pixel-examples/community/maze/maze-generator.go

318 lines
7.8 KiB
Go
Raw Normal View History

2017-05-30 06:30:09 -05:00
package main
// Code based on the Recursive backtracker algorithm.
// https://en.wikipedia.org/wiki/Maze_generation_algorithm#Recursive_backtracker
// See https://youtu.be/HyK_Q5rrcr4 as an example
// YouTube example ported to Go for the Pixel library.
// Created by Stephen Chavez
import (
"crypto/rand"
"errors"
"flag"
"fmt"
"math/big"
"time"
"github.com/faiface/pixel"
"github.com/faiface/pixel/examples/community/maze/stack"
"github.com/faiface/pixel/imdraw"
"github.com/faiface/pixel/pixelgl"
"github.com/pkg/profile"
"golang.org/x/image/colornames"
)
var visitedColor = pixel.RGB(0.5, 0, 1).Mul(pixel.Alpha(0.35))
var hightlightColor = pixel.RGB(0.3, 0, 0).Mul(pixel.Alpha(0.45))
var debug = false
type cell struct {
walls [4]bool // Wall order: top, right, bottom, left
row int
col int
visited bool
}
func (c *cell) Draw(imd *imdraw.IMDraw, wallSize int) {
drawCol := c.col * wallSize // x
drawRow := c.row * wallSize // y
imd.Color = colornames.White
if c.walls[0] {
// top line
imd.Push(pixel.V(float64(drawCol), float64(drawRow)), pixel.V(float64(drawCol+wallSize), float64(drawRow)))
imd.Line(3)
}
if c.walls[1] {
// right Line
imd.Push(pixel.V(float64(drawCol+wallSize), float64(drawRow)), pixel.V(float64(drawCol+wallSize), float64(drawRow+wallSize)))
imd.Line(3)
}
if c.walls[2] {
// bottom line
imd.Push(pixel.V(float64(drawCol+wallSize), float64(drawRow+wallSize)), pixel.V(float64(drawCol), float64(drawRow+wallSize)))
imd.Line(3)
}
if c.walls[3] {
// left line
imd.Push(pixel.V(float64(drawCol), float64(drawRow+wallSize)), pixel.V(float64(drawCol), float64(drawRow)))
imd.Line(3)
}
imd.EndShape = imdraw.SharpEndShape
if c.visited {
imd.Color = visitedColor
imd.Push(pixel.V(float64(drawCol), (float64(drawRow))), pixel.V(float64(drawCol+wallSize), float64(drawRow+wallSize)))
imd.Rectangle(0)
}
}
func (c *cell) GetNeighbors(grid []*cell, cols int, rows int) ([]*cell, error) {
neighbors := []*cell{}
j := c.row
i := c.col
top, _ := getCellAt(i, j-1, cols, rows, grid)
right, _ := getCellAt(i+1, j, cols, rows, grid)
bottom, _ := getCellAt(i, j+1, cols, rows, grid)
left, _ := getCellAt(i-1, j, cols, rows, grid)
if top != nil && !top.visited {
neighbors = append(neighbors, top)
}
if right != nil && !right.visited {
neighbors = append(neighbors, right)
}
if bottom != nil && !bottom.visited {
neighbors = append(neighbors, bottom)
}
if left != nil && !left.visited {
neighbors = append(neighbors, left)
}
if len(neighbors) == 0 {
return nil, errors.New("We checked all cells...")
}
return neighbors, nil
}
func (c *cell) GetRandomNeighbor(grid []*cell, cols int, rows int) (*cell, error) {
neighbors, err := c.GetNeighbors(grid, cols, rows)
if neighbors == nil {
return nil, err
}
nBig, err := rand.Int(rand.Reader, big.NewInt(int64(len(neighbors))))
if err != nil {
panic(err)
}
randomIndex := nBig.Int64()
return neighbors[randomIndex], nil
}
func (c *cell) hightlight(imd *imdraw.IMDraw, wallSize int) {
x := c.col * wallSize
y := c.row * wallSize
imd.Color = hightlightColor
imd.Push(pixel.V(float64(x), float64(y)), pixel.V(float64(x+wallSize), float64(y+wallSize)))
imd.Rectangle(0)
}
func newCell(col int, row int) *cell {
newCell := new(cell)
newCell.row = row
newCell.col = col
for i := range newCell.walls {
newCell.walls[i] = true
}
return newCell
}
// Creates the inital maze slice for use.
