x11-xserver-utils/xedit/lisp/mathimp.c

5224 lines
114 KiB
C
Raw Normal View History

/*
* Copyright (c) 2002 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the XFree86 Project shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from the
* XFree86 Project.
*
* Author: Paulo César Pereira de Andrade
*/
/* $XFree86: xc/programs/xedit/lisp/mathimp.c,v 1.14tsi Exp $ */
/*
* Defines
*/
#ifdef __GNUC__
#define CONST __attribute__ ((__const__))
#else
#define CONST /**/
#endif
/* mask for checking overflow on long operations */
#ifdef LONG64
#define FI_MASK 0x4000000000000000L
#define LONGSBITS 63
#else
#define FI_MASK 0x40000000L
#define LONGSBITS 31
#endif
#define N_FIXNUM 1
#define N_BIGNUM 2
#define N_FLONUM 3
#define N_FIXRATIO 4
#define N_BIGRATIO 5
#define NOP_ADD 1
#define NOP_SUB 2
#define NOP_MUL 3
#define NOP_DIV 4
#define NDIVIDE_CEIL 1
#define NDIVIDE_FLOOR 2
#define NDIVIDE_ROUND 3
#define NDIVIDE_TRUNC 4
/* real part from number */
#define NREAL(num) &((num)->real)
#define NRTYPE(num) (num)->real.type
#define NRFI(num) (num)->real.data.fixnum
#define NRBI(num) (num)->real.data.bignum
#define NRFF(num) (num)->real.data.flonum
#define NRFRN(Num) (Num)->real.data.fixratio.num
#define NRFRD(num) (num)->real.data.fixratio.den
#define NRBR(num) (num)->real.data.bigratio
#define NRBRN(num) mpr_num(NRBR(num))
#define NRBRD(num) mpr_den(NRBR(num))
#define NRCLEAR_BI(num) mpi_clear(NRBI(num)); XFREE(NRBI(num))
#define NRCLEAR_BR(num) mpr_clear(NRBR(num)); XFREE(NRBR(num))
/* imag part from number */
#define NIMAG(num) &((num)->imag)
#define NITYPE(num) (num)->imag.type
#define NIFI(num) (num)->imag.data.fixnum
#define NIBI(num) (num)->imag.data.bignum
#define NIFF(num) (num)->imag.data.flonum
#define NIFRN(Num) (Num)->imag.data.fixratio.num
#define NIFRD(num) (num)->imag.data.fixratio.den
#define NIBR(num) (num)->imag.data.bigratio
#define NIBRN(obj) mpr_num(NIBR(obj))
#define NIBRD(obj) mpr_den(NIBR(obj))
/* real number fields */
#define RTYPE(real) (real)->type
#define RFI(real) (real)->data.fixnum
#define RBI(real) (real)->data.bignum
#define RFF(real) (real)->data.flonum
#define RFRN(real) (real)->data.fixratio.num
#define RFRD(real) (real)->data.fixratio.den
#define RBR(real) (real)->data.bigratio
#define RBRN(real) mpr_num(RBR(real))
#define RBRD(real) mpr_den(RBR(real))
#define RINTEGERP(real) \
(RTYPE(real) == N_FIXNUM || RTYPE(real) == N_BIGNUM)
#define RCLEAR_BI(real) mpi_clear(RBI(real)); XFREE(RBI(real))
#define RCLEAR_BR(real) mpr_clear(RBR(real)); XFREE(RBR(real))
/* numeric value from lisp object */
#define OFI(object) FIXNUM_VALUE(object)
#define OII(object) INT_VALUE(object)
#define OBI(object) (object)->data.mp.integer
#define ODF(object) DFLOAT_VALUE(object)
#define OFRN(object) (object)->data.ratio.numerator
#define OFRD(object) (object)->data.ratio.denominator
#define OBR(object) (object)->data.mp.ratio
#define OBRN(object) mpr_num(OBR(object))
#define OBRD(object) mpr_den(OBR(object))
#define OCXR(object) (object)->data.complex.real
#define OCXI(object) (object)->data.complex.imag
#define XALLOC(type) LispMalloc(sizeof(type))
#define XFREE(ptr) LispFree(ptr)
/*
* Types
*/
typedef struct _n_real {
char type;
union {
long fixnum;
mpi *bignum;
double flonum;
struct {
long num;
long den;
} fixratio;
mpr *bigratio;
} data;
} n_real;
typedef struct _n_number {
char complex;
n_real real;
n_real imag;
} n_number;
/*
* Prototypes
*/
static void number_init(void);
static LispObj *number_pi(void);
static void set_real_real(n_real*, n_real*);
static void set_real_object(n_real*, LispObj*);
static void set_number_object(n_number*, LispObj*);
static void clear_real(n_real*);
static void clear_number(n_number*);
static LispObj *make_real_object(n_real*);
static LispObj *make_number_object(n_number*);
static void fatal_error(int);
static void fatal_object_error(LispObj*, int);
static void fatal_builtin_object_error(LispBuiltin*, LispObj*, int);
static double bi_getd(mpi*);
static double br_getd(mpr*);
/* add */
static void add_real_object(n_real*, LispObj*);
static void add_number_object(n_number*, LispObj*);
/* sub */
static void sub_real_object(n_real*, LispObj*);
static void sub_number_object(n_number*, LispObj*);
/* mul */
static void mul_real_object(n_real*, LispObj*);
static void mul_number_object(n_number*, LispObj*);
/* div */
static void div_real_object(n_real*, LispObj*);
static void div_number_object(n_number*, LispObj*);
/* compare */
static int cmp_real_real(n_real*, n_real*);
static int cmp_real_object(n_real*, LispObj*);
#if 0 /* not used */
static int cmp_number_object(n_number*, LispObj*);
#endif
static int cmp_object_object(LispObj*, LispObj*, int);
/* fixnum */
static INLINE int fi_fi_add_overflow(long, long) CONST;
static INLINE int fi_fi_sub_overflow(long, long) CONST;
static INLINE int fi_fi_mul_overflow(long, long) CONST;
/* bignum */
static void rbi_canonicalize(n_real*);
/* ratio */
static void rfr_canonicalize(n_real*);
static void rbr_canonicalize(n_real*);
/* complex */
static void ncx_canonicalize(n_number*);
/* abs */
static void abs_real(n_real*);
static void abs_number(n_number*);
static void nabs_cx(n_number*);
static INLINE void rabs_fi(n_real*);
static INLINE void rabs_bi(n_real*);
static INLINE void rabs_ff(n_real*);
static INLINE void rabs_fr(n_real*);
static INLINE void rabs_br(n_real*);
/* neg */
static void neg_real(n_real*);
static void neg_number(n_number*);
static void rneg_fi(n_real*);
static INLINE void rneg_bi(n_real*);
static INLINE void rneg_ff(n_real*);
static INLINE void rneg_fr(n_real*);
static INLINE void rneg_br(n_real*);
/* sqrt */
static void sqrt_real(n_real*);
static void sqrt_number(n_number*);
static void rsqrt_xi(n_real*);
static void rsqrt_xr(n_real*);
static void rsqrt_ff(n_real*);
static void nsqrt_cx(n_number*);
static void nsqrt_xi(n_number*);
static void nsqrt_ff(n_number*);
static void nsqrt_xr(n_number*);
/* mod */
static void mod_real_real(n_real*, n_real*);
static void mod_real_object(n_real*, LispObj*);
static void rmod_fi_fi(n_real*, long);
static void rmod_fi_bi(n_real*, mpi*);
static void rmod_bi_fi(n_real*, long);
static void rmod_bi_bi(n_real*, mpi*);
/* rem */
static void rem_real_object(n_real*, LispObj*);
static void rrem_fi_fi(n_real*, long);
static void rrem_fi_bi(n_real*, mpi*);
static void rrem_bi_fi(n_real*, long);
static void rrem_bi_bi(n_real*, mpi*);
/* gcd */
static void gcd_real_object(n_real*, LispObj*);
/* and */
static void and_real_object(n_real*, LispObj*);
/* eqv */
static void eqv_real_object(n_real*, LispObj*);
/* ior */
static void ior_real_object(n_real*, LispObj*);
/* not */
static void not_real(n_real*);
/* xor */
static void xor_real_object(n_real*, LispObj*);
/* divide */
static void divide_number_object(n_number*, LispObj*, int, int);
static void ndivide_xi_xi(n_number*, LispObj*, int, int);
static void ndivide_flonum(n_number*, double, double, int, int);
static void ndivide_xi_xr(n_number*, LispObj*, int, int);
static void ndivide_xr_xi(n_number*, LispObj*, int, int);
static void ndivide_xr_xr(n_number*, LispObj*, int, int);
/* real complex */
static void nadd_re_cx(n_number*, LispObj*);
static void nsub_re_cx(n_number*, LispObj*);
static void nmul_re_cx(n_number*, LispObj*);
static void ndiv_re_cx(n_number*, LispObj*);
/* complex real */
static void nadd_cx_re(n_number*, LispObj*);
static void nsub_cx_re(n_number*, LispObj*);
static void nmul_cx_re(n_number*, LispObj*);
static void ndiv_cx_re(n_number*, LispObj*);
/* complex complex */
static void nadd_cx_cx(n_number*, LispObj*);
static void nsub_cx_cx(n_number*, LispObj*);
static void nmul_cx_cx(n_number*, LispObj*);
static void ndiv_cx_cx(n_number*, LispObj*);
static int cmp_cx_cx(LispObj*, LispObj*);
/* flonum flonum */
static void radd_flonum(n_real*, double, double);
static void rsub_flonum(n_real*, double, double);
static void rmul_flonum(n_real*, double, double);
static void rdiv_flonum(n_real*, double, double);
static int cmp_flonum(double, double);
/* fixnum fixnum */
static void rop_fi_fi_bi(n_real*, long, int);
static INLINE void radd_fi_fi(n_real*, long);
static INLINE void rsub_fi_fi(n_real*, long);
static INLINE void rmul_fi_fi(n_real*, long);
static INLINE void rdiv_fi_fi(n_real*, long);
static INLINE int cmp_fi_fi(long, long);
static void ndivide_fi_fi(n_number*, long, int, int);
/* fixnum bignum */
static void rop_fi_bi_xi(n_real*, mpi*, int);
static INLINE void radd_fi_bi(n_real*, mpi*);
static INLINE void rsub_fi_bi(n_real*, mpi*);
static INLINE void rmul_fi_bi(n_real*, mpi*);
static void rdiv_fi_bi(n_real*, mpi*);
static INLINE int cmp_fi_bi(long, mpi*);
/* fixnum fixratio */
static void rop_fi_fr_as_xr(n_real*, long, long, int);
static void rop_fi_fr_md_xr(n_real*, long, long, int);
static INLINE void radd_fi_fr(n_real*, long, long);
static INLINE void rsub_fi_fr(n_real*, long, long);
static INLINE void rmul_fi_fr(n_real*, long, long);
static INLINE void rdiv_fi_fr(n_real*, long, long);
static INLINE int cmp_fi_fr(long, long, long);
/* fixnum bigratio */
static void rop_fi_br_as_xr(n_real*, mpr*, int);
static void rop_fi_br_md_xr(n_real*, mpr*, int);
static INLINE void radd_fi_br(n_real*, mpr*);
static INLINE void rsub_fi_br(n_real*, mpr*);
static INLINE void rmul_fi_br(n_real*, mpr*);
static INLINE void rdiv_fi_br(n_real*, mpr*);
static INLINE int cmp_fi_br(long, mpr*);
/* bignum fixnum */
static INLINE void radd_bi_fi(n_real*, long);
static INLINE void rsub_bi_fi(n_real*, long);
static INLINE void rmul_bi_fi(n_real*, long);
static void rdiv_bi_fi(n_real*, long);
static INLINE int cmp_bi_fi(mpi*, long);
/* bignum bignum */
static INLINE void radd_bi_bi(n_real*, mpi*);
static INLINE void rsub_bi_bi(n_real*, mpi*);
static INLINE void rmul_bi_bi(n_real*, mpi*);
static void rdiv_bi_bi(n_real*, mpi*);
static INLINE int cmp_bi_bi(mpi*, mpi*);
/* bignum fixratio */
static void rop_bi_fr_as_xr(n_real*, long, long, int);
static void rop_bi_fr_md_xr(n_real*, long, long, int);
static INLINE void radd_bi_fr(n_real*, long, long);
static INLINE void rsub_bi_fr(n_real*, long, long);
static INLINE void rmul_bi_fr(n_real*, long, long);
static INLINE void rdiv_bi_fr(n_real*, long, long);
static int cmp_bi_fr(mpi*, long, long);
/* bignum bigratio */
static void rop_bi_br_as_xr(n_real*, mpr*, int);
static void rop_bi_br_md_xr(n_real*, mpr*, int);
static INLINE void radd_bi_br(n_real*, mpr*);
static INLINE void rsub_bi_br(n_real*, mpr*);
static INLINE void rmul_bi_br(n_real*, mpr*);
static INLINE void rdiv_bi_br(n_real*, mpr*);
static int cmp_bi_br(mpi*, mpr*);
/* fixratio fixnum */
static void rop_fr_fi_as_xr(n_real*, long, int);
static void rop_fr_fi_md_xr(n_real*, long, int);
static INLINE void radd_fr_fi(n_real*, long);
static INLINE void rsub_fr_fi(n_real*, long);
static INLINE void rmul_fr_fi(n_real*, long);
static INLINE void rdiv_fr_fi(n_real*, long);
static INLINE int cmp_fr_fi(long, long, long);
/* fixratio bignum */
static void rop_fr_bi_as_xr(n_real*, mpi*, int);
static void rop_fr_bi_md_xr(n_real*, mpi*, int);
static INLINE void radd_fr_bi(n_real*, mpi*);
static INLINE void rsub_fr_bi(n_real*, mpi*);
static INLINE void rmul_fr_bi(n_real*, mpi*);
static INLINE void rdiv_fr_bi(n_real*, mpi*);
static int cmp_fr_bi(long, long, mpi*);
/* fixratio fixratio */
static void rop_fr_fr_as_xr(n_real*, long, long, int);
static void rop_fr_fr_md_xr(n_real*, long, long, int);
static INLINE void radd_fr_fr(n_real*, long, long);
static INLINE void rsub_fr_fr(n_real*, long, long);
static INLINE void rmul_fr_fr(n_real*, long, long);
static INLINE void rdiv_fr_fr(n_real*, long, long);
static INLINE int cmp_fr_fr(long, long, long, long);
/* fixratio bigratio */
static void rop_fr_br_asmd_xr(n_real*, mpr*, int);
static INLINE void radd_fr_br(n_real*, mpr*);
static INLINE void rsub_fr_br(n_real*, mpr*);
static INLINE void rmul_fr_br(n_real*, mpr*);
static INLINE void rdiv_fr_br(n_real*, mpr*);
static int cmp_fr_br(long, long, mpr*);
/* bigratio fixnum */
static void rop_br_fi_asmd_xr(n_real*, long, int);
static INLINE void radd_br_fi(n_real*, long);
static INLINE void rsub_br_fi(n_real*, long);
static INLINE void rmul_br_fi(n_real*, long);
static INLINE void rdiv_br_fi(n_real*, long);
static int cmp_br_fi(mpr*, long);
/* bigratio bignum */
static void rop_br_bi_as_xr(n_real*, mpi*, int);
static INLINE void radd_br_bi(n_real*, mpi*);
static INLINE void rsub_br_bi(n_real*, mpi*);
static INLINE void rmul_br_bi(n_real*, mpi*);
static INLINE void rdiv_br_bi(n_real*, mpi*);
static int cmp_br_bi(mpr*, mpi*);
/* bigratio fixratio */
static void rop_br_fr_asmd_xr(n_real*, long, long, int);
static INLINE void radd_br_fr(n_real*, long, long);
static INLINE void rsub_br_fr(n_real*, long, long);
static INLINE void rmul_br_fr(n_real*, long, long);
static INLINE void rdiv_br_fr(n_real*, long, long);
static int cmp_br_fr(mpr*, long, long);
/* bigratio bigratio */
static INLINE void radd_br_br(n_real*, mpr*);
static INLINE void rsub_br_br(n_real*, mpr*);
static INLINE void rmul_br_br(n_real*, mpr*);
static INLINE void rdiv_br_br(n_real*, mpr*);
static INLINE int cmp_br_br(mpr*, mpr*);
/*
* Initialization
*/
static n_real zero, one, two;
static char *fatal_error_strings[] = {
#define DIVIDE_BY_ZERO 0
"divide by zero",
#define FLOATING_POINT_OVERFLOW 1
"floating point overflow",
#define FLOATING_POINT_EXCEPTION 2
"floating point exception"
};
static char *fatal_object_error_strings[] = {
#define NOT_A_NUMBER 0
"is not a number",
#define NOT_A_REAL_NUMBER 1
"is not a real number",
#define NOT_AN_INTEGER 2
"is not an integer"
};
/*
* Implementation
*/
static void
fatal_error(int num)
{
LispDestroy(fatal_error_strings[num]);
}
static void
fatal_object_error(LispObj *obj, int num)
{
LispDestroy("%s %s", STROBJ(obj), fatal_object_error_strings[num]);
}
static void
fatal_builtin_object_error(LispBuiltin *builtin, LispObj *obj, int num)
{
LispDestroy("%s: %s %s", STRFUN(builtin), STROBJ(obj),
fatal_object_error_strings[num]);
}
static void
number_init(void)
{
zero.type = one.type = two.type = N_FIXNUM;
zero.data.fixnum = 0;
one.data.fixnum = 1;
two.data.fixnum = 2;
}
static double
bi_getd(mpi *bignum)
{
double value = mpi_getd(bignum);
if (!finite(value))
fatal_error(FLOATING_POINT_EXCEPTION);
return (value);
}
static double
br_getd(mpr *bigratio)
{
double value = mpr_getd(bigratio);
if (!finite(value))
fatal_error(FLOATING_POINT_EXCEPTION);
return (value);
}
static LispObj *
number_pi(void)
{
LispObj *result;
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
result = DFLOAT(M_PI);
return (result);
}
static void
set_real_real(n_real *real, n_real *val)
{
switch (RTYPE(real) = RTYPE(val)) {
case N_FIXNUM:
RFI(real) = RFI(val);
break;
case N_BIGNUM:
RBI(real) = XALLOC(mpi);
mpi_init(RBI(real));
mpi_set(RBI(real), RBI(val));
break;
case N_FLONUM:
RFF(real) = RFF(val);
break;
case N_FIXRATIO:
RFRN(real) = RFRN(val);
RFRD(real) = RFRD(val);
break;
case N_BIGRATIO:
RBR(real) = XALLOC(mpr);
mpr_init(RBR(real));
mpr_set(RBR(real), RBR(val));
break;
}
}
static void
set_real_object(n_real *real, LispObj *obj)
{
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
RTYPE(real) = N_FIXNUM;
RFI(real) = OFI(obj);
break;
case LispInteger_t:
RTYPE(real) = N_FIXNUM;
RFI(real) = OII(obj);
break;
case LispBignum_t:
RTYPE(real) = N_BIGNUM;
RBI(real) = XALLOC(mpi);
mpi_init(RBI(real));
mpi_set(RBI(real), OBI(obj));
break;
case LispDFloat_t:
RTYPE(real) = N_FLONUM;
RFF(real) = ODF(obj);
break;
case LispRatio_t:
RTYPE(real) = N_FIXRATIO;
RFRN(real) = OFRN(obj);
RFRD(real) = OFRD(obj);
break;
case LispBigratio_t:
RTYPE(real) = N_BIGRATIO;
RBR(real) = XALLOC(mpr);
mpr_init(RBR(real));
mpr_set(RBR(real), OBR(obj));
break;
default:
fatal_object_error(obj, NOT_A_REAL_NUMBER);
break;
}
}
static void
set_number_object(n_number *num, LispObj *obj)
{
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
num->complex = 0;
NRTYPE(num) = N_FIXNUM;
NRFI(num) = OFI(obj);
break;
case LispInteger_t:
num->complex = 0;
NRTYPE(num) = N_FIXNUM;
NRFI(num) = OII(obj);
break;
case LispBignum_t:
num->complex = 0;
NRTYPE(num) = N_BIGNUM;
NRBI(num) = XALLOC(mpi);
mpi_init(NRBI(num));
mpi_set(NRBI(num), OBI(obj));
break;
case LispDFloat_t:
num->complex = 0;
NRTYPE(num) = N_FLONUM;
NRFF(num) = ODF(obj);
break;
case LispRatio_t:
num->complex = 0;
NRTYPE(num) = N_FIXRATIO;
NRFRN(num) = OFRN(obj);
NRFRD(num) = OFRD(obj);
break;
case LispBigratio_t:
num->complex = 0;
NRTYPE(num) = N_BIGRATIO;
NRBR(num) = XALLOC(mpr);
mpr_init(NRBR(num));
mpr_set(NRBR(num), OBR(obj));
break;
case LispComplex_t:
num->complex = 1;
set_real_object(NREAL(num), OCXR(obj));
set_real_object(NIMAG(num), OCXI(obj));
break;
default:
fatal_object_error(obj, NOT_A_NUMBER);
break;
}
}
static void
clear_real(n_real *real)
{
if (RTYPE(real) == N_BIGNUM) {
mpi_clear(RBI(real));
XFREE(RBI(real));
}
else if (RTYPE(real) == N_BIGRATIO) {
mpr_clear(RBR(real));
XFREE(RBR(real));
}
}
static void
clear_number(n_number *num)
{
clear_real(NREAL(num));
if (num->complex)
clear_real(NIMAG(num));
}
static LispObj *
make_real_object(n_real *real)
{
LispObj *obj;
switch (RTYPE(real)) {
case N_FIXNUM:
if (RFI(real) > MOST_POSITIVE_FIXNUM ||
RFI(real) < MOST_NEGATIVE_FIXNUM) {
obj = LispNew(NIL, NIL);
obj->type = LispInteger_t;
OII(obj) = RFI(real);
}
else
obj = FIXNUM(RFI(real));
break;
case N_BIGNUM:
obj = BIGNUM(RBI(real));
break;
case N_FLONUM:
obj = DFLOAT(RFF(real));
break;
case N_FIXRATIO:
obj = LispNew(NIL, NIL);
obj->type = LispRatio_t;
OFRN(obj) = RFRN(real);
OFRD(obj) = RFRD(real);
break;
case N_BIGRATIO:
obj = BIGRATIO(RBR(real));
break;
default:
obj = NIL;
break;
}
return (obj);
}
static LispObj *
make_number_object(n_number *num)
{
LispObj *obj;
if (num->complex) {
GC_ENTER();
obj = LispNew(NIL, NIL);
GC_PROTECT(obj);
OCXI(obj) = NIL;
obj->type = LispComplex_t;
OCXR(obj) = make_real_object(NREAL(num));
OCXI(obj) = make_real_object(NIMAG(num));
GC_LEAVE();
}
else {
switch (NRTYPE(num)) {
case N_FIXNUM:
if (NRFI(num) > MOST_POSITIVE_FIXNUM ||
NRFI(num) < MOST_NEGATIVE_FIXNUM) {
obj = LispNew(NIL, NIL);
obj->type = LispInteger_t;
OII(obj) = NRFI(num);
}
else
obj = FIXNUM(NRFI(num));
break;
case N_BIGNUM:
obj = BIGNUM(NRBI(num));
break;
case N_FLONUM:
obj = DFLOAT(NRFF(num));
break;
case N_FIXRATIO:
obj = LispNew(NIL, NIL);
obj->type = LispRatio_t;
OFRN(obj) = NRFRN(num);
OFRD(obj) = NRFRD(num);
break;
case N_BIGRATIO:
obj = BIGRATIO(NRBR(num));
break;
default:
obj = NIL;
break;
}
}
return (obj);
}
#define DEFOP_REAL_REAL(OP) \
OP##_real_real(n_real *real, n_real *val) \
{ \
switch (RTYPE(real)) { \
case N_FIXNUM: \
switch (RTYPE(val)) { \
case N_FIXNUM: \
r##OP##_fi_fi(real, RFI(val)); \
break; \
case N_BIGNUM: \
r##OP##_fi_bi(real, RBI(val)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, (double)RFI(real), RFF(val)); \
break; \
case N_FIXRATIO: \
r##OP##_fi_fr(real, RFRN(val), RFRD(val)); \
break; \
case N_BIGRATIO: \
r##OP##_fi_br(real, RBR(val)); \
break; \
} \
break; \
case N_BIGNUM: \
switch (RTYPE(val)) { \
case N_FIXNUM: \
r##OP##_bi_fi(real, RFI(val)); \
break; \
case N_BIGNUM: \
r##OP##_bi_bi(real, RBI(val)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, bi_getd(RBI(real)), RFF(val)); \
break; \
case N_FIXRATIO: \
r##OP##_bi_fr(real, RFRN(val), RFRD(val)); \
break; \
case N_BIGRATIO: \
r##OP##_bi_br(real, RBR(val)); \
break; \
} \
break; \
case N_FLONUM: \
switch (RTYPE(val)) { \
case N_FIXNUM: \
r##OP##_flonum(real, RFF(real), (double)RFI(val)); \
break; \
case N_BIGNUM: \
r##OP##_flonum(real, RFF(real), bi_getd(RBI(val))); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), RFF(val)); \
break; \
case N_FIXRATIO: \
r##OP##_flonum(real, RFF(real), \
(double)RFRN(val) / (double)RFRD(val));\
break; \
case N_BIGRATIO: \
r##OP##_flonum(real, RFF(real), br_getd(RBR(val))); \
break; \
} \
break; \
case N_FIXRATIO: \
switch (RTYPE(val)) { \
case N_FIXNUM: \
r##OP##_fr_fi(real, RFI(val)); \
break; \
case N_BIGNUM: \
r##OP##_fr_bi(real, RBI(val)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, \
(double)RFRN(real) / (double)RFRD(real),\
RFF(val)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fr(real, RFRN(val), RFRD(val)); \
break; \
case N_BIGRATIO: \
r##OP##_fr_br(real, RBR(val)); \
break; \
} \
break; \
case N_BIGRATIO: \
switch (RTYPE(val)) { \
case N_FIXNUM: \
r##OP##_br_fi(real, RFI(val)); \
break; \
case N_BIGNUM: \
r##OP##_br_bi(real, RBI(val)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, br_getd(RBR(real)), RFF(val)); \
break; \
case N_FIXRATIO: \
r##OP##_br_fr(real, RFRN(val), RFRD(val)); \
break; \
case N_BIGRATIO: \
r##OP##_br_br(real, RBR(val)); \
break; \
} \
break; \
} \
}
static void
DEFOP_REAL_REAL(add)
static void
DEFOP_REAL_REAL(sub)
static void
DEFOP_REAL_REAL(div)
static void
DEFOP_REAL_REAL(mul)
#define DEFOP_REAL_OBJECT(OP) \
OP##_real_object(n_real *real, LispObj *obj) \
{ \
switch (OBJECT_TYPE(obj)) { \
case LispFixnum_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_fi_fi(real, OFI(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_fi(real, OFI(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), (double)OFI(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fi(real, OFI(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_fi(real, OFI(obj)); \
break; \
} \
break; \
case LispInteger_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_fi_fi(real, OII(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_fi(real, OII(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), (double)OII(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fi(real, OII(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_fi(real, OII(obj)); \
break; \
} \
break; \
case LispBignum_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_fi_bi(real, OBI(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_bi(real, OBI(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), bi_getd(OBI(obj))); \
break; \
case N_FIXRATIO: \
r##OP##_fr_bi(real, OBI(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_bi(real, OBI(obj)); \
break; \
} \
break; \
case LispDFloat_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_flonum(real, (double)RFI(real), ODF(obj)); \
break; \
case N_BIGNUM: \
r##OP##_flonum(real, bi_getd(RBI(real)), ODF(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), ODF(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_flonum(real, \
(double)RFRN(real) / (double)RFRD(real),\
ODF(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_flonum(real, br_getd(RBR(real)), ODF(obj)); \
break; \
} \
break; \
case LispRatio_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_fi_fr(real, OFRN(obj), OFRD(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_fr(real, OFRN(obj), OFRD(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), \
(double)OFRN(obj) / (double)OFRD(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fr(real, OFRN(obj), OFRD(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_fr(real, OFRN(obj), OFRD(obj)); \
break; \
} \
break; \
case LispBigratio_t: \
switch (RTYPE(real)) { \
case N_FIXNUM: \
r##OP##_fi_br(real, OBR(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_br(real, OBR(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(real, RFF(real), br_getd(OBR(obj))); \
break; \
case N_FIXRATIO: \
r##OP##_fr_br(real, OBR(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_br(real, OBR(obj)); \
break; \
} \
break; \
default: \
fatal_object_error(obj, NOT_A_REAL_NUMBER); \
break; \
} \
}
static void
DEFOP_REAL_OBJECT(add)
static void
DEFOP_REAL_OBJECT(sub)
static void
DEFOP_REAL_OBJECT(div)
static void
DEFOP_REAL_OBJECT(mul)
#define DEFOP_NUMBER_OBJECT(OP) \
OP##_number_object(n_number *num, LispObj *obj) \
{ \
if (num->complex) { \
switch (OBJECT_TYPE(obj)) { \
case LispFixnum_t: \
case LispInteger_t: \
case LispBignum_t: \
case LispDFloat_t: \
case LispRatio_t: \
case LispBigratio_t: \
n##OP##_cx_re(num, obj); \
break; \
case LispComplex_t: \
n##OP##_cx_cx(num, obj); \
break; \
default: \
fatal_object_error(obj, NOT_A_NUMBER); \
break; \
} \
} \
else { \
switch (OBJECT_TYPE(obj)) { \
case LispFixnum_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_fi_fi(NREAL(num), OFI(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_fi(NREAL(num), OFI(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), \
(double)OFI(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fi(NREAL(num), OFI(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_fi(NREAL(num), OFI(obj)); \
break; \
} \
break; \
case LispInteger_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_fi_fi(NREAL(num), OII(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_fi(NREAL(num), OII(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), \
(double)OII(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fi(NREAL(num), OII(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_fi(NREAL(num), OII(obj)); \
break; \
} \
break; \
case LispBignum_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_fi_bi(NREAL(num), OBI(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_bi(NREAL(num), OBI(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), \
bi_getd(OBI(obj))); \
break; \
case N_FIXRATIO: \
r##OP##_fr_bi(NREAL(num), OBI(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_bi(NREAL(num), OBI(obj)); \
break; \
} \
break; \
case LispDFloat_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_flonum(NREAL(num), (double)NRFI(num), \
ODF(obj)); \
break; \
case N_BIGNUM: \
r##OP##_flonum(NREAL(num), bi_getd(NRBI(num)), \
ODF(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), ODF(obj));\
break; \
case N_FIXRATIO: \
r##OP##_flonum(NREAL(num), \
(double)NRFRN(num) / \
(double)NRFRD(num), \
ODF(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_flonum(NREAL(num), br_getd(NRBR(num)), \
ODF(obj)); \
break; \
} \
break; \
case LispRatio_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_fi_fr(NREAL(num), OFRN(obj), OFRD(obj));\
break; \
case N_BIGNUM: \
r##OP##_bi_fr(NREAL(num), OFRN(obj), OFRD(obj));\
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), \
(double)OFRN(obj) / \
(double)OFRD(obj)); \
break; \
case N_FIXRATIO: \
r##OP##_fr_fr(NREAL(num), OFRN(obj), OFRD(obj));\
break; \
case N_BIGRATIO: \
r##OP##_br_fr(NREAL(num), OFRN(obj), OFRD(obj));\
break; \
} \
break; \
case LispBigratio_t: \
switch (NRTYPE(num)) { \
case N_FIXNUM: \
r##OP##_fi_br(NREAL(num), OBR(obj)); \
break; \
case N_BIGNUM: \
r##OP##_bi_br(NREAL(num), OBR(obj)); \
break; \
case N_FLONUM: \
r##OP##_flonum(NREAL(num), NRFF(num), \
br_getd(OBR(obj))); \
break; \
case N_FIXRATIO: \
r##OP##_fr_br(NREAL(num), OBR(obj)); \
break; \
case N_BIGRATIO: \
r##OP##_br_br(NREAL(num), OBR(obj)); \
break; \
} \
break; \
case LispComplex_t: \
n##OP##_re_cx(num, obj); \
break; \
default: \
fatal_object_error(obj, NOT_A_NUMBER); \
break; \
} \
} \
}
static void
DEFOP_NUMBER_OBJECT(add)
static void
DEFOP_NUMBER_OBJECT(sub)
static void
DEFOP_NUMBER_OBJECT(div)
static void
DEFOP_NUMBER_OBJECT(mul)
/************************************************************************
* ABS
************************************************************************/
static void
abs_real(n_real *real)
{
switch (RTYPE(real)) {
case N_FIXNUM: rabs_fi(real); break;
case N_BIGNUM: rabs_bi(real); break;
case N_FLONUM: rabs_ff(real); break;
case N_FIXRATIO: rabs_fr(real); break;
case N_BIGRATIO: rabs_br(real); break;
}
}
static void
abs_number(n_number *num)
{
if (num->complex)
nabs_cx(num);
else {
switch (NRTYPE(num)) {
case N_FIXNUM: rabs_fi(NREAL(num)); break;
case N_BIGNUM: rabs_bi(NREAL(num)); break;
case N_FLONUM: rabs_ff(NREAL(num)); break;
case N_FIXRATIO: rabs_fr(NREAL(num)); break;
case N_BIGRATIO: rabs_br(NREAL(num)); break;
}
}
}
static void
nabs_cx(n_number *num)
{
n_real temp;
abs_real(NREAL(num));
abs_real(NIMAG(num));
if (cmp_real_real(NREAL(num), NIMAG(num)) < 0) {
memcpy(&temp, NIMAG(num), sizeof(n_real));
memcpy(NIMAG(num), NREAL(num), sizeof(n_real));
memcpy(NREAL(num), &temp, sizeof(n_real));
}
if (cmp_real_real(NIMAG(num), &zero) == 0) {
num->complex = 0;
if (NITYPE(num) == N_FLONUM) {
/* change number type */
temp.type = N_FLONUM;
temp.data.flonum = 1.0;
mul_real_real(NREAL(num), &temp);
}
else
clear_real(NIMAG(num));
}
else {
div_real_real(NIMAG(num), NREAL(num));
set_real_real(&temp, NIMAG(num));
mul_real_real(NIMAG(num), &temp);
clear_real(&temp);
add_real_real(NIMAG(num), &one);
sqrt_real(NIMAG(num));
mul_real_real(NIMAG(num), NREAL(num));
clear_real(NREAL(num));
memcpy(NREAL(num), NIMAG(num), sizeof(n_real));
num->complex = 0;
}
}
static INLINE void
rabs_fi(n_real *real)
{
if (RFI(real) < 0)
rneg_fi(real);
}
static INLINE void
rabs_bi(n_real *real)
{
if (mpi_cmpi(RBI(real), 0) < 0)
mpi_neg(RBI(real), RBI(real));
}
static INLINE void
rabs_ff(n_real *real)
{
if (RFF(real) < 0.0)
RFF(real) = -RFF(real);
}
static INLINE void
rabs_fr(n_real *real)
{
if (RFRN(real) < 0)
rneg_fr(real);
}
static INLINE void
rabs_br(n_real *real)
{
if (mpi_cmpi(RBRN(real), 0) < 0)
mpi_neg(RBRN(real), RBRN(real));
}
/************************************************************************
* NEG
************************************************************************/
static void
neg_real(n_real *real)
{
switch (RTYPE(real)) {
case N_FIXNUM: rneg_fi(real); break;
case N_BIGNUM: rneg_bi(real); break;
case N_FLONUM: rneg_ff(real); break;
case N_FIXRATIO: rneg_fr(real); break;
case N_BIGRATIO: rneg_br(real); break;
}
}
static void
neg_number(n_number *num)
{
if (num->complex) {
neg_real(NREAL(num));
neg_real(NIMAG(num));
}
else {
switch (NRTYPE(num)) {
case N_FIXNUM: rneg_fi(NREAL(num)); break;
case N_BIGNUM: rneg_bi(NREAL(num)); break;
case N_FLONUM: rneg_ff(NREAL(num)); break;
case N_FIXRATIO: rneg_fr(NREAL(num)); break;
case N_BIGRATIO: rneg_br(NREAL(num)); break;
}
}
}
static void
rneg_fi(n_real *real)
{
if (RFI(real) == MINSLONG) {
mpi *bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_neg(bigi, bigi);
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
}
else
RFI(real) = -RFI(real);
}
static INLINE void
rneg_bi(n_real *real)
{
mpi_neg(RBI(real), RBI(real));
}
static INLINE void
rneg_ff(n_real *real)
{
RFF(real) = -RFF(real);
}
static void
rneg_fr(n_real *real)
{
if (RFRN(real) == MINSLONG) {
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, RFRN(real), RFRD(real));
mpi_neg(mpr_num(bigr), mpr_num(bigr));
RTYPE(real) = N_BIGRATIO;
RBR(real) = bigr;
}
else
RFRN(real) = -RFRN(real);
}
static INLINE void
rneg_br(n_real *real)
{
mpi_neg(RBRN(real), RBRN(real));
}
/************************************************************************
* SQRT
************************************************************************/
static void
sqrt_real(n_real *real)
{
switch (RTYPE(real)) {
case N_FIXNUM:
case N_BIGNUM:
rsqrt_xi(real);
break;
case N_FLONUM:
rsqrt_ff(real);
break;
case N_FIXRATIO:
case N_BIGRATIO:
rsqrt_xr(real);
break;
}
}
static void
sqrt_number(n_number *num)
{
if (num->complex)
nsqrt_cx(num);
else {
switch (NRTYPE(num)) {
case N_FIXNUM:
case N_BIGNUM:
nsqrt_xi(num);
break;
case N_FLONUM:
nsqrt_ff(num);
break;
case N_FIXRATIO:
case N_BIGRATIO:
nsqrt_xr(num);
break;
}
}
}
static void
rsqrt_xi(n_real *real)
{
int exact;
mpi bignum;
if (cmp_real_real(real, &zero) < 0)
fatal_error(FLOATING_POINT_EXCEPTION);
mpi_init(&bignum);
if (RTYPE(real) == N_BIGNUM)
exact = mpi_sqrt(&bignum, RBI(real));
else {
mpi tmp;
mpi_init(&tmp);
mpi_seti(&tmp, RFI(real));
exact = mpi_sqrt(&bignum, &tmp);
mpi_clear(&tmp);
}
if (exact) {
if (RTYPE(real) == N_BIGNUM) {
mpi_set(RBI(real), &bignum);
rbi_canonicalize(real);
}
else
RFI(real) = mpi_geti(&bignum);
}
else {
double value;
if (RTYPE(real) == N_BIGNUM) {
value = bi_getd(RBI(real));
RCLEAR_BI(real);
}
else
value = (double)RFI(real);
value = sqrt(value);
RTYPE(real) = N_FLONUM;
RFF(real) = value;
}
mpi_clear(&bignum);
}
static void
rsqrt_xr(n_real *real)
{
n_real num, den;
if (cmp_real_real(real, &zero) < 0)
fatal_error(FLOATING_POINT_EXCEPTION);
if (RTYPE(real) == N_FIXRATIO) {
num.type = den.type = N_FIXNUM;
num.data.fixnum = RFRN(real);
den.data.fixnum = RFRD(real);
}
else {
mpi *bignum;
if (mpi_fiti(RBRN(real))) {
num.type = N_FIXNUM;
num.data.fixnum = mpi_geti(RBRN(real));
}
else {
bignum = XALLOC(mpi);
mpi_init(bignum);
mpi_set(bignum, RBRN(real));
num.type = N_BIGNUM;
num.data.bignum = bignum;
}
if (mpi_fiti(RBRD(real))) {
den.type = N_FIXNUM;
den.data.fixnum = mpi_geti(RBRD(real));
}
else {
bignum = XALLOC(mpi);
mpi_init(bignum);
mpi_set(bignum, RBRD(real));
den.type = N_BIGNUM;
den.data.bignum = bignum;
}
}
rsqrt_xi(&num);
rsqrt_xi(&den);
clear_real(real);
memcpy(real, &num, sizeof(n_real));
div_real_real(real, &den);
clear_real(&den);
}
static void
rsqrt_ff(n_real *real)
{
if (RFF(real) < 0.0)
fatal_error(FLOATING_POINT_EXCEPTION);
RFF(real) = sqrt(RFF(real));
}
static void
nsqrt_cx(n_number *num)
{
n_number mag;
n_real *real, *imag;
real = &(mag.real);
imag = &(mag.imag);
set_real_real(real, NREAL(num));
set_real_real(imag, NIMAG(num));
mag.complex = 1;
nabs_cx(&mag); /* this will free the imag part data */
if (cmp_real_real(real, &zero) == 0) {
clear_number(num);
memcpy(NREAL(num), real, sizeof(n_real));
clear_real(real);
num->complex = 0;
return;
}
else if (cmp_real_real(NREAL(num), &zero) > 0) {
/* R = sqrt((mag + Ra) / 2) */
add_real_real(NREAL(num), real);
clear_real(real);
div_real_real(NREAL(num), &two);
sqrt_real(NREAL(num));
/* I = Ia / R / 2 */
div_real_real(NIMAG(num), NREAL(num));
div_real_real(NIMAG(num), &two);
}
else {
/* remember old imag part */
memcpy(imag, NIMAG(num), sizeof(n_real));
/* I = sqrt((mag - Ra) / 2) */
memcpy(NIMAG(num), real, sizeof(n_real));
sub_real_real(NIMAG(num), NREAL(num));
div_real_real(NIMAG(num), &two);
sqrt_real(NIMAG(num));
if (cmp_real_real(imag, &zero) < 0)
neg_real(NIMAG(num));
/* R = Ia / I / 2 */
clear_real(NREAL(num));
/* start with old imag part */
memcpy(NREAL(num), imag, sizeof(n_real));
div_real_real(NREAL(num), NIMAG(num));
div_real_real(NREAL(num), &two);
}
ncx_canonicalize(num);
}
static void
nsqrt_xi(n_number *num)
{
if (cmp_real_real(NREAL(num), &zero) < 0) {
memcpy(NIMAG(num), NREAL(num), sizeof(n_real));
neg_real(NIMAG(num));
rsqrt_xi(NIMAG(num));
NRTYPE(num) = N_FIXNUM;
NRFI(num) = 0;
num->complex = 1;
}
else
rsqrt_xi(NREAL(num));
}
static void
nsqrt_ff(n_number *num)
{
double value;
if (NRFF(num) < 0.0) {
value = sqrt(-NRFF(num));
NITYPE(num) = N_FLONUM;
NIFF(num) = value;
NRTYPE(num) = N_FIXNUM;
NRFI(num) = 0;
num->complex = 1;
}
else {
value = sqrt(NRFF(num));
NRFF(num) = value;
}
}
static void
nsqrt_xr(n_number *num)
{
if (cmp_real_real(NREAL(num), &zero) < 0) {
memcpy(NIMAG(num), NREAL(num), sizeof(n_real));
neg_real(NIMAG(num));
rsqrt_xr(NIMAG(num));
NRTYPE(num) = N_FIXNUM;
NRFI(num) = 0;
num->complex = 1;
}
else
rsqrt_xr(NREAL(num));
}
/************************************************************************
* MOD
************************************************************************/
static void
mod_real_real(n_real *real, n_real *val)
{
/* Assume both operands are integers */
switch (RTYPE(real)) {
case N_FIXNUM:
switch (RTYPE(val)) {
case N_FIXNUM:
rmod_fi_fi(real, RFI(val));
break;
case N_BIGNUM:
rmod_fi_bi(real, RBI(val));
break;
}
break;
case N_BIGNUM:
switch (RTYPE(val)) {
case N_FIXNUM:
rmod_bi_fi(real, RFI(val));
break;
case N_BIGNUM:
rmod_bi_bi(real, RBI(val));
break;
}
break;
}
}
static void
mod_real_object(n_real *real, LispObj *obj)
{
switch (RTYPE(real)) {
case N_FIXNUM:
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
rmod_fi_fi(real, OFI(obj));
return;
case LispInteger_t:
rmod_fi_fi(real, OII(obj));
return;
case LispBignum_t:
rmod_fi_bi(real, OBI(obj));
return;
default:
break;
}
break;
case N_BIGNUM:
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
rmod_bi_fi(real, OFI(obj));
return;
case LispInteger_t:
rmod_bi_fi(real, OII(obj));
return;
case LispBignum_t:
rmod_bi_bi(real, OBI(obj));
return;
default:
break;
}
break;
/* Assume the n_real object is an integer */
}
fatal_object_error(obj, NOT_AN_INTEGER);
}
static void
rmod_fi_fi(n_real *real, long fi)
{
if (fi == 0)
fatal_error(DIVIDE_BY_ZERO);
if ((RFI(real) < 0) ^ (fi < 0))
RFI(real) = (RFI(real) % fi) + fi;
else if (RFI(real) == MINSLONG || fi == MINSLONG) {
mpi bignum;
mpi_init(&bignum);
mpi_seti(&bignum, RFI(real));
RFI(real) = mpi_modi(&bignum, fi);
mpi_clear(&bignum);
}
else
RFI(real) = RFI(real) % fi;
}
static void
rmod_fi_bi(n_real *real, mpi *bignum)
{
mpi *bigi;
if (mpi_cmpi(bignum, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_mod(bigi, bigi, bignum);
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
}
static void
rmod_bi_fi(n_real *real, long fi)
{
mpi iop;
if (fi == 0)
fatal_error(DIVIDE_BY_ZERO);
mpi_init(&iop);
mpi_seti(&iop, fi);
mpi_mod(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
}
static void
rmod_bi_bi(n_real *real, mpi *bignum)
{
if (mpi_cmpi(bignum, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
mpi_mod(RBI(real), RBI(real), bignum);
rbi_canonicalize(real);
}
/************************************************************************
* REM
************************************************************************/
static void
rem_real_object(n_real *real, LispObj *obj)
{
switch (RTYPE(real)) {
case N_FIXNUM:
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
rrem_fi_fi(real, OFI(obj));
return;
case LispInteger_t:
rrem_fi_fi(real, OII(obj));
return;
case LispBignum_t:
rrem_fi_bi(real, OBI(obj));
return;
default:
break;
}
break;
case N_BIGNUM:
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
rrem_bi_fi(real, OFI(obj));
return;
case LispInteger_t:
rrem_bi_fi(real, OII(obj));
return;
case LispBignum_t:
rrem_bi_bi(real, OBI(obj));
return;
default:
break;
}
break;
/* Assume the n_real object is an integer */
}
fatal_object_error(obj, NOT_AN_INTEGER);
}
static void
rrem_fi_fi(n_real *real, long fi)
{
if (fi == 0)
fatal_error(DIVIDE_BY_ZERO);
if (RFI(real) == MINSLONG || fi == MINSLONG) {
mpi bignum;
mpi_init(&bignum);
mpi_seti(&bignum, RFI(real));
RFI(real) = mpi_remi(&bignum, fi);
mpi_clear(&bignum);
}
else
RFI(real) = RFI(real) % fi;
}
static void
rrem_fi_bi(n_real *real, mpi *bignum)
{
mpi *bigi;
if (mpi_cmpi(bignum, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_rem(bigi, bigi, bignum);
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
}
static void
rrem_bi_fi(n_real *real, long fi)
{
mpi iop;
if (fi == 0)
fatal_error(DIVIDE_BY_ZERO);
mpi_init(&iop);
mpi_seti(&iop, fi);
mpi_rem(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
}
static void
rrem_bi_bi(n_real *real, mpi *bignum)
{
if (mpi_cmpi(bignum, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
mpi_rem(RBI(real), RBI(real), bignum);
rbi_canonicalize(real);
}
/************************************************************************
* GCD
************************************************************************/
static void
gcd_real_object(n_real *real, LispObj *obj)
{
if (!INTEGERP(obj))
fatal_object_error(obj, NOT_AN_INTEGER);
/* check for zero operand */
if (cmp_real_real(real, &zero) == 0)
set_real_object(real, obj);
else if (cmp_real_object(&zero, obj) != 0) {
n_real rest, temp;
set_real_object(&rest, obj);
for (;;) {
mod_real_real(&rest, real);
if (cmp_real_real(&rest, &zero) == 0)
break;
memcpy(&temp, real, sizeof(n_real));
memcpy(real, &rest, sizeof(n_real));
memcpy(&rest, &temp, sizeof(n_real));
}
clear_real(&rest);
}
}
/************************************************************************
* AND
************************************************************************/
static void
and_real_object(n_real *real, LispObj *obj)
{
mpi *bigi, iop;
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) &= OFI(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OFI(obj));
mpi_and(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispInteger_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) &= OII(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OII(obj));
mpi_and(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispBignum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_and(bigi, bigi, OBI(obj));
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
break;
case N_BIGNUM:
mpi_and(RBI(real), RBI(real), OBI(obj));
rbi_canonicalize(real);
break;
}
break;
default:
fatal_object_error(obj, NOT_AN_INTEGER);
break;
}
}
/************************************************************************
* EQV
************************************************************************/
static void
eqv_real_object(n_real *real, LispObj *obj)
{
mpi *bigi, iop;
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) ^= ~OFI(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OFI(obj));
mpi_com(&iop, &iop);
mpi_xor(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispInteger_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) ^= ~OII(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OII(obj));
mpi_com(&iop, &iop);
mpi_xor(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispBignum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_com(bigi, bigi);
mpi_xor(bigi, bigi, OBI(obj));
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
break;
case N_BIGNUM:
mpi_com(RBI(real), RBI(real));
mpi_xor(RBI(real), RBI(real), OBI(obj));
rbi_canonicalize(real);
break;
}
break;
default:
fatal_object_error(obj, NOT_AN_INTEGER);
break;
}
}
/************************************************************************
* IOR
************************************************************************/
static void
ior_real_object(n_real *real, LispObj *obj)
{
mpi *bigi, iop;
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) |= OFI(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OFI(obj));
mpi_ior(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispInteger_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) |= OII(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OII(obj));
mpi_ior(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispBignum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_ior(bigi, bigi, OBI(obj));
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
break;
case N_BIGNUM:
mpi_ior(RBI(real), RBI(real), OBI(obj));
rbi_canonicalize(real);
break;
}
break;
default:
fatal_object_error(obj, NOT_AN_INTEGER);
break;
}
}
/************************************************************************
* NOT
************************************************************************/
static void
not_real(n_real *real)
{
if (RTYPE(real) == N_FIXNUM)
RFI(real) = ~RFI(real);
else {
mpi_com(RBI(real), RBI(real));
rbi_canonicalize(real);
}
}
/************************************************************************
* XOR
************************************************************************/
static void
xor_real_object(n_real *real, LispObj *obj)
{
mpi *bigi, iop;
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) ^= OFI(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OFI(obj));
mpi_xor(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispInteger_t:
switch (RTYPE(real)) {
case N_FIXNUM:
RFI(real) ^= OII(obj);
break;
case N_BIGNUM:
mpi_init(&iop);
mpi_seti(&iop, OII(obj));
mpi_xor(RBI(real), RBI(real), &iop);
mpi_clear(&iop);
rbi_canonicalize(real);
break;
}
break;
case LispBignum_t:
switch (RTYPE(real)) {
case N_FIXNUM:
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
mpi_xor(bigi, bigi, OBI(obj));
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
rbi_canonicalize(real);
break;
case N_BIGNUM:
mpi_xor(RBI(real), RBI(real), OBI(obj));
rbi_canonicalize(real);
break;
}
break;
default:
fatal_object_error(obj, NOT_AN_INTEGER);
break;
}
}
/************************************************************************
* DIVIDE
************************************************************************/
static void
divide_number_object(n_number *num, LispObj *obj, int fun, int flo)
{
switch (OBJECT_TYPE(obj)) {
case LispFixnum_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
ndivide_fi_fi(num, OFI(obj), fun, flo);
break;
case N_BIGNUM:
ndivide_xi_xi(num, obj, fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num), (double)OFI(obj), fun, flo);
break;
case N_FIXRATIO:
case N_BIGRATIO:
ndivide_xr_xi(num, obj, fun, flo);
break;
}
break;
case LispInteger_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
ndivide_fi_fi(num, OII(obj), fun, flo);
break;
case N_BIGNUM:
ndivide_xi_xi(num, obj, fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num), (double)OII(obj), fun, flo);
break;
case N_FIXRATIO:
case N_BIGRATIO:
ndivide_xr_xi(num, obj, fun, flo);
break;
}
break;
case LispBignum_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
case N_BIGNUM:
ndivide_xi_xi(num, obj, fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num), bi_getd(OBI(obj)),
fun, flo);
break;
case N_FIXRATIO:
case N_BIGRATIO:
ndivide_xr_xi(num, obj, fun, flo);
break;
}
break;
case LispDFloat_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
ndivide_flonum(num, (double)NRFI(num), ODF(obj),
fun, flo);
break;
case N_BIGNUM:
ndivide_flonum(num, bi_getd(NRBI(num)), ODF(obj),
fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num), ODF(obj), fun, flo);
break;
case N_FIXRATIO:
ndivide_flonum(num,
(double)NRFRN(num) / (double)NRFRD(num),
ODF(obj), fun, flo);
break;
case N_BIGRATIO:
ndivide_flonum(num, br_getd(NRBR(num)), ODF(obj),
fun, flo);
break;
}
break;
case LispRatio_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
case N_BIGNUM:
ndivide_xi_xr(num, obj, fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num),
(double)OFRN(obj) / (double)OFRD(obj),
fun, flo);
break;
case N_FIXRATIO:
case N_BIGRATIO:
ndivide_xr_xr(num, obj, fun, flo);
break;
}
break;
case LispBigratio_t:
switch (NRTYPE(num)) {
case N_FIXNUM:
case N_BIGNUM:
ndivide_xi_xr(num, obj, fun, flo);
break;
case N_FLONUM:
ndivide_flonum(num, NRFF(num), br_getd(OBR(obj)),
fun, flo);
break;
case N_FIXRATIO:
case N_BIGRATIO:
ndivide_xr_xr(num, obj, fun, flo);
break;
}
break;
default:
fatal_object_error(obj, NOT_A_REAL_NUMBER);
break;
}
}
/************************************************************************
* COMPARE
************************************************************************/
static int
cmp_real_real(n_real *op1, n_real *op2)
{
switch (RTYPE(op1)) {
case N_FIXNUM:
switch (RTYPE(op2)) {
case N_FIXNUM:
return (cmp_fi_fi(RFI(op1), RFI(op2)));
case N_BIGNUM:
return (cmp_fi_bi(RFI(op1), RBI(op2)));
case N_FLONUM:
return (cmp_flonum((double)RFI(op1), RFF(op2)));
case N_FIXRATIO:
return (cmp_fi_fr(RFI(op1), RFRN(op2), RFRD(op2)));
case N_BIGRATIO:
return (cmp_fi_br(RFI(op1), RBR(op2)));
}
break;
case N_BIGNUM:
switch (RTYPE(op2)) {
case N_FIXNUM:
return (cmp_bi_fi(RBI(op1), RFI(op2)));
case N_BIGNUM:
return (cmp_bi_bi(RBI(op1), RBI(op2)));
case N_FLONUM:
return (cmp_flonum(bi_getd(RBI(op1)), RFF(op2)));
case N_FIXRATIO:
return (cmp_bi_fr(RBI(op1), RFRN(op2), RFRD(op2)));
case N_BIGRATIO:
return (cmp_bi_br(RBI(op1), RBR(op2)));
}
break;
case N_FLONUM:
switch (RTYPE(op2)) {
case N_FIXNUM:
return (cmp_flonum(RFF(op1), (double)RFI(op2)));
case N_BIGNUM:
return (cmp_flonum(RFF(op1), bi_getd(RBI(op2))));
case N_FLONUM:
return (cmp_flonum(RFF(op1), RFF(op2)));
case N_FIXRATIO:
return (cmp_flonum(RFF(op1),
(double)RFRN(op2) / (double)RFRD(op2)));
case N_BIGRATIO:
return (cmp_flonum(RFF(op1), br_getd(RBR(op2))));
}
break;
case N_FIXRATIO:
switch (RTYPE(op2)) {
case N_FIXNUM:
return (cmp_fr_fi(RFRN(op1), RFRD(op1), RFI(op2)));
case N_BIGNUM:
return (cmp_fr_bi(RFRN(op1), RFRD(op1), RBI(op2)));
case N_FLONUM:
return (cmp_flonum((double)RFRN(op1) / (double)RFRD(op1),
RFF(op2)));
case N_FIXRATIO:
return (cmp_fr_fr(RFRN(op1), RFRD(op1),
RFRN(op2), RFRD(op2)));
case N_BIGRATIO:
return (cmp_fr_br(RFRN(op1), RFRD(op1), RBR(op2)));
}
break;
case N_BIGRATIO:
switch (RTYPE(op2)) {
case N_FIXNUM:
return (cmp_br_fi(RBR(op1), RFI(op2)));
case N_BIGNUM:
return (cmp_br_bi(RBR(op1), RBI(op2)));
case N_FLONUM:
return (cmp_flonum(br_getd(RBR(op1)), RFF(op2)));
case N_FIXRATIO:
return (cmp_br_fr(RBR(op1), RFRN(op2), RFRD(op2)));
case N_BIGRATIO:
return (cmp_br_br(RBR(op1), RBR(op2)));
}
}
return (0);
}
static int
cmp_real_object(n_real *op1, LispObj *op2)
{
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fi(RFI(op1), OFI(op2)));
case N_BIGNUM:
return (cmp_bi_fi(RBI(op1), OFI(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1), (double)OFI(op2)));
case N_FIXRATIO:
return (cmp_fr_fi(RFRD(op1), RFRN(op1), OFI(op2)));
case N_BIGRATIO:
return (cmp_br_fi(RBR(op1), OFI(op2)));
}
break;
case LispInteger_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fi(RFI(op1), OII(op2)));
case N_BIGNUM:
return (cmp_bi_fi(RBI(op1), OII(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1), (double)OII(op2)));
case N_FIXRATIO:
return (cmp_fr_fi(RFRD(op1), RFRN(op1), OII(op2)));
case N_BIGRATIO:
return (cmp_br_fi(RBR(op1), OII(op2)));
}
break;
case LispBignum_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_bi(RFI(op1), OBI(op2)));
case N_BIGNUM:
return (cmp_bi_bi(RBI(op1), OBI(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1), bi_getd(OBI(op2))));
case N_FIXRATIO:
return (cmp_fr_bi(RFRD(op1), RFRN(op1), OBI(op2)));
case N_BIGRATIO:
return (cmp_br_bi(RBR(op1), OBI(op2)));
}
break;
case LispDFloat_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_flonum((double)RFI(op1), ODF(op2)));
case N_BIGNUM:
return (cmp_flonum(bi_getd(RBI(op1)), ODF(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1), ODF(op2)));
case N_FIXRATIO:
return (cmp_flonum((double)RFRN(op1) / (double)RFRD(op1),
ODF(op2)));
case N_BIGRATIO:
return (cmp_flonum(br_getd(RBR(op1)), ODF(op2)));
}
break;
case LispRatio_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fr(RFI(op1), OFRN(op2), OFRD(op2)));
case N_BIGNUM:
return (cmp_bi_fr(RBI(op1), OFRN(op2), OFRD(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1),
(double)OFRN(op2) / (double)OFRD(op2)));
case N_FIXRATIO:
return (cmp_fr_fr(RFRN(op1), RFRD(op1),
OFRN(op2), OFRD(op2)));
case N_BIGRATIO:
return (cmp_br_fr(RBR(op1), OFRN(op2), OFRD(op2)));
}
break;
case LispBigratio_t:
switch (RTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_br(RFI(op1), OBR(op2)));
case N_BIGNUM:
return (cmp_bi_br(RBI(op1), OBR(op2)));
case N_FLONUM:
return (cmp_flonum(RFF(op1), br_getd(OBR(op2))));
case N_FIXRATIO:
return (cmp_fr_br(RFRN(op1), RFRD(op1), OBR(op2)));
case N_BIGRATIO:
return (cmp_br_br(RBR(op1), OBR(op2)));
}
break;
default:
fatal_object_error(op2, NOT_A_REAL_NUMBER);
break;
}
return (0);
}
#if 0 /* not used */
static int
cmp_number_object(n_number *op1, LispObj *op2)
{
if (op1->complex) {
if (OBJECT_TYPE(op2) == LispComplex_t) {
if (cmp_real_object(NREAL(op1), OCXR(op2)) == 0)
return (cmp_real_object(NIMAG(op1), OCXI(op2)));
return (1);
}
else if (cmp_real_real(NIMAG(op1), &zero) == 0)
return (cmp_real_object(NREAL(op1), op2));
else
return (1);
}
else {
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fi(NRFI(op1), OFI(op2)));
case N_BIGNUM:
return (cmp_bi_fi(NRBI(op1), OFI(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1), (double)OFI(op2)));
case N_FIXRATIO:
return (cmp_fr_fi(NRFRD(op1), NRFRN(op1), OFI(op2)));
case N_BIGRATIO:
return (cmp_br_fi(NRBR(op1), OFI(op2)));
}
break;
case LispInteger_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fi(NRFI(op1), OII(op2)));
case N_BIGNUM:
return (cmp_bi_fi(NRBI(op1), OII(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1), (double)OII(op2)));
case N_FIXRATIO:
return (cmp_fr_fi(NRFRD(op1), NRFRN(op1), OII(op2)));
case N_BIGRATIO:
return (cmp_br_fi(NRBR(op1), OII(op2)));
}
break;
case LispBignum_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_bi(NRFI(op1), OBI(op2)));
case N_BIGNUM:
return (cmp_bi_bi(NRBI(op1), OBI(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1), bi_getd(OBI(op2))));
case N_FIXRATIO:
return (cmp_fr_bi(NRFRD(op1), NRFRN(op1), OBI(op2)));
case N_BIGRATIO:
return (cmp_br_bi(NRBR(op1), OBI(op2)));
}
break;
case LispDFloat_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_flonum((double)NRFI(op1), ODF(op2)));
case N_BIGNUM:
return (cmp_flonum(bi_getd(NRBI(op1)), ODF(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1), ODF(op2)));
case N_FIXRATIO:
return (cmp_flonum((double)NRFRN(op1) /
(double)NRFRD(op1),
ODF(op2)));
case N_BIGRATIO:
return (cmp_flonum(br_getd(NRBR(op1)), ODF(op2)));
}
break;
case LispRatio_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_fr(NRFI(op1), OFRN(op2), OFRD(op2)));
case N_BIGNUM:
return (cmp_bi_fr(NRBI(op1), OFRN(op2), OFRD(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1),
(double)OFRN(op2) / (double)OFRD(op2)));
case N_FIXRATIO:
return (cmp_fr_fr(NRFRN(op1), NRFRD(op1),
OFRN(op2), OFRD(op2)));
case N_BIGRATIO:
return (cmp_br_fr(NRBR(op1), OFRN(op2), OFRD(op2)));
}
break;
case LispBigratio_t:
switch (NRTYPE(op1)) {
case N_FIXNUM:
return (cmp_fi_br(NRFI(op1), OBR(op2)));
case N_BIGNUM:
return (cmp_bi_br(NRBI(op1), OBR(op2)));
case N_FLONUM:
return (cmp_flonum(NRFF(op1), br_getd(OBR(op2))));
case N_FIXRATIO:
return (cmp_fr_br(NRFRN(op1), NRFRD(op1), OBR(op2)));
case N_BIGRATIO:
return (cmp_br_br(NRBR(op1), OBR(op2)));
}
break;
case LispComplex_t:
if (cmp_real_object(&zero, OCXI(op2)) == 0)
return (cmp_real_object(NREAL(op1), OCXR(op2)));
return (1);
default:
fatal_object_error(op2, NOT_A_NUMBER);
break;
}
}
return (0);
}
#endif
static int
cmp_object_object(LispObj *op1, LispObj *op2, int real)
{
if (OBJECT_TYPE(op1) == LispComplex_t) {
if (real)
fatal_object_error(op1, NOT_A_REAL_NUMBER);
if (OBJECT_TYPE(op2) == LispComplex_t)
return (cmp_cx_cx(op1, op2));
else if (cmp_real_object(&zero, OCXI(op1)) == 0)
return (cmp_object_object(OCXR(op1), op2, real));
return (1);
}
else if (OBJECT_TYPE(op2) == LispComplex_t) {
if (real)
fatal_object_error(op1, NOT_A_REAL_NUMBER);
if (cmp_real_object(&zero, OCXI(op2)) == 0)
return (cmp_object_object(op1, OCXR(op2), real));
return (1);
}
else {
switch (OBJECT_TYPE(op1)) {
case LispFixnum_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_fi_fi(OFI(op1), OFI(op2)));
case LispInteger_t:
return (cmp_fi_fi(OFI(op1), OII(op2)));
case LispBignum_t:
return (cmp_fi_bi(OFI(op1), OBI(op2)));
case LispDFloat_t:
return (cmp_flonum((double)OFI(op1), ODF(op2)));
case LispRatio_t:
return (cmp_fi_fr(OFI(op1),
OFRN(op2), OFRD(op2)));
case LispBigratio_t:
return (cmp_fi_br(OFI(op1), OBR(op2)));
default:
break;
}
break;
case LispInteger_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_fi_fi(OII(op1), OFI(op2)));
case LispInteger_t:
return (cmp_fi_fi(OII(op1), OII(op2)));
case LispBignum_t:
return (cmp_fi_bi(OII(op1), OBI(op2)));
case LispDFloat_t:
return (cmp_flonum((double)OII(op1), ODF(op2)));
case LispRatio_t:
return (cmp_fi_fr(OII(op1),
OFRN(op2), OFRD(op2)));
case LispBigratio_t:
return (cmp_fi_br(OII(op1), OBR(op2)));
default:
break;
}
break;
case LispBignum_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_bi_fi(OBI(op1), OFI(op2)));
case LispInteger_t:
return (cmp_bi_fi(OBI(op1), OII(op2)));
case LispBignum_t:
return (cmp_bi_bi(OBI(op1), OBI(op2)));
case LispDFloat_t:
return (cmp_flonum(bi_getd(OBI(op1)), ODF(op2)));
case LispRatio_t:
return (cmp_bi_fr(OBI(op1),
OFRN(op2), OFRD(op2)));
case LispBigratio_t:
return (cmp_bi_br(OBI(op1), OBR(op2)));
default:
break;
}
break;
case LispDFloat_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_flonum(ODF(op1), (double)OFI(op2)));
case LispInteger_t:
return (cmp_flonum(ODF(op1), (double)OII(op2)));
case LispBignum_t:
return (cmp_flonum(ODF(op1), bi_getd(OBI(op2))));
case LispDFloat_t:
return (cmp_flonum(ODF(op1), ODF(op2)));
break;
case LispRatio_t:
return (cmp_flonum(ODF(op1),
(double)OFRN(op2) /
(double)OFRD(op2)));
case LispBigratio_t:
return (cmp_flonum(ODF(op1), br_getd(OBR(op2))));
default:
break;
}
break;
case LispRatio_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_fr_fi(OFRN(op1), OFRD(op1), OFI(op2)));
case LispInteger_t:
return (cmp_fr_fi(OFRN(op1), OFRD(op1), OII(op2)));
case LispBignum_t:
return (cmp_fr_bi(OFRN(op1), OFRD(op1), OBI(op2)));
case LispDFloat_t:
return (cmp_flonum((double)OFRN(op1) /
(double)OFRD(op1),
ODF(op2)));
case LispRatio_t:
return (cmp_fr_fr(OFRN(op1), OFRD(op1),
OFRN(op2), OFRD(op2)));
case LispBigratio_t:
return (cmp_fr_br(OFRN(op1), OFRD(op1), OBR(op2)));
default:
break;
}
break;
case LispBigratio_t:
switch (OBJECT_TYPE(op2)) {
case LispFixnum_t:
return (cmp_br_fi(OBR(op1), OFI(op2)));
case LispInteger_t:
return (cmp_br_fi(OBR(op1), OII(op2)));
case LispBignum_t:
return (cmp_br_bi(OBR(op1), OBI(op2)));
case LispDFloat_t:
return (cmp_flonum(br_getd(OBR(op1)), ODF(op2)));
case LispRatio_t:
return (cmp_br_fr(OBR(op1), OFRN(op2), OFRD(op2)));
case LispBigratio_t:
return (cmp_br_br(OBR(op1), OBR(op2)));
default:
break;
}
break;
default:
fatal_object_error(op1, NOT_A_NUMBER);
break;
}
}
fatal_object_error(op2, NOT_A_NUMBER);
return (0);
}
/************************************************************************
* FIXNUM
************************************************************************/
/*
* check if op1 + op2 will overflow
*/
static INLINE int
fi_fi_add_overflow(long op1, long op2)
{
long op = op1 + op2;
return (op1 > 0 ? op2 > op : op2 < op);
}
/*
* check if op1 - op2 will overflow
*/
static INLINE int
fi_fi_sub_overflow(long op1, long op2)
{
long op = op1 - op2;
return (((op1 < 0) ^ (op2 < 0)) && ((op < 0) ^ (op1 < 0)));
}
/*
* check if op1 * op2 will overflow
*/
static INLINE int
fi_fi_mul_overflow(long op1, long op2)
{
#ifndef LONG64
double op = (double)op1 * (double)op2;
return (op > 2147483647.0 || op < -2147483648.0);
#else
int shift;
long mask;
if (op1 == 0 || op1 == 1 || op2 == 0 || op2 == 1)
return (0);
if (op1 == MINSLONG || op2 == MINSLONG)
return (1);
if (op1 < 0)
op1 = -op1;
if (op2 < 0)
op2 = -op2;
for (shift = 0, mask = FI_MASK; shift < LONGSBITS; shift++, mask >>= 1)
if (op1 & mask)
break;
++shift;
for (mask = FI_MASK; shift < LONGSBITS; shift++, mask >>= 1)
if (op2 & mask)
break;
return (shift < LONGSBITS);
#endif
}
/************************************************************************
* BIGNUM
************************************************************************/
static void
rbi_canonicalize(n_real *real)
{
if (mpi_fiti(RBI(real))) {
long fi = mpi_geti(RBI(real));
RTYPE(real) = N_FIXNUM;
mpi_clear(RBI(real));
XFREE(RBI(real));
RFI(real) = fi;
}
}
/************************************************************************
* RATIO
************************************************************************/
static void
rfr_canonicalize(n_real *real)
{
long num, numerator, den, denominator, rest;
num = numerator = RFRN(real);
den = denominator = RFRD(real);
if (denominator == 0)
fatal_error(DIVIDE_BY_ZERO);
if (num == MINSLONG || den == MINSLONG) {
mpr *bigratio = XALLOC(mpr);
mpr_init(bigratio);
mpr_seti(bigratio, num, den);
RTYPE(real) = N_BIGRATIO;
RBR(real) = bigratio;
rbr_canonicalize(real);
return;
}
if (num < 0)
num = -num;
else if (num == 0) {
RFI(real) = 0;
RTYPE(real) = N_FIXNUM;
return;
}
for (;;) {
if ((rest = den % num) == 0)
break;
den = num;
num = rest;
}
if (den != 1) {
denominator /= num;
numerator /= num;
}
if (denominator < 0) {
numerator = -numerator;
denominator = -denominator;
}
if (denominator == 1) {
RTYPE(real) = N_FIXNUM;
RFI(real) = numerator;
}
else {
RFRN(real) = numerator;
RFRD(real) = denominator;
}
}
static void
rbr_canonicalize(n_real *real)
{
int fitnum, fitden;
long numerator, denominator;
mpr_canonicalize(RBR(real));
fitnum = mpi_fiti(RBRN(real));
fitden = mpi_fiti(RBRD(real));
if (fitnum && fitden) {
numerator = mpi_geti(RBRN(real));
denominator = mpi_geti(RBRD(real));
mpr_clear(RBR(real));
XFREE(RBR(real));
if (numerator == 0) {
RFI(real) = 0;
RTYPE(real) = N_FIXNUM;
}
else if (denominator == 1) {
RTYPE(real) = N_FIXNUM;
RFI(real) = numerator;
}
else {
RTYPE(real) = N_FIXRATIO;
RFRN(real) = numerator;
RFRD(real) = denominator;
}
}
else if (fitden) {
denominator = mpi_geti(RBRD(real));
if (denominator == 1) {
mpi *bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_set(bigi, RBRN(real));
mpr_clear(RBR(real));
XFREE(RBR(real));
RTYPE(real) = N_BIGNUM;
RBI(real) = bigi;
}
else if (denominator == 0)
fatal_error(DIVIDE_BY_ZERO);
}
}
/************************************************************************
* COMPLEX
************************************************************************/
static void
ncx_canonicalize(n_number *num)
{
if (NITYPE(num) == N_FIXNUM && NIFI(num) == 0)
num->complex = 0;
}
/************************************************************************
* DIVIDE
************************************************************************/
#define NDIVIDE_NOP 0
#define NDIVIDE_ADD 1
#define NDIVIDE_SUB 2
static void
ndivide_fi_fi(n_number *num, long div, int fun, int flo)
{
long quo, rem;
if (NRFI(num) == MINSLONG || div == MINSLONG) {
LispObj integer;
mpi *bignum = XALLOC(mpi);
mpi_init(bignum);
mpi_seti(bignum, NRFI(num));
NRBI(num) = bignum;
NRTYPE(num) = N_BIGNUM;
integer.type = LispInteger_t;
integer.data.integer = div;
ndivide_xi_xi(num, &integer, fun, flo);
return;
}
else {
quo = NRFI(num) / div;
rem = NRFI(num) % div;
}
switch (fun) {
case NDIVIDE_CEIL:
if ((rem < 0 && div < 0) || (rem > 0 && div > 0)) {
++quo;
rem -= div;
}
break;
case NDIVIDE_FLOOR:
if ((rem < 0 && div > 0) || (rem > 0 && div < 0)) {
--quo;
rem += div;
}
break;
case NDIVIDE_ROUND:
if (div > 0) {
if (rem > 0) {
if (rem >= (div + 1) / 2) {
++quo;
rem -= div;
}
}
else {
if (rem <= (-div - 1) / 2) {
--quo;
rem += div;
}
}
}
else {
if (rem > 0) {
if (rem >= (-div + 1) / 2) {
--quo;
rem += div;
}
}
else {
if (rem <= (div - 1) / 2) {
++quo;
rem -= div;
}
}
}
break;
}
NITYPE(num) = N_FIXNUM;
NIFI(num) = rem;
if (flo) {
NRTYPE(num) = N_FLONUM;
NRFF(num) = (double)quo;
}
else
NRFI(num) = quo;
}
static void
ndivide_xi_xi(n_number *num, LispObj *div, int fun, int flo)
{
LispType type = OBJECT_TYPE(div);
int state = NDIVIDE_NOP, dsign, rsign;
mpi *quo, *rem;
quo = XALLOC(mpi);
mpi_init(quo);
if (NRTYPE(num) == N_FIXNUM)
mpi_seti(quo, NRFI(num));
else
mpi_set(quo, NRBI(num));
rem = XALLOC(mpi);
mpi_init(rem);
switch (type) {
case LispFixnum_t:
mpi_seti(rem, OFI(div));
break;
case LispInteger_t:
mpi_seti(rem, OII(div));
break;
default:
mpi_set(rem, OBI(div));
}
dsign = mpi_sgn(rem);
mpi_divqr(quo, rem, quo, rem);
rsign = mpi_sgn(rem);
switch (fun) {
case NDIVIDE_CEIL:
if ((rsign < 0 && dsign < 0) || (rsign > 0 && dsign > 0))
state = NDIVIDE_ADD;
break;
case NDIVIDE_FLOOR:
if ((rsign < 0 && dsign > 0) || (rsign > 0 && dsign < 0))
state = NDIVIDE_SUB;
break;
case NDIVIDE_ROUND: {
mpi test;
mpi_init(&test);
switch (type) {
case LispFixnum_t:
mpi_seti(&test, OFI(div));
break;
case LispInteger_t:
mpi_seti(&test, OII(div));
break;
default:
mpi_set(&test, OBI(div));
}
if (dsign > 0) {
if (rsign > 0) {
mpi_addi(&test, &test, 1);
mpi_divi(&test, &test, 2);
if (mpi_cmp(rem, &test) >= 0)
state = NDIVIDE_ADD;
}
else {
mpi_neg(&test, &test);
mpi_subi(&test, &test, 1);
mpi_divi(&test, &test, 2);
if (mpi_cmp(rem, &test) <= 0)
state = NDIVIDE_SUB;
}
}
else {
if (rsign > 0) {
mpi_neg(&test, &test);
mpi_addi(&test, &test, 1);
mpi_divi(&test, &test, 2);
if (mpi_cmp(rem, &test) >= 0)
state = NDIVIDE_SUB;
}
else {
mpi_subi(&test, &test, 1);
mpi_divi(&test, &test, 2);
if (mpi_cmp(rem, &test) <= 0)
state = NDIVIDE_ADD;
}
}
mpi_clear(&test);
} break;
}
if (state == NDIVIDE_ADD) {
mpi_addi(quo, quo, 1);
switch (type) {
case LispFixnum_t:
mpi_subi(rem, rem, OFI(div));
break;
case LispInteger_t:
mpi_subi(rem, rem, OII(div));
break;
default:
mpi_sub(rem, rem, OBI(div));
}
}
else if (state == NDIVIDE_SUB) {
mpi_subi(quo, quo, 1);
switch (type) {
case LispFixnum_t:
mpi_addi(rem, rem, OFI(div));
break;
case LispInteger_t:
mpi_addi(rem, rem, OII(div));
break;
default:
mpi_add(rem, rem, OBI(div));
}
}
if (mpi_fiti(rem)) {
NITYPE(num) = N_FIXNUM;
NIFI(num) = mpi_geti(rem);
mpi_clear(rem);
XFREE(rem);
}
else {
NITYPE(num) = N_BIGNUM;
NIBI(num) = rem;
}
clear_real(NREAL(num));
if (flo) {
double dval = bi_getd(quo);
mpi_clear(quo);
XFREE(quo);
NRTYPE(num) = N_FLONUM;
NRFF(num) = dval;
}
else {
NRTYPE(num) = N_BIGNUM;
NRBI(num) = quo;
rbi_canonicalize(NREAL(num));
}
}
static void
ndivide_flonum(n_number *number, double num, double div, int fun, int flo)
{
double quo, rem, modp, tmp;
modp = modf(num / div, &quo);
rem = num - quo * div;
switch (fun) {
case NDIVIDE_CEIL:
if ((rem < 0.0 && div < 0.0) || (rem > 0.0 && div > 0.0)) {
quo += 1.0;
rem -= div;
}
break;
case NDIVIDE_FLOOR:
if ((rem < 0.0 && div > 0.0) || (rem > 0.0 && div < 0.0)) {
quo -= 1.0;
rem += div;
}
break;
case NDIVIDE_ROUND:
if (fabs(modp) != 0.5 || modf(quo * 0.5, &tmp) != 0.0) {
if (div > 0.0) {
if (rem > 0.0) {
if (rem >= div * 0.5) {
quo += 1.0;
rem -= div;
}
}
else {
if (rem <= div * -0.5) {
quo -= 1.0;
rem += div;
}
}
}
else {
if (rem > 0.0) {
if (rem >= div * -0.5) {
quo -= 1.0;
rem += div;
}
}
else {
if (rem <= div * 0.5) {
quo += 1.0;
rem -= div;
}
}
}
}
break;
}
if (!finite(quo) || !finite(rem))
fatal_error(FLOATING_POINT_OVERFLOW);
NITYPE(number) = N_FLONUM;
NIFF(number) = rem;
clear_real(NREAL(number));
if (flo) {
NRTYPE(number) = N_FLONUM;
NRFF(number) = quo;
}
else {
if ((long)quo == quo) {
NRTYPE(number) = N_FIXNUM;
NRFI(number) = (long)quo;
}
else {
mpi *bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_setd(bigi, quo);
NRBI(number) = bigi;
NRTYPE(number) = N_BIGNUM;
}
}
}
static void
ndivide_xi_xr(n_number *num, LispObj *div, int fun, int flo)
{
int state = NDIVIDE_NOP, dsign, rsign;
mpi *quo;
mpr *rem;
quo = XALLOC(mpi);
mpi_init(quo);
if (NRTYPE(num) == N_FIXNUM)
mpi_seti(quo, NRFI(num));
else
mpi_set(quo, NRBI(num));
rem = XALLOC(mpr);
mpr_init(rem);
if (XOBJECT_TYPE(div) == LispRatio_t)
mpr_seti(rem, OFRN(div), OFRD(div));
else
mpr_set(rem, OBR(div));
dsign = mpi_sgn(mpr_num(rem));
mpi_mul(quo, quo, mpr_den(rem));
mpi_divqr(quo, mpr_num(rem), quo, mpr_num(rem));
mpr_canonicalize(rem);
rsign = mpi_sgn(mpr_num(rem));
if (mpr_fiti(rem)) {
if (mpi_geti(mpr_den(rem)) == 1) {
NITYPE(num) = N_FIXNUM;
NIFI(num) = mpi_geti(mpr_num(rem));
}
else {
NITYPE(num) = N_FIXRATIO;
NIFRN(num) = mpi_geti(mpr_num(rem));
NIFRD(num) = mpi_geti(mpr_den(rem));
}
mpr_clear(rem);
XFREE(rem);
}
else {
if (mpi_fiti(mpr_den(rem)) && mpi_geti(mpr_den(rem)) == 1) {
NITYPE(num) = N_BIGNUM;
NIBI(num) = mpr_num(rem);
mpi_clear(mpr_den(rem));
XFREE(rem);
}
else {
NITYPE(num) = N_BIGRATIO;
NIBR(num) = rem;
}
}
switch (fun) {
case NDIVIDE_CEIL:
if ((rsign < 0 && dsign < 0) || (rsign > 0 && dsign > 0))
state = NDIVIDE_ADD;
break;
case NDIVIDE_FLOOR:
if ((rsign < 0 && dsign > 0) || (rsign > 0 && dsign < 0))
state = NDIVIDE_SUB;
break;
case NDIVIDE_ROUND: {
n_real cmp;
set_real_object(&cmp, div);
div_real_real(&cmp, &two);
if (dsign > 0) {
if (rsign > 0) {
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_ADD;
}
else {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_SUB;
}
}
else {
if (rsign > 0) {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_SUB;
}
else {
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_ADD;
}
}
clear_real(&cmp);
} break;
}
if (state == NDIVIDE_ADD) {
mpi_addi(quo, quo, 1);
sub_real_object(NIMAG(num), div);
}
else if (state == NDIVIDE_SUB) {
mpi_subi(quo, quo, 1);
add_real_object(NIMAG(num), div);
}
clear_real(NREAL(num));
if (flo) {
double dval = bi_getd(quo);
mpi_clear(quo);
XFREE(quo);
NRTYPE(num) = N_FLONUM;
NRFF(num) = dval;
}
else {
NRBI(num) = quo;
NRTYPE(num) = N_BIGNUM;
rbi_canonicalize(NREAL(num));
}
}
static void
ndivide_xr_xi(n_number *num, LispObj *div, int fun, int flo)
{
LispType type = OBJECT_TYPE(div);
int state = NDIVIDE_NOP, dsign, rsign;
mpi *quo;
mpr *rem;
quo = XALLOC(mpi);
mpi_init(quo);
switch (type) {
case LispFixnum_t:
dsign = OFI(div) < 0 ? -1 : OFI(div) > 0 ? 1 : 0;
mpi_seti(quo, OFI(div));
break;
case LispInteger_t:
dsign = OII(div) < 0 ? -1 : OII(div) > 0 ? 1 : 0;
mpi_seti(quo, OII(div));
break;
default:
dsign = mpi_sgn(OBI(div));
mpi_set(quo, OBI(div));
break;
}
rem = XALLOC(mpr);
mpr_init(rem);
if (NRTYPE(num) == N_FIXRATIO) {
mpr_seti(rem, NRFRN(num), NRFRD(num));
mpi_muli(quo, quo, NRFRD(num));
}
else {
mpr_set(rem, NRBR(num));
mpi_mul(quo, quo, NRBRD(num));
}
mpi_divqr(quo, mpr_num(rem), mpr_num(rem), quo);
mpr_canonicalize(rem);
rsign = mpi_sgn(mpr_num(rem));
if (mpr_fiti(rem)) {
NITYPE(num) = N_FIXRATIO;
NIFRN(num) = mpi_geti(mpr_num(rem));
NIFRD(num) = mpi_geti(mpr_den(rem));
mpr_clear(rem);
XFREE(rem);
}
else {
NITYPE(num) = N_BIGRATIO;
NIBR(num) = rem;
}
switch (fun) {
case NDIVIDE_CEIL:
if ((rsign < 0 && dsign < 0) || (rsign > 0 && dsign > 0))
state = NDIVIDE_ADD;
break;
case NDIVIDE_FLOOR:
if ((rsign < 0 && dsign > 0) || (rsign > 0 && dsign < 0))
state = NDIVIDE_SUB;
break;
case NDIVIDE_ROUND: {
n_real cmp;
set_real_object(&cmp, div);
div_real_real(&cmp, &two);
if (dsign > 0) {
if (rsign > 0) {
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_ADD;
}
else {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_SUB;
}
}
else {
if (rsign > 0) {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_SUB;
}
else {
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_ADD;
}
}
clear_real(&cmp);
} break;
}
if (state == NDIVIDE_ADD) {
mpi_addi(quo, quo, 1);
sub_real_object(NIMAG(num), div);
}
else if (state == NDIVIDE_SUB) {
mpi_subi(quo, quo, 1);
add_real_object(NIMAG(num), div);
}
clear_real(NREAL(num));
if (flo) {
double dval = bi_getd(quo);
mpi_clear(quo);
XFREE(quo);
NRTYPE(num) = N_FLONUM;
NRFF(num) = dval;
}
else {
NRBI(num) = quo;
NRTYPE(num) = N_BIGNUM;
rbi_canonicalize(NREAL(num));
}
}
static void
ndivide_xr_xr(n_number *num, LispObj *div, int fun, int flo)
{
int state = NDIVIDE_NOP, dsign, rsign, modp;
mpr *bigr;
mpi *bigi;
bigr = XALLOC(mpr);
mpr_init(bigr);
if (NRTYPE(num) == N_FIXRATIO)
mpr_seti(bigr, NRFRN(num), NRFRD(num));
else
mpr_set(bigr, NRBR(num));
NITYPE(num) = N_BIGRATIO;
NIBR(num) = bigr;
if (OBJECT_TYPE(div) == LispRatio_t) {
dsign = OFRN(div) < 0 ? -1 : OFRN(div) > 0 ? 1 : 0;
mpi_muli(mpr_num(bigr), mpr_num(bigr), OFRD(div));
mpi_muli(mpr_den(bigr), mpr_den(bigr), OFRN(div));
}
else {
dsign = mpi_sgn(OBRN(div));
mpr_div(bigr, bigr, OBR(div));
}
modp = mpi_fiti(mpr_den(bigr)) && mpi_geti(mpr_den(bigr)) == 2;
bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_divqr(bigi, mpr_num(bigr), mpr_num(bigr), mpr_den(bigr));
if (OBJECT_TYPE(div) == LispRatio_t)
mpi_seti(mpr_den(bigr), OFRD(div));
else
mpi_set(mpr_den(bigr), OBRD(div));
if (NRTYPE(num) == N_FIXRATIO)
mpi_muli(mpr_den(bigr), mpr_den(bigr), NRFRD(num));
else
mpi_mul(mpr_den(bigr), mpr_den(bigr), NRBRD(num));
clear_real(NREAL(num));
NRTYPE(num) = N_BIGNUM;
NRBI(num) = bigi;
rbr_canonicalize(NIMAG(num));
rsign = cmp_real_real(NIMAG(num), &zero);
switch (fun) {
case NDIVIDE_CEIL:
if ((rsign < 0 && dsign < 0) || (rsign > 0 && dsign > 0))
state = NDIVIDE_ADD;
break;
case NDIVIDE_FLOOR:
if ((rsign < 0 && dsign > 0) || (rsign > 0 && dsign < 0))
state = NDIVIDE_SUB;
break;
case NDIVIDE_ROUND:
if (!modp || (bigi->digs[0] & 1) == 1) {
n_real cmp;
set_real_object(&cmp, div);
div_real_real(&cmp, &two);
if (dsign > 0) {
if (rsign > 0) {
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_ADD;
}
else {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_SUB;
}
}
else {
if (rsign > 0) {
neg_real(&cmp);
if (cmp_real_real(NIMAG(num), &cmp) >= 0)
state = NDIVIDE_SUB;
}
else {
if (cmp_real_real(NIMAG(num), &cmp) <= 0)
state = NDIVIDE_ADD;
}
}
clear_real(&cmp);
}
break;
}
if (state == NDIVIDE_ADD) {
add_real_real(NREAL(num), &one);
sub_real_object(NIMAG(num), div);
}
else if (state == NDIVIDE_SUB) {
sub_real_real(NREAL(num), &one);
add_real_object(NIMAG(num), div);
}
if (NRTYPE(num) == N_BIGNUM) {
if (flo) {
double dval = bi_getd(bigi);
mpi_clear(bigi);
XFREE(bigi);
NRTYPE(num) = N_FLONUM;
NRFF(num) = dval;
}
else
rbi_canonicalize(NREAL(num));
}
else if (flo) {
NRTYPE(num) = N_FLONUM;
NRFF(num) = (double)NRFI(num);
}
}
/************************************************************************
* REAL COMPLEX
************************************************************************/
static void
nadd_re_cx(n_number *num, LispObj *comp)
{
/*
Ra+Rb Ib
*/
/* Ra+Rb */
add_real_object(NREAL(num), OCXR(comp));
/* Ib */
set_real_object(NIMAG(num), OCXI(comp));
num->complex = 1;
ncx_canonicalize(num);
}
static void
nsub_re_cx(n_number *num, LispObj *comp)
{
/*
Ra-Rb -Ib
*/
/* Ra-Rb */
sub_real_object(NREAL(num), OCXR(comp));
/* -Ib */
NITYPE(num) = N_FIXNUM;
NIFI(num) = -1;
mul_real_object(NIMAG(num), OCXI(comp));
num->complex = 1;
ncx_canonicalize(num);
}
static void
nmul_re_cx(n_number *num, LispObj *comp)
{
/*
Ra*Rb Ra*Ib
*/
/* copy before change */
set_real_real(NIMAG(num), NREAL(num));
/* Ra*Rb */
mul_real_object(NREAL(num), OCXR(comp));
/* Ra*Ib */
mul_real_object(NIMAG(num), OCXI(comp));
num->complex = 1;
ncx_canonicalize(num);
}
static void
ndiv_re_cx(n_number *num, LispObj *comp)
{
/*
Ra*Rb -Ib*Ra
----------- -----------
Rb*Rb+Ib*Ib Rb*Rb+Ib*Ib
*/
n_real div, temp;
/* Rb*Rb */
set_real_object(&div, OCXR(comp));
mul_real_object(&div, OCXR(comp));
/* Ib*Ib */
set_real_object(&temp, OCXI(comp));
mul_real_object(&temp, OCXI(comp));
/* Rb*Rb+Ib*Ib */
add_real_real(&div, &temp);
clear_real(&temp);
/* -Ib*Ra */
NITYPE(num) = N_FIXNUM;
NIFI(num) = -1;
mul_real_object(NIMAG(num), OCXI(comp));
mul_real_real(NIMAG(num), NREAL(num));
/* Ra*Rb */
mul_real_object(NREAL(num), OCXR(comp));
div_real_real(NREAL(num), &div);
div_real_real(NIMAG(num), &div);
clear_real(&div);
num->complex = 1;
ncx_canonicalize(num);
}
/************************************************************************
* COMPLEX REAL
************************************************************************/
static void
nadd_cx_re(n_number *num, LispObj *re)
{
/*
Ra+Rb Ia
*/
add_real_object(NREAL(num), re);
ncx_canonicalize(num);
}
static void
nsub_cx_re(n_number *num, LispObj *re)
{
/*
Ra-Rb Ia
*/
sub_real_object(NREAL(num), re);
ncx_canonicalize(num);
}
static void
nmul_cx_re(n_number *num, LispObj *re)
{
/*
Ra*Rb Ia*Rb
*/
mul_real_object(NREAL(num), re);
mul_real_object(NIMAG(num), re);
ncx_canonicalize(num);
}
static void
ndiv_cx_re(n_number *num, LispObj *re)
{
/*
Ra/Rb Ia/Rb
*/
div_real_object(NREAL(num), re);
div_real_object(NIMAG(num), re);
ncx_canonicalize(num);
}
/************************************************************************
* COMPLEX COMPLEX
************************************************************************/
static void
nadd_cx_cx(n_number *num, LispObj *comp)
{
/*
Ra+Rb Ia+Ib
*/
add_real_object(NREAL(num), OCXR(comp));
add_real_object(NIMAG(num), OCXI(comp));
ncx_canonicalize(num);
}
static void
nsub_cx_cx(n_number *num, LispObj *comp)
{
/*
Ra-Rb Ia-Ib
*/
sub_real_object(NREAL(num), OCXR(comp));
sub_real_object(NIMAG(num), OCXI(comp));
ncx_canonicalize(num);
}
static void
nmul_cx_cx(n_number *num, LispObj *comp)
{
/*
Ra*Rb-Ia*Ib Ra*Ib+Ia*Rb
*/
n_real IaIb, RaIb;
set_real_real(&IaIb, NIMAG(num));
mul_real_object(&IaIb, OCXI(comp));
set_real_real(&RaIb, NREAL(num));
mul_real_object(&RaIb, OCXI(comp));
/* Ra*Rb-Ia*Ib */
mul_real_object(NREAL(num), OCXR(comp));
sub_real_real(NREAL(num), &IaIb);
clear_real(&IaIb);
/* Ra*Ib+Ia*Rb */
mul_real_object(NIMAG(num), OCXR(comp));
add_real_real(NIMAG(num), &RaIb);
clear_real(&RaIb);
ncx_canonicalize(num);
}
static void
ndiv_cx_cx(n_number *num, LispObj *comp)
{
/*
Ra*Rb+Ia*Ib Ia*Rb-Ib*Ra
----------- -----------
Rb*Rb+Ib*Ib Rb*Rb+Ib*Ib
*/
n_real temp1, temp2;
/* IaIb */
set_real_real(&temp1, NIMAG(num));
mul_real_object(&temp1, OCXI(comp));
/* IbRa */
set_real_real(&temp2, NREAL(num));
mul_real_object(&temp2, OCXI(comp));
/* Ra*Rb+Ia*Ib */
mul_real_object(NREAL(num), OCXR(comp));
add_real_real(NREAL(num), &temp1);
clear_real(&temp1);
/* Ia*Rb-Ib*Ra */
mul_real_object(NIMAG(num), OCXR(comp));
sub_real_real(NIMAG(num), &temp2);
clear_real(&temp2);
/* Rb*Rb */
set_real_object(&temp1, OCXR(comp));
mul_real_object(&temp1, OCXR(comp));
/* Ib*Ib */
set_real_object(&temp2, OCXI(comp));
mul_real_object(&temp2, OCXI(comp));
/* Rb*Rb+Ib*Ib */
add_real_real(&temp1, &temp2);
clear_real(&temp2);
div_real_real(NREAL(num), &temp1);
div_real_real(NIMAG(num), &temp1);
clear_real(&temp1);
ncx_canonicalize(num);
}
static int
cmp_cx_cx(LispObj *op1, LispObj *op2)
{
int cmp;
cmp = cmp_object_object(OCXR(op1), OCXR(op2), 1);
if (cmp == 0)
cmp = cmp_object_object(OCXI(op1), OCXI(op2), 1);
return (cmp);
}
/************************************************************************
* FLONUM FLONUM
************************************************************************/
static void
radd_flonum(n_real *real, double op1, double op2)
{
double value = op1 + op2;
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
switch (RTYPE(real)) {
case N_FIXNUM:
case N_FIXRATIO:
RTYPE(real) = N_FLONUM;
break;
case N_BIGNUM:
RCLEAR_BI(real);
RTYPE(real) = N_FLONUM;
break;
case N_BIGRATIO:
RCLEAR_BR(real);
RTYPE(real) = N_FLONUM;
break;
}
RFF(real) = value;
}
static void
rsub_flonum(n_real *real, double op1, double op2)
{
double value = op1 - op2;
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
switch (RTYPE(real)) {
case N_FIXNUM:
case N_FIXRATIO:
RTYPE(real) = N_FLONUM;
break;
case N_BIGNUM:
RCLEAR_BI(real);
RTYPE(real) = N_FLONUM;
break;
case N_BIGRATIO:
RCLEAR_BR(real);
RTYPE(real) = N_FLONUM;
break;
}
RFF(real) = value;
}
static void
rmul_flonum(n_real *real, double op1, double op2)
{
double value = op1 * op2;
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
switch (RTYPE(real)) {
case N_FIXNUM:
case N_FIXRATIO:
RTYPE(real) = N_FLONUM;
break;
case N_BIGNUM:
RCLEAR_BI(real);
RTYPE(real) = N_FLONUM;
break;
case N_BIGRATIO:
RCLEAR_BR(real);
RTYPE(real) = N_FLONUM;
break;
}
RFF(real) = value;
}
static void
rdiv_flonum(n_real *real, double op1, double op2)
{
double value;
if (op2 == 0.0)
fatal_error(DIVIDE_BY_ZERO);
value = op1 / op2;
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
switch (RTYPE(real)) {
case N_FIXNUM:
case N_FIXRATIO:
RTYPE(real) = N_FLONUM;
break;
case N_BIGNUM:
RCLEAR_BI(real);
RTYPE(real) = N_FLONUM;
break;
case N_BIGRATIO:
RCLEAR_BR(real);
RTYPE(real) = N_FLONUM;
break;
}
RFF(real) = value;
}
static int
cmp_flonum(double op1, double op2)
{
double value = op1 - op2;
if (!finite(value))
fatal_error(FLOATING_POINT_OVERFLOW);
return (value > 0.0 ? 1 : value < 0.0 ? -1 : 0);
}
/************************************************************************
* FIXNUM FIXNUM
************************************************************************/
static void
rop_fi_fi_bi(n_real *real, long fi, int op)
{
mpi *bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
if (op == NOP_ADD)
mpi_addi(bigi, bigi, fi);
else if (op == NOP_SUB)
mpi_subi(bigi, bigi, fi);
else
mpi_muli(bigi, bigi, fi);
RBI(real) = bigi;
RTYPE(real) = N_BIGNUM;
}
static INLINE void
radd_fi_fi(n_real *real, long fi)
{
if (!fi_fi_add_overflow(RFI(real), fi))
RFI(real) += fi;
else
rop_fi_fi_bi(real, fi, NOP_ADD);
}
static INLINE void
rsub_fi_fi(n_real *real, long fi)
{
if (!fi_fi_sub_overflow(RFI(real), fi))
RFI(real) -= fi;
else
rop_fi_fi_bi(real, fi, NOP_SUB);
}
static INLINE void
rmul_fi_fi(n_real *real, long fi)
{
if (!fi_fi_mul_overflow(RFI(real), fi))
RFI(real) *= fi;
else
rop_fi_fi_bi(real, fi, NOP_MUL);
}
static INLINE void
rdiv_fi_fi(n_real *real, long fi)
{
RTYPE(real) = N_FIXRATIO;
RFRN(real) = RFI(real);
RFRD(real) = fi;
rfr_canonicalize(real);
}
static INLINE int
cmp_fi_fi(long op1, long op2)
{
if (op1 > op2)
return (1);
else if (op1 < op2)
return (-1);
return (0);
}
/************************************************************************
* FIXNUM BIGNUM
************************************************************************/
static void
rop_fi_bi_xi(n_real *real, mpi *bi, int nop)
{
mpi *bigi = XALLOC(mpi);
mpi_init(bigi);
mpi_seti(bigi, RFI(real));
if (nop == NOP_ADD)
mpi_add(bigi, bigi, bi);
else if (nop == NOP_SUB)
mpi_sub(bigi, bigi, bi);
else
mpi_mul(bigi, bigi, bi);
if (mpi_fiti(bigi)) {
RFI(real) = mpi_geti(bigi);
mpi_clear(bigi);
XFREE(bigi);
}
else {
RBI(real) = bigi;
RTYPE(real) = N_BIGNUM;
}
}
static INLINE void
radd_fi_bi(n_real *real, mpi *bi)
{
rop_fi_bi_xi(real, bi, NOP_ADD);
}
static INLINE void
rsub_fi_bi(n_real *real, mpi *bi)
{
rop_fi_bi_xi(real, bi, NOP_SUB);
}
static INLINE void
rmul_fi_bi(n_real *real, mpi *bi)
{
rop_fi_bi_xi(real, bi, NOP_MUL);
}
static void
rdiv_fi_bi(n_real *real, mpi *bi)
{
mpr *bigr;
if (mpi_cmpi(bi, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
bigr = XALLOC(mpr);
mpr_init(bigr);
mpi_seti(mpr_num(bigr), RFI(real));
mpi_set(mpr_den(bigr), bi);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE int
cmp_fi_bi(long fixnum, mpi *bignum)
{
return (-mpi_cmpi(bignum, fixnum));
}
/************************************************************************
* FIXNUM FIXRATIO
************************************************************************/
static void
rop_fi_fr_as_xr(n_real *real, long num, long den, int nop)
{
int fit;
long value = 0, op = RFI(real);
fit = !fi_fi_mul_overflow(op, den);
if (fit) {
value = op * den;
if (nop == NOP_ADD)
fit = !fi_fi_add_overflow(value, num);
else
fit = !fi_fi_sub_overflow(value, num);
}
if (fit) {
if (nop == NOP_ADD)
RFRN(real) = value + num;
else
RFRN(real) = value - num;
RFRD(real) = den;
RTYPE(real) = N_FIXRATIO;
rfr_canonicalize(real);
}
else {
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_seti(&iop, op);
mpi_muli(&iop, &iop, den);
mpr_init(bigr);
mpr_seti(bigr, num, den);
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), &iop, mpr_num(bigr));
else
mpi_sub(mpr_num(bigr), &iop, mpr_num(bigr));
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static void
rop_fi_fr_md_xr(n_real *real, long num, long den, int nop)
{
int fit;
long op = RFI(real);
if (nop == NOP_MUL)
fit = !fi_fi_mul_overflow(op, num);
else
fit = !fi_fi_mul_overflow(op, den);
if (fit) {
if (nop == NOP_MUL) {
RFRN(real) = op * num;
RFRD(real) = den;
}
else {
RFRN(real) = op * den;
RFRD(real) = num;
}
RTYPE(real) = N_FIXRATIO;
rfr_canonicalize(real);
}
else {
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_seti(&iop, op);
mpr_init(bigr);
if (nop == NOP_MUL)
mpr_seti(bigr, num, den);
else
mpr_seti(bigr, den, num);
mpi_mul(mpr_num(bigr), mpr_num(bigr), &iop);
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static INLINE void
radd_fi_fr(n_real *real, long num, long den)
{
rop_fi_fr_as_xr(real, num, den, NOP_ADD);
}
static INLINE void
rsub_fi_fr(n_real *real, long num, long den)
{
rop_fi_fr_as_xr(real, num, den, NOP_SUB);
}
static INLINE void
rmul_fi_fr(n_real *real, long num, long den)
{
rop_fi_fr_md_xr(real, num, den, NOP_MUL);
}
static INLINE void
rdiv_fi_fr(n_real *real, long num, long den)
{
rop_fi_fr_md_xr(real, num, den, NOP_DIV);
}
static INLINE int
cmp_fi_fr(long fi, long num, long den)
{
return (cmp_flonum((double)fi, (double)num / (double)den));
}
/************************************************************************
* FIXNUM BIGRATIO
************************************************************************/
static void
rop_fi_br_as_xr(n_real *real, mpr *ratio, int nop)
{
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_seti(&iop, RFI(real));
mpr_init(bigr);
mpr_set(bigr, ratio);
mpi_mul(&iop, &iop, mpr_den(ratio));
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), &iop, mpr_num(bigr));
else
mpi_sub(mpr_num(bigr), &iop, mpr_num(bigr));
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static void
rop_fi_br_md_xr(n_real *real, mpr *ratio, int nop)
{
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_seti(&iop, RFI(real));
mpr_init(bigr);
if (nop == NOP_MUL)
mpr_set(bigr, ratio);
else
mpr_inv(bigr, ratio);
mpi_mul(mpr_num(bigr), &iop, mpr_num(bigr));
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
radd_fi_br(n_real *real, mpr *ratio)
{
rop_fi_br_as_xr(real, ratio, NOP_ADD);
}
static INLINE void
rsub_fi_br(n_real *real, mpr *ratio)
{
rop_fi_br_as_xr(real, ratio, NOP_SUB);
}
static INLINE void
rmul_fi_br(n_real *real, mpr *ratio)
{
rop_fi_br_md_xr(real, ratio, NOP_MUL);
}
static INLINE void
rdiv_fi_br(n_real *real, mpr *ratio)
{
rop_fi_br_md_xr(real, ratio, NOP_DIV);
}
static INLINE int
cmp_fi_br(long op1, mpr *op2)
{
return (-mpr_cmpi(op2, op1));
}
/************************************************************************
* BIGNUM FIXNUM
************************************************************************/
static INLINE void
radd_bi_fi(n_real *real, long fi)
{
mpi_addi(RBI(real), RBI(real), fi);
rbi_canonicalize(real);
}
static INLINE void
rsub_bi_fi(n_real *real, long fi)
{
mpi_subi(RBI(real), RBI(real), fi);
rbi_canonicalize(real);
}
static INLINE void
rmul_bi_fi(n_real *real, long fi)
{
mpi_muli(RBI(real), RBI(real), fi);
rbi_canonicalize(real);
}
static void
rdiv_bi_fi(n_real *real, long fi)
{
mpr *bigr;
if (RFI(real) == 0)
fatal_error(DIVIDE_BY_ZERO);
bigr = XALLOC(mpr);
mpr_init(bigr);
mpi_set(mpr_num(bigr), RBI(real));
mpi_seti(mpr_den(bigr), fi);
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE int
cmp_bi_fi(mpi *bignum, long fi)
{
return (mpi_cmpi(bignum, fi));
}
/************************************************************************
* BIGNUM BIGNUM
************************************************************************/
static INLINE void
radd_bi_bi(n_real *real, mpi *bignum)
{
mpi_add(RBI(real), RBI(real), bignum);
rbi_canonicalize(real);
}
static INLINE void
rsub_bi_bi(n_real *real, mpi *bignum)
{
mpi_sub(RBI(real), RBI(real), bignum);
rbi_canonicalize(real);
}
static INLINE void
rmul_bi_bi(n_real *real, mpi *bignum)
{
mpi_mul(RBI(real), RBI(real), bignum);
rbi_canonicalize(real);
}
static void
rdiv_bi_bi(n_real *real, mpi *bignum)
{
mpr *bigr;
if (mpi_cmpi(bignum, 0) == 0)
fatal_error(DIVIDE_BY_ZERO);
bigr = XALLOC(mpr);
mpr_init(bigr);
mpi_set(mpr_num(bigr), RBI(real));
mpi_set(mpr_den(bigr), bignum);
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE int
cmp_bi_bi(mpi *op1, mpi *op2)
{
return (mpi_cmp(op1, op2));
}
/************************************************************************
* BIGNUM FIXRATIO
************************************************************************/
static void
rop_bi_fr_as_xr(n_real *real, long num, long den, int nop)
{
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_set(&iop, RBI(real));
mpi_muli(&iop, &iop, den);
mpr_init(bigr);
mpr_seti(bigr, num, den);
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), &iop, mpr_num(bigr));
else
mpi_sub(mpr_num(bigr), &iop, mpr_num(bigr));
mpi_clear(&iop);
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
rop_bi_fr_md_xr(n_real *real, long num, long den, int nop)
{
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, num, den);
if (nop == NOP_MUL)
mpi_mul(mpr_num(bigr), RBI(real), mpr_num(bigr));
else {
mpi_mul(mpr_den(bigr), RBI(real), mpr_den(bigr));
mpr_inv(bigr, bigr);
}
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
radd_bi_fr(n_real *real, long num, long den)
{
rop_bi_fr_as_xr(real, num, den, NOP_ADD);
}
static INLINE void
rsub_bi_fr(n_real *real, long num, long den)
{
rop_bi_fr_as_xr(real, num, den, NOP_SUB);
}
static INLINE void
rmul_bi_fr(n_real *real, long num, long den)
{
rop_bi_fr_md_xr(real, num, den, NOP_MUL);
}
static INLINE void
rdiv_bi_fr(n_real *real, long num, long den)
{
rop_bi_fr_md_xr(real, num, den, NOP_DIV);
}
static int
cmp_bi_fr(mpi *bignum, long num, long den)
{
int cmp;
mpr cmp1, cmp2;
mpr_init(&cmp1);
mpi_set(mpr_num(&cmp1), bignum);
mpi_seti(mpr_den(&cmp1), 1);
mpr_init(&cmp2);
mpr_seti(&cmp2, num, den);
cmp = mpr_cmp(&cmp1, &cmp2);
mpr_clear(&cmp1);
mpr_clear(&cmp2);
return (cmp);
}
/************************************************************************
* BIGNUM BIGRATIO
************************************************************************/
static void
rop_bi_br_as_xr(n_real *real, mpr *bigratio, int nop)
{
mpi iop;
mpr *bigr = XALLOC(mpr);
mpi_init(&iop);
mpi_set(&iop, RBI(real));
mpr_init(bigr);
mpr_set(bigr, bigratio);
mpi_mul(&iop, &iop, mpr_den(bigratio));
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), &iop, mpr_num(bigr));
else
mpi_sub(mpr_num(bigr), &iop, mpr_num(bigr));
mpi_clear(&iop);
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static void
rop_bi_br_md_xr(n_real *real, mpr *bigratio, int nop)
