb_module_name = generate_physical_block_module_name ( pb_module_name_prefix , physical_pb_type ) ;
2019-10-07 18:39:00 -05:00
2019-10-07 22:09:54 -05:00
/* Register the Verilog module in module manager */
ModuleId pb_module = module_manager . add_module ( pb_module_name ) ;
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = pb_module ) ;
2019-10-07 18:39:00 -05:00
2019-10-11 22:43:47 -05:00
/* Add ports to the Verilog module */
add_pb_type_ports_to_module_manager ( module_manager , pb_module , physical_pb_type ) ;
2019-10-07 18:39:00 -05:00
2019-10-11 22:43:47 -05:00
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std : : vector < ModuleId > memory_modules ;
std : : vector < size_t > memory_instances ;
2019-10-07 22:09:54 -05:00
2019-10-11 22:43:47 -05:00
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model * mem_model = NULL ;
get_sram_orgz_info_mem_model ( cur_sram_orgz_info , & mem_model ) ;
CircuitModelId sram_model = circuit_lib . model ( mem_model - > name ) ;
VTR_ASSERT ( CircuitModelId : : INVALID ( ) ! = sram_model ) ;
2019-10-07 18:39:00 -05:00
2019-10-13 12:11:19 -05:00
/* Add all the child Verilog modules as instances */
2019-10-11 22:43:47 -05:00
for ( int ichild = 0 ; ichild < physical_pb_type - > modes [ physical_mode_index ] . num_pb_type_children ; + + ichild ) {
/* Get the name and module id for this child pb_type */
std : : string child_pb_module_name = generate_physical_block_module_name ( pb_module_name_prefix , & ( physical_pb_type - > modes [ physical_mode_index ] . pb_type_children [ ichild ] ) ) ;
ModuleId child_pb_module = module_manager . find_module ( child_pb_module_name ) ;
/* We must have one valid id! */
VTR_ASSERT ( true = = module_manager . valid_module_id ( child_pb_module ) ) ;
2019-10-07 18:39:00 -05:00
/* Each child may exist multiple times in the hierarchy*/
2019-10-11 22:43:47 -05:00
for ( int inst = 0 ; inst < physical_pb_type - > modes [ physical_mode_index ] . pb_type_children [ ichild ] . num_pb ; + + inst ) {
size_t child_instance_id = module_manager . num_instance ( pb_module , child_pb_module ) ;
2019-10-12 22:55:53 -05:00
/* Ensure the instance of this child module is the same as placement index,
* This check is necessary because placement_index is used to identify instance id for children
* when adding local interconnection for this pb_type
*/
VTR_ASSERT ( child_instance_id = = ( size_t ) physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode_index ] [ ichild ] [ inst ] . placement_index ) ;
2019-10-11 22:43:47 -05:00
/* Add the memory module as a child of primitive module */
module_manager . add_child_module ( pb_module , child_pb_module ) ;
2019-10-12 22:55:53 -05:00
/* Identify if this sub module includes configuration bits,
2019-10-11 22:43:47 -05:00
* we will update the memory module and instance list
*/
if ( 0 < find_module_num_config_bits ( module_manager , child_pb_module ,
circuit_lib , sram_model ,
cur_sram_orgz_info - > type ) ) {
memory_modules . push_back ( child_pb_module ) ;
memory_instances . push_back ( child_instance_id ) ;
}
2019-10-07 18:39:00 -05:00
}
}
2019-10-11 22:43:47 -05:00
2019-10-13 12:11:19 -05:00
/* Add modules and nets for programmable/non-programmable interconnections
* inside the Verilog module
*/
add_module_pb_graph_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
circuit_lib , physical_pb_graph_node ,
pb_module_name_prefix ,
physical_mode_index ) ;