func initGrid(cols, rows int) []*cell {
grid := []*cell{}
for j := 0; j < rows; j++ {
for i := 0; i < cols; i++ {
newCell := newCell(i, j)
grid = append(grid, newCell)
}
}
return grid
}
func setupMaze(cols, rows int) ([]*cell, *stack.Stack, *cell) {
// Make an empty grid
grid := initGrid(cols, rows)
backTrackStack := stack.NewStack(len(grid))
currentCell := grid[0]
return grid, backTrackStack, currentCell
}
func cellIndex(i, j, cols, rows int) int {
if i < 0 || j < 0 || i > cols-1 || j > rows-1 {
return -1
}
return i + j*cols
}
func getCellAt(i int, j int, cols int, rows int, grid []*cell) (*cell, error) {
possibleIndex := cellIndex(i, j, cols, rows)
if possibleIndex == -1 {
return nil, fmt.Errorf("cellIndex: CellIndex is a negative number %d", possibleIndex)
}
return grid[possibleIndex], nil
}
func removeWalls(a *cell, b *cell) {
x := a.col - b.col
if x == 1 {
a.walls[3] = false
b.walls[1] = false
} else if x == -1 {
a.walls[1] = false
b.walls[3] = false
}
y := a.row - b.row
if y == 1 {
a.walls[0] = false
b.walls[2] = false
} else if y == -1 {
a.walls[2] = false
b.walls[0] = false
}
}
func run() {
// unsiged integers, because easier parsing error checks.
// We must convert these to intergers, as done below...
uScreenWidth, uScreenHeight, uWallSize := parseArgs()
var (
// In pixels
// Defualt is 800x800x40 = 20x20 wallgrid
screenWidth = int(uScreenWidth)
screenHeight = int(uScreenHeight)
wallSize = int(uWallSize)
frames = 0
second = time.Tick(time.Second)
grid = []*cell{}
cols = screenWidth / wallSize
rows = screenHeight / wallSize
currentCell = new(cell)
backTrackStack = stack.NewStack(1)
)
// Set game FPS manually
fps := time.Tick(time.Second / 60)
cfg := pixelgl.WindowConfig{
Title: "Pixel Rocks! - Maze example",
Bounds: pixel.R(0, 0, float64(screenHeight), float64(screenWidth)),
}
win, err := pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
grid, backTrackStack, currentCell = setupMaze(cols, rows)
gridIMDraw := imdraw.New(nil)
for !win.Closed() {
if win.JustReleased(pixelgl.KeyR) {
fmt.Println("R pressed")
grid, backTrackStack, currentCell = setupMaze(cols, rows)
}
win.Clear(colornames.Gray)
gridIMDraw.Clear()
for i := range grid {
grid[i].Draw(gridIMDraw, wallSize)
}
// step 1
// Make the initial cell the current cell and mark it as visited
currentCell.visited = true
currentCell.hightlight(gridIMDraw, wallSize)
// step 2.1
// If the current cell has any neighbours which have not been visited
// Choose a random unvisited cell
nextCell, _ := currentCell.GetRandomNeighbor(grid, cols, rows)
if nextCell != nil && !nextCell.visited {
// step 2.2
// Push the current cell to the stack
backTrackStack.Push(currentCell)
// step 2.3
// Remove the wall between the current cell and the chosen cell
removeWalls(currentCell, nextCell)
// step 2.4
// Make the chosen cell the current cell and mark it as visited
nextCell.visited = true
currentCell = nextCell
} else if backTrackStack.Len() > 0 {
currentCell = backTrackStack.Pop().(*cell)
}
gridIMDraw.Draw(win)
win.Update()
<-fps
updateFPSDisplay(win, &cfg, &frames, grid, second)
}
}
// Parses the maze arguments, all of them are optional.
// Uses uint as implicit error checking :)
func parseArgs() (uint, uint, uint) {
var mazeWidthPtr = flag.Uint("w", 800, "w sets the maze's width in pixels.")
var mazeHeightPtr = flag.Uint("h", 800, "h sets the maze's height in pixels.")
var wallSizePtr = flag.Uint("c", 40, "c sets the maze cell's size in pixels.")
flag.Parse()
// If these aren't default values AND if they're not the same values.
// We should warn the user that the maze will look funny.
if *mazeWidthPtr != 800 || *mazeHeightPtr != 800 {
if *mazeWidthPtr != *mazeHeightPtr {
fmt.Printf("WARNING: maze width: %d and maze height: %d don't match. \n", *mazeWidthPtr, *mazeHeightPtr)
fmt.Println("Maze will look funny because the maze size is bond to the window size!")
}
}
return *mazeWidthPtr, *mazeHeightPtr, *wallSizePtr
}
func updateFPSDisplay(win *pixelgl.Window, cfg *pixelgl.WindowConfig, frames *int, grid []*cell, second <-chan time.Time) {
*frames++
select {
case <-second:
win.SetTitle(fmt.Sprintf("%s | FPS: %d with %d Cells", cfg.Title, *frames, len(grid)))
*frames = 0
default:
}
}
func main() {
if debug {
defer profile.Start().Stop()
}
pixelgl.Run(run)
}