{
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
if (nop == NOP_MUL)
mpr_set(bigr, bigratio);
else
mpr_inv(bigr, bigratio);
mpi_mul(mpr_num(bigr), RBI(real), mpr_num(bigr));
RCLEAR_BI(real);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
radd_bi_br(n_real *real, mpr *bigratio)
{
rop_bi_br_as_xr(real, bigratio, NOP_ADD);
}
static INLINE void
rsub_bi_br(n_real *real, mpr *bigratio)
{
rop_bi_br_as_xr(real, bigratio, NOP_SUB);
}
static INLINE void
rmul_bi_br(n_real *real, mpr *bigratio)
{
rop_bi_br_md_xr(real, bigratio, NOP_MUL);
}
static INLINE void
rdiv_bi_br(n_real *real, mpr *bigratio)
{
rop_bi_br_md_xr(real, bigratio, NOP_DIV);
}
static int
cmp_bi_br(mpi *bignum, mpr *bigratio)
{
int cmp;
mpr cmp1;
mpr_init(&cmp1);
mpi_set(mpr_num(&cmp1), bignum);
mpi_seti(mpr_den(&cmp1), 1);
cmp = mpr_cmp(&cmp1, bigratio);
mpr_clear(&cmp1);
return (cmp);
}
/************************************************************************
* FIXRATIO FIXNUM
************************************************************************/
static void
rop_fr_fi_as_xr(n_real *real, long op, int nop)
{
int fit;
long value = 0, num = RFRN(real), den = RFRD(real);
fit = !fi_fi_mul_overflow(op, den);
if (fit) {
value = op * den;
if (nop == NOP_ADD)
fit = !fi_fi_add_overflow(value, num);
else
fit = !fi_fi_sub_overflow(value, num);
}
if (fit) {
if (nop == NOP_ADD)
RFRN(real) = num + value;
else
RFRN(real) = num - value;
rfr_canonicalize(real);
}
else {
mpi iop;
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, num, den);
mpi_init(&iop);
mpi_seti(&iop, op);
mpi_muli(&iop, &iop, den);
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), mpr_num(bigr), &iop);
else
mpi_sub(mpr_num(bigr), mpr_num(bigr), &iop);
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static void
rop_fr_fi_md_xr(n_real *real, long op, int nop)
{
long num = RFRN(real), den = RFRD(real);
if (nop == NOP_MUL) {
if (!fi_fi_mul_overflow(op, num)) {
RFRN(real) = op * num;
rfr_canonicalize(real);
return;
}
}
else if (!fi_fi_mul_overflow(op, den)) {
RFRD(real) = op * den;
rfr_canonicalize(real);
return;
}
{
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, num, den);
if (nop == NOP_MUL)
mpr_muli(bigr, bigr, op);
else
mpr_divi(bigr, bigr, op);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static INLINE void
radd_fr_fi(n_real *real, long op)
{
rop_fr_fi_as_xr(real, op, NOP_ADD);
}
static INLINE void
rsub_fr_fi(n_real *real, long op)
{
rop_fr_fi_as_xr(real, op, NOP_SUB);
}
static INLINE void
rmul_fr_fi(n_real *real, long op)
{
rop_fr_fi_md_xr(real, op, NOP_MUL);
}
static INLINE void
rdiv_fr_fi(n_real *real, long op)
{
rop_fr_fi_md_xr(real, op, NOP_DIV);
}
static INLINE int
cmp_fr_fi(long num, long den, long fixnum)
{
return (cmp_flonum((double)num / (double)den, (double)fixnum));
}
/************************************************************************
* FIXRATIO BIGNUM
************************************************************************/
static void
rop_fr_bi_as_xr(n_real *real, mpi *bignum, int nop)
{
mpi iop;
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, RFRN(real), RFRD(real));
mpi_init(&iop);
mpi_set(&iop, bignum);
mpi_muli(&iop, &iop, RFRD(real));
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), mpr_num(bigr), &iop);
else
mpi_sub(mpr_num(bigr), mpr_num(bigr), &iop);
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static void
rop_fr_bi_md_xr(n_real *real, mpi *bignum, int nop)
{
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, RFRN(real), RFRD(real));
if (nop == NOP_MUL)
mpi_mul(mpr_num(bigr), mpr_num(bigr), bignum);
else
mpi_mul(mpr_den(bigr), mpr_den(bigr), bignum);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
radd_fr_bi(n_real *real, mpi *bignum)
{
rop_fr_bi_as_xr(real, bignum, NOP_ADD);
}
static INLINE void
rsub_fr_bi(n_real *real, mpi *bignum)
{
rop_fr_bi_as_xr(real, bignum, NOP_SUB);
}
static INLINE void
rmul_fr_bi(n_real *real, mpi *bignum)
{
rop_fr_bi_md_xr(real, bignum, NOP_MUL);
}
static INLINE void
rdiv_fr_bi(n_real *real, mpi *bignum)
{
rop_fr_bi_md_xr(real, bignum, NOP_DIV);
}
static int
cmp_fr_bi(long num, long den, mpi *bignum)
{
int cmp;
mpr cmp1, cmp2;
mpr_init(&cmp1);
mpr_seti(&cmp1, num, den);
mpr_init(&cmp2);
mpi_set(mpr_num(&cmp2), bignum);
mpi_seti(mpr_den(&cmp2), 1);
cmp = mpr_cmp(&cmp1, &cmp2);
mpr_clear(&cmp1);
mpr_clear(&cmp2);
return (cmp);
}
/************************************************************************
* FIXRATIO FIXRATIO
************************************************************************/
static void
rop_fr_fr_as_xr(n_real *real, long num2, long den2, int nop)
{
int fit;
long num1 = RFRN(real), den1 = RFRD(real), num = 0, den = 0;
fit = !fi_fi_mul_overflow(num1, den2);
if (fit) {
num = num1 * den2;
fit = !fi_fi_mul_overflow(num2, den1);
if (fit) {
den = num2 * den1;
if (nop == NOP_ADD) {
if ((fit = !fi_fi_add_overflow(num, den)) != 0)
num += den;
}
else if ((fit = !fi_fi_sub_overflow(num, den)) != 0)
num -= den;
if (fit) {
fit = !fi_fi_mul_overflow(den1, den2);
if (fit)
den = den1 * den2;
}
}
}
if (fit) {
RFRN(real) = num;
RFRD(real) = den;
rfr_canonicalize(real);
}
else {
mpi iop;
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, num1, den1);
mpi_muli(mpr_den(bigr), mpr_den(bigr), den2);
mpi_init(&iop);
mpi_seti(&iop, num2);
mpi_muli(&iop, &iop, den1);
mpi_muli(mpr_num(bigr), mpr_num(bigr), den2);
if (nop == NOP_ADD)
mpi_add(mpr_num(bigr), mpr_num(bigr), &iop);
else
mpi_sub(mpr_num(bigr), mpr_num(bigr), &iop);
mpi_clear(&iop);
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static void
rop_fr_fr_md_xr(n_real *real, long num2, long den2, int nop)
{
int fit;
long num1 = RFRN(real), den1 = RFRD(real), num = 0, den = 0;
if (nop == NOP_MUL) {
fit = !fi_fi_mul_overflow(num1, num2) && !fi_fi_mul_overflow(den1, den2);
if (fit) {
num = num1 * num2;
den = den1 * den2;
}
}
else {
fit = !fi_fi_mul_overflow(num1, den2) && !fi_fi_mul_overflow(den1, num2);
if (fit) {
num = num1 * den2;
den = den1 * num2;
}
}
if (fit) {
RFRN(real) = num;
RFRD(real) = den;
rfr_canonicalize(real);
}
else {
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
if (nop == NOP_MUL) {
mpr_seti(bigr, num1, den1);
mpi_muli(mpr_num(bigr), mpr_num(bigr), num2);
mpi_muli(mpr_den(bigr), mpr_den(bigr), den2);
}
else {
mpr_seti(bigr, num1, num2);
mpi_muli(mpr_num(bigr), mpr_num(bigr), den2);
mpi_muli(mpr_den(bigr), mpr_den(bigr), den1);
}
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
}
static INLINE void
radd_fr_fr(n_real *real, long num, long den)
{
rop_fr_fr_as_xr(real, num, den, NOP_ADD);
}
static INLINE void
rsub_fr_fr(n_real *real, long num, long den)
{
rop_fr_fr_as_xr(real, num, den, NOP_SUB);
}
static INLINE void
rmul_fr_fr(n_real *real, long num, long den)
{
rop_fr_fr_md_xr(real, num, den, NOP_MUL);
}
static INLINE void
rdiv_fr_fr(n_real *real, long num, long den)
{
rop_fr_fr_md_xr(real, num, den, NOP_DIV);
}
static INLINE int
cmp_fr_fr(long num1, long den1, long num2, long den2)
{
return (cmp_flonum((double)num1 / (double)den1,
(double)num2 / (double)den2));
}
/************************************************************************
* FIXRATIO BIGRATIO
************************************************************************/
static void
rop_fr_br_asmd_xr(n_real *real, mpr *bigratio, int nop)
{
mpr *bigr = XALLOC(mpr);
mpr_init(bigr);
mpr_seti(bigr, RFRN(real), RFRD(real));
switch (nop) {
case NOP_ADD:
mpr_add(bigr, bigr, bigratio);
break;
case NOP_SUB:
mpr_sub(bigr, bigr, bigratio);
break;
case NOP_MUL:
mpr_mul(bigr, bigr, bigratio);
break;
default:
mpr_div(bigr, bigr, bigratio);
break;
}
RBR(real) = bigr;
RTYPE(real) = N_BIGRATIO;
rbr_canonicalize(real);
}
static INLINE void
radd_fr_br(n_real *real, mpr *bigratio)
{
rop_fr_br_asmd_xr(real, bigratio, NOP_ADD);
}
static INLINE void
rsub_fr_br(n_real *real, mpr *bigratio)
{
rop_fr_br_asmd_xr(real, bigratio, NOP_SUB);
}
static INLINE void
rmul_fr_br(n_real *real, mpr *bigratio)
{
rop_fr_br_asmd_xr(real, bigratio, NOP_MUL);
}
static INLINE void
rdiv_fr_br(n_real *real, mpr *bigratio)
{
rop_fr_br_asmd_xr(real, bigratio, NOP_DIV);
}
static int
cmp_fr_br(long num, long den, mpr *bigratio)
{
int cmp;
mpr cmp1;
mpr_init(&cmp1);
mpr_seti(&cmp1, num, den);
cmp = mpr_cmp(&cmp1, bigratio);
mpr_clear(&cmp1);
return (cmp);
}
/************************************************************************
* BIGRATIO FIXNUM
************************************************************************/
static void
rop_br_fi_asmd_xr(n_real *real, long fixnum, int nop)
{
mpr *bigratio = RBR(real);
switch (nop) {
case NOP_ADD:
mpr_addi(bigratio, bigratio, fixnum);
break;
case NOP_SUB:
mpr_subi(bigratio, bigratio, fixnum);
break;
case NOP_MUL:
mpr_muli(bigratio, bigratio, fixnum);
break;
default:
if (fixnum == 0)
fatal_error(DIVIDE_BY_ZERO);
mpr_divi(bigratio, bigratio, fixnum);
break;
}
rbr_canonicalize(real);
}
static INLINE void
radd_br_fi(n_real *real, long fixnum)
{
rop_br_fi_asmd_xr(real, fixnum, NOP_ADD);
}
static INLINE void
rsub_br_fi(n_real *real, long fixnum)
{
rop_br_fi_asmd_xr(real, fixnum, NOP_SUB);
}
static INLINE void
rmul_br_fi(n_real *real, long fixnum)
{
rop_br_fi_asmd_xr(real, fixnum, NOP_MUL);
}
static INLINE void
rdiv_br_fi(n_real *real, long fixnum)
{
rop_br_fi_asmd_xr(real, fixnum, NOP_DIV);
}
static int
cmp_br_fi(mpr *bigratio, long fixnum)
{
int cmp;
mpr cmp2;
mpr_init(&cmp2);
mpr_seti(&cmp2, fixnum, 1);
cmp = mpr_cmp(bigratio, &cmp2);
mpr_clear(&cmp2);
return (cmp);
}
/************************************************************************
* BIGRATIO BIGNUM
************************************************************************/
static void
rop_br_bi_as_xr(n_real *real, mpi *bignum, int nop)
{
mpi iop;
mpi_init(&iop);
mpi_set(&iop, bignum);
mpi_mul(&iop, &iop, RBRD(real));
if (nop == NOP_ADD)
mpi_add(RBRN(real), RBRN(real), &iop);
else
mpi_sub(RBRN(real), RBRN(real), &iop);
mpi_clear(&iop);
rbr_canonicalize(real);
}
static INLINE void
radd_br_bi(n_real *real, mpi *bignum)
{
rop_br_bi_as_xr(real, bignum, NOP_ADD);
}
static INLINE void
rsub_br_bi(n_real *real, mpi *bignum)
{
rop_br_bi_as_xr(real, bignum, NOP_SUB);
}
static INLINE void
rmul_br_bi(n_real *real, mpi *bignum)
{
mpi_mul(RBRN(real), RBRN(real), bignum);
rbr_canonicalize(real);
}
static INLINE void
rdiv_br_bi(n_real *real, mpi *bignum)
{
mpi_mul(RBRD(real), RBRD(real), bignum);
rbr_canonicalize(real);
}
static int
cmp_br_bi(mpr *bigratio, mpi *bignum)
{
int cmp;
mpr cmp1;
mpr_init(&cmp1);
mpi_set(mpr_num(&cmp1), bignum);
mpi_seti(mpr_den(&cmp1), 1);
cmp = mpr_cmp(bigratio, &cmp1);
mpr_clear(&cmp1);
return (cmp);
}
/************************************************************************
* BIGRATIO FIXRATIO
************************************************************************/
static void
rop_br_fr_asmd_xr(n_real *real, long num, long den, int nop)
{
mpr *bigratio = RBR(real), rop;
mpr_init(&rop);
mpr_seti(&rop, num, den);
switch (nop) {
case NOP_ADD:
mpr_add(bigratio, bigratio, &rop);
break;
case NOP_SUB:
mpr_sub(bigratio, bigratio, &rop);
break;
case NOP_MUL:
mpr_mul(bigratio, bigratio, &rop);
break;
default:
mpr_div(bigratio, bigratio, &rop);
break;
}
mpr_clear(&rop);
rbr_canonicalize(real);
}
static INLINE void
radd_br_fr(n_real *real, long num, long den)
{
rop_br_fr_asmd_xr(real, num, den, NOP_ADD);
}
static INLINE void
rsub_br_fr(n_real *real, long num, long den)
{
rop_br_fr_asmd_xr(real, num, den, NOP_SUB);
}
static INLINE void
rmul_br_fr(n_real *real, long num, long den)
{
rop_br_fr_asmd_xr(real, num, den, NOP_MUL);
}
static INLINE void
rdiv_br_fr(n_real *real, long num, long den)
{
rop_br_fr_asmd_xr(real, num, den, NOP_DIV);
}
static int
cmp_br_fr(mpr *bigratio, long num, long den)
{
int cmp;
mpr cmp2;
mpr_init(&cmp2);
mpr_seti(&cmp2, num, den);
cmp = mpr_cmp(bigratio, &cmp2);
mpr_clear(&cmp2);
return (cmp);
}
/************************************************************************
* BIGRATIO BIGRATIO
************************************************************************/
static INLINE void
radd_br_br(n_real *real, mpr *bigratio)
{
mpr_add(RBR(real), RBR(real), bigratio);
rbr_canonicalize(real);
}
static INLINE void
rsub_br_br(n_real *real, mpr *bigratio)
{
mpr_sub(RBR(real), RBR(real), bigratio);
rbr_canonicalize(real);
}
static INLINE void
rmul_br_br(n_real *real, mpr *bigratio)
{
mpr_mul(RBR(real), RBR(real), bigratio);
rbr_canonicalize(real);
}
static INLINE void
rdiv_br_br(n_real *real, mpr *bigratio)
{
mpr_div(RBR(real), RBR(real), bigratio);
rbr_canonicalize(real);
}
static INLINE int
cmp_br_br(mpr *op1, mpr *op2)
{
return (mpr_cmp(op1, op2));
}