2019-10-11 22:43:47 -05:00
/* TODO: Add global ports to the pb_module:
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the global ports from the child modules and build a list of it
*/
/* TODO: Count I/O (INOUT) ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
/* TODO: Count shared SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
/* TODO: Count SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
2019-10-13 12:11:19 -05:00
/* TODO: Add module nets to connect memory cells inside */
2019-10-11 22:43:47 -05:00
/* Comment lines */
print_verilog_comment ( fp , std : : string ( " ----- BEGIN Physical programmable logic block Verilog module: " + std : : string ( physical_pb_type - > name ) + " ----- " ) ) ;
/* Write the verilog module */
write_verilog_module_to_file ( fp , module_manager , pb_module , use_explicit_mapping ) ;
2019-10-07 18:39:00 -05:00
2019-10-07 22:09:54 -05:00
print_verilog_comment ( fp , std : : string ( " ----- END Physical programmable logic block Verilog module: " + std : : string ( physical_pb_type - > name ) + " ----- " ) ) ;
2019-10-07 18:39:00 -05:00
2019-10-07 22:09:54 -05:00
/* Add an empty line as a splitter */
fp < < std : : endl ;
}
2019-10-07 18:39:00 -05:00
2019-10-07 17:03:15 -05:00
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block
*
* For IO blocks :
* The param ' border_side ' is required , which is specify which side of fabric
* the I / O block locates at .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void print_verilog_grid ( ModuleManager & module_manager ,
const MuxLibrary & mux_lib ,
const CircuitLibrary & circuit_lib ,
t_sram_orgz_info * cur_sram_orgz_info ,
const std : : string & verilog_dir ,
const std : : string & subckt_dir ,
t_type_ptr phy_block_type ,
const e_side & border_side ,
const bool & use_explicit_mapping ) {
/* Check code: if this is an IO block, the border side MUST be valid */
if ( IO_TYPE = = phy_block_type ) {
VTR_ASSERT ( NUM_SIDES ! = border_side ) ;
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std : : string verilog_fname ( subckt_dir
2019-10-07 22:09:54 -05:00
+ generate_grid_block_netlist_name ( std : : string ( phy_block_type - > name ) ,
IO_TYPE = = phy_block_type ,
border_side ,
std : : string ( verilog_netlist_file_postfix ) )
2019-10-07 17:03:15 -05:00
) ;
/* TODO: remove the bak file when the file is ready */
verilog_fname + = " .bak " ;
/* Echo status */
if ( IO_TYPE = = phy_block_type ) {
Side side_manager ( border_side ) ;
vpr_printf ( TIO_MESSAGE_INFO ,
" Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ... \n " ,
verilog_fname . c_str ( ) , phy_block_type - > name ,
side_manager . c_str ( ) ) ;
} else {
vpr_printf ( TIO_MESSAGE_INFO ,
" Writing FPGA Verilog Netlist (%s) for logic block %s... \n " ,
verilog_fname . c_str ( ) , phy_block_type - > name ) ;
}
/* Create the file stream */
std : : fstream fp ;
fp . open ( verilog_fname , std : : fstream : : out | std : : fstream : : trunc ) ;
check_file_handler ( fp ) ;
print_verilog_file_header ( fp , std : : string ( " Verilog modules for physical block: " + std : : string ( phy_block_type - > name ) + " ] " ) ) ;
/* Print preprocessing flags */
print_verilog_include_defines_preproc_file ( fp , verilog_dir ) ;
/* TODO: Print Verilog modules for all the pb_types/pb_graph_nodes */
2019-10-07 22:09:54 -05:00
/* TODO: use a Depth-First Search Algorithm to print the sub-modules
* Note : DFS is the right way . Do NOT use BFS .
* DFS can guarantee that all the sub - modules can be registered properly
* to its parent in module manager
*/
print_verilog_comment ( fp , std : : string ( " ---- BEGIN Sub-module of physical block: " + std : : string ( phy_block_type - > name ) + " ---- " ) ) ;
/* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
print_verilog_physical_blocks_rec ( fp , module_manager , circuit_lib , mux_lib ,
cur_sram_orgz_info ,
phy_block_type - > pb_graph_head ,
border_side ,
use_explicit_mapping ) ;
print_verilog_comment ( fp , std : : string ( " ---- END Sub-module of physical block: " + std : : string ( phy_block_type - > name ) + " ---- " ) ) ;
2019-10-07 17:03:15 -05:00
/* TODO: Create a Verilog Module for the top-level physical block, and add to module manager */
2019-10-07 22:09:54 -05:00
std : : string module_name = generate_grid_block_module_name ( std : : string ( grid_verilog_file_name_prefix ) , phy_block_type - > name , IO_TYPE = = phy_block_type , border_side ) ;
2019-10-07 17:03:15 -05:00
ModuleId module_id = module_manager . add_module ( module_name ) ;
2019-10-07 22:09:54 -05:00
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = module_id ) ;
2019-10-07 17:03:15 -05:00
/* TODO: Add ports to the module */
/* TODO: Print the module definition for the top-level Verilog module of physical block */
print_verilog_module_declaration ( fp , module_manager , module_id ) ;
/* Finish printing ports */
/* Print an empty line a splitter */
fp < < std : : endl ;
/* TODO: instanciate all the sub modules */
for ( int iz = 0 ; iz < phy_block_type - > capacity ; + + iz ) {
}
/* Put an end to the top-level Verilog module of physical block */
print_verilog_module_end ( fp , module_manager . module_name ( module_id ) ) ;
/* Add an empty line as a splitter */
fp < < std : : endl ;
/* Close file handler */
fp . close ( ) ;
/* Add fname to the linked list */
2019-10-07 18:39:00 -05:00
/* TODO: add it when it is ready
2019-10-07 17:03:15 -05:00
grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist ( grid_verilog_subckt_file_path_head , verilog_fname . c_str ( ) ) ;
*/
}
/*****************************************************************************
* Create logic block modules in a compact way :
* 1. Only one module for each I / O on each border side ( IO_TYPE )
* 2. Only one module for each CLB ( FILL_TYPE )
* 3. Only one module for each heterogeneous block
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void print_verilog_grids ( ModuleManager & module_manager ,
const CircuitLibrary & circuit_lib ,
const MuxLibrary & mux_lib ,
t_sram_orgz_info * cur_sram_orgz_info ,
const std : : string & verilog_dir ,
const std : : string & subckt_dir ,
const bool & is_explicit_mapping ) {
/* Enumerate the types, dump one Verilog module for each */
for ( int itype = 0 ; itype < num_types ; itype + + ) {
if ( EMPTY_TYPE = = & type_descriptors [ itype ] ) {
/* Bypass empty type or NULL */
continue ;
} else if ( IO_TYPE = = & type_descriptors [ itype ] ) {
/* Special for I/O block, generate one module for each border side */
for ( int iside = 0 ; iside < NUM_SIDES ; iside + + ) {
Side side_manager ( iside ) ;
print_verilog_grid ( module_manager , mux_lib , circuit_lib ,
cur_sram_orgz_info ,
verilog_dir , subckt_dir ,
& type_descriptors [ itype ] ,
side_manager . get_side ( ) ,
is_explicit_mapping ) ;
}
continue ;
} else if ( FILL_TYPE = = & type_descriptors [ itype ] ) {
/* For CLB */
print_verilog_grid ( module_manager , mux_lib , circuit_lib ,
cur_sram_orgz_info ,
verilog_dir , subckt_dir ,
& type_descriptors [ itype ] ,
NUM_SIDES ,
is_explicit_mapping ) ;
continue ;
} else {
/* For heterogenenous blocks */
print_verilog_grid ( module_manager , mux_lib , circuit_lib ,
cur_sram_orgz_info ,
verilog_dir , subckt_dir ,
& type_descriptors [ itype ] ,
NUM_SIDES ,
is_explicit_mapping ) ;
}
}
/* Output a header file for all the logic blocks */
vpr_printf ( TIO_MESSAGE_INFO , " Generating header file for grid Verilog modules... \n " ) ;
std : : string grid_verilog_fname ( logic_block_verilog_file_name ) ;
/* TODO: remove .bak when it is ready */
grid_verilog_fname + = " .bak " ;
dump_verilog_subckt_header_file ( grid_verilog_subckt_file_path_head ,
subckt_dir . c_str ( ) ,
grid_verilog_fname . c_str ( ) ) ;
}