283 lines
6.4 KiB
JavaScript
283 lines
6.4 KiB
JavaScript
/*
|
|
* bigint-mod-arith implementation:
|
|
* https://github.com/juanelas/bigint-mod-arith
|
|
*
|
|
* Full attribution follows:
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2018 Juan Hernández Serrano
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
|
*
|
|
* @param a
|
|
*
|
|
* @returns The absolute value of a
|
|
*/
|
|
function abs(a) {
|
|
return (a >= 0) ? a : -a;
|
|
}
|
|
|
|
/**
|
|
* Returns the bitlength of a number
|
|
*
|
|
* @param a
|
|
* @returns The bit length
|
|
*/
|
|
function bitLength(a) {
|
|
if (typeof a === 'number') {
|
|
a = BigInt(a);
|
|
}
|
|
if (a === 1n) {
|
|
return 1;
|
|
}
|
|
let bits = 1;
|
|
do {
|
|
bits++;
|
|
} while ((a >>= 1n) > 1n);
|
|
return bits;
|
|
}
|
|
|
|
/**
|
|
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
*
|
|
* @param a
|
|
* @param b
|
|
*
|
|
* @throws {RangeError}
|
|
* This excepction is thrown if a or b are less than 0
|
|
*
|
|
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
*/
|
|
function eGcd(a, b) {
|
|
if (typeof a === 'number') {
|
|
a = BigInt(a);
|
|
}
|
|
if (typeof b === 'number') {
|
|
b = BigInt(b);
|
|
}
|
|
if (a <= 0n || b <= 0n) {
|
|
throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive
|
|
}
|
|
let x = 0n;
|
|
let y = 1n;
|
|
let u = 1n;
|
|
let v = 0n;
|
|
while (a !== 0n) {
|
|
const q = b / a;
|
|
const r = b % a;
|
|
const m = x - (u * q);
|
|
const n = y - (v * q);
|
|
b = a;
|
|
a = r;
|
|
x = u;
|
|
y = v;
|
|
u = m;
|
|
v = n;
|
|
}
|
|
return {
|
|
g: b,
|
|
x: x,
|
|
y: y
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Greatest-common divisor of two integers based on the iterative binary algorithm.
|
|
*
|
|
* @param a
|
|
* @param b
|
|
*
|
|
* @returns The greatest common divisor of a and b
|
|
*/
|
|
function gcd(a, b) {
|
|
let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a);
|
|
let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b);
|
|
if (aAbs === 0n) {
|
|
return bAbs;
|
|
} else if (bAbs === 0n) {
|
|
return aAbs;
|
|
}
|
|
let shift = 0n;
|
|
while (((aAbs | bAbs) & 1n) === 0n) {
|
|
aAbs >>= 1n;
|
|
bAbs >>= 1n;
|
|
shift++;
|
|
}
|
|
while ((aAbs & 1n) === 0n) {
|
|
aAbs >>= 1n;
|
|
}
|
|
do {
|
|
while ((bAbs & 1n) === 0n) {
|
|
bAbs >>= 1n;
|
|
}
|
|
if (aAbs > bAbs) {
|
|
const x = aAbs;
|
|
aAbs = bAbs;
|
|
bAbs = x;
|
|
}
|
|
bAbs -= aAbs;
|
|
} while (bAbs !== 0n);
|
|
// rescale
|
|
return aAbs << shift;
|
|
}
|
|
|
|
/**
|
|
* The least common multiple computed as abs(a*b)/gcd(a,b)
|
|
* @param a
|
|
* @param b
|
|
*
|
|
* @returns The least common multiple of a and b
|
|
*/
|
|
function lcm(a, b) {
|
|
if (typeof a === 'number') {
|
|
a = BigInt(a);
|
|
}
|
|
if (typeof b === 'number') {
|
|
b = BigInt(b);
|
|
}
|
|
if (a === 0n && b === 0n) {
|
|
return BigInt(0);
|
|
}
|
|
return abs(a * b) / gcd(a, b);
|
|
}
|
|
|
|
/**
|
|
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
|
*
|
|
* @param a
|
|
* @param b
|
|
*
|
|
* @returns Maximum of numbers a and b
|
|
*/
|
|
function max(a, b) {
|
|
return (a >= b) ? a : b;
|
|
}
|
|
|
|
/**
|
|
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
|
*
|
|
* @param a
|
|
* @param b
|
|
*
|
|
* @returns Minimum of numbers a and b
|
|
*/
|
|
function min(a, b) {
|
|
return (a >= b) ? b : a;
|
|
}
|
|
|
|
/**
|
|
* Finds the smallest positive element that is congruent to a in modulo n
|
|
*
|
|
* @remarks
|
|
* a and b must be the same type, either number or bigint
|
|
*
|
|
* @param a - An integer
|
|
* @param n - The modulo
|
|
*
|
|
* @throws {RangeError}
|
|
* Excpeption thrown when n is not > 0
|
|
*
|
|
* @returns A bigint with the smallest positive representation of a modulo n
|
|
*/
|
|
function toZn(a, n) {
|
|
if (typeof a === 'number') {
|
|
a = BigInt(a);
|
|
}
|
|
if (typeof n === 'number') {
|
|
n = BigInt(n);
|
|
}
|
|
if (n <= 0n) {
|
|
throw new RangeError('n must be > 0');
|
|
}
|
|
const aZn = a % n;
|
|
return (aZn < 0n) ? aZn + n : aZn;
|
|
}
|
|
|
|
/**
|
|
* Modular inverse.
|
|
*
|
|
* @param a The number to find an inverse for
|
|
* @param n The modulo
|
|
*
|
|
* @throws {RangeError}
|
|
* Excpeption thorwn when a does not have inverse modulo n
|
|
*
|
|
* @returns The inverse modulo n
|
|
*/
|
|
function modInv(a, n) {
|
|
const egcd = eGcd(toZn(a, n), n);
|
|
if (egcd.g !== 1n) {
|
|
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist
|
|
} else {
|
|
return toZn(egcd.x, n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
|
*
|
|
* @param b base
|
|
* @param e exponent
|
|
* @param n modulo
|
|
*
|
|
* @throws {RangeError}
|
|
* Excpeption thrown when n is not > 0
|
|
*
|
|
* @returns b**e mod n
|
|
*/
|
|
function modPow(b, e, n) {
|
|
if (typeof b === 'number') {
|
|
b = BigInt(b);
|
|
}
|
|
if (typeof e === 'number') {
|
|
e = BigInt(e);
|
|
}
|
|
if (typeof n === 'number') {
|
|
n = BigInt(n);
|
|
}
|
|
if (n <= 0n) {
|
|
throw new RangeError('n must be > 0');
|
|
} else if (n === 1n) {
|
|
return 0n;
|
|
}
|
|
b = toZn(b, n);
|
|
if (e < 0n) {
|
|
return modInv(modPow(b, abs(e), n), n);
|
|
}
|
|
let r = 1n;
|
|
while (e > 0) {
|
|
if ((e % 2n) === 1n) {
|
|
r = r * b % n;
|
|
}
|
|
e = e / 2n;
|
|
b = b ** 2n % n;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn }; |