/* * bigint-mod-arith implementation: * https://github.com/juanelas/bigint-mod-arith * * Full attribution follows: * * ------------------------------------------------------------------------- * * MIT License * * Copyright (c) 2018 Juan Hernández Serrano * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param a * * @returns The absolute value of a */ function abs(a) { return (a >= 0) ? a : -a; } /** * Returns the bitlength of a number * * @param a * @returns The bit length */ function bitLength(a) { if (typeof a === 'number') { a = BigInt(a); } if (a === 1n) { return 1; } let bits = 1; do { bits++; } while ((a >>= 1n) > 1n); return bits; } /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param a * @param b * * @throws {RangeError} * This excepction is thrown if a or b are less than 0 * * @returns A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd(a, b) { if (typeof a === 'number') { a = BigInt(a); } if (typeof b === 'number') { b = BigInt(b); } if (a <= 0n || b <= 0n) { throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive } let x = 0n; let y = 1n; let u = 1n; let v = 0n; while (a !== 0n) { const q = b / a; const r = b % a; const m = x - (u * q); const n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { g: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param a * @param b * * @returns The greatest common divisor of a and b */ function gcd(a, b) { let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a); let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b); if (aAbs === 0n) { return bAbs; } else if (bAbs === 0n) { return aAbs; } let shift = 0n; while (((aAbs | bAbs) & 1n) === 0n) { aAbs >>= 1n; bAbs >>= 1n; shift++; } while ((aAbs & 1n) === 0n) { aAbs >>= 1n; } do { while ((bAbs & 1n) === 0n) { bAbs >>= 1n; } if (aAbs > bAbs) { const x = aAbs; aAbs = bAbs; bAbs = x; } bAbs -= aAbs; } while (bAbs !== 0n); // rescale return aAbs << shift; } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param a * @param b * * @returns The least common multiple of a and b */ function lcm(a, b) { if (typeof a === 'number') { a = BigInt(a); } if (typeof b === 'number') { b = BigInt(b); } if (a === 0n && b === 0n) { return BigInt(0); } return abs(a * b) / gcd(a, b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param a * @param b * * @returns Maximum of numbers a and b */ function max(a, b) { return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param a * @param b * * @returns Minimum of numbers a and b */ function min(a, b) { return (a >= b) ? b : a; } /** * Finds the smallest positive element that is congruent to a in modulo n * * @remarks * a and b must be the same type, either number or bigint * * @param a - An integer * @param n - The modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns A bigint with the smallest positive representation of a modulo n */ function toZn(a, n) { if (typeof a === 'number') { a = BigInt(a); } if (typeof n === 'number') { n = BigInt(n); } if (n <= 0n) { throw new RangeError('n must be > 0'); } const aZn = a % n; return (aZn < 0n) ? aZn + n : aZn; } /** * Modular inverse. * * @param a The number to find an inverse for * @param n The modulo * * @throws {RangeError} * Excpeption thorwn when a does not have inverse modulo n * * @returns The inverse modulo n */ function modInv(a, n) { const egcd = eGcd(toZn(a, n), n); if (egcd.g !== 1n) { throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist } else { return toZn(egcd.x, n); } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param b base * @param e exponent * @param n modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns b**e mod n */ function modPow(b, e, n) { if (typeof b === 'number') { b = BigInt(b); } if (typeof e === 'number') { e = BigInt(e); } if (typeof n === 'number') { n = BigInt(n); } if (n <= 0n) { throw new RangeError('n must be > 0'); } else if (n === 1n) { return 0n; } b = toZn(b, n); if (e < 0n) { return modInv(modPow(b, abs(e), n), n); } let r = 1n; while (e > 0) { if ((e % 2n) === 1n) { r = r * b % n; } e = e / 2n; b = b ** 2n % n; } return r; } export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn };