Merge cb86fbd47d
into 1174275b5b
This commit is contained in:
commit
7557e33802
|
@ -2,4 +2,7 @@
|
|||
/venv
|
||||
/narration
|
||||
/frames/*
|
||||
!/frames/.gitkeep
|
||||
!/frames/.gitkeep
|
||||
|
||||
# Mac-OS specific
|
||||
.DS_Store
|
21
README.md
21
README.md
|
@ -20,11 +20,24 @@ Then, install the dependencies:
|
|||
|
||||
Make a [Replicate](https://replicate.com), [OpenAI](https://beta.openai.com/), and [ElevenLabs](https://elevenlabs.io) account and set your tokens:
|
||||
|
||||
```
|
||||
export OPENAI_API_KEY=<token>
|
||||
export ELEVENLABS_API_KEY=<eleven-token>
|
||||
```
|
||||
### Setting Up Environment Variables
|
||||
|
||||
Instead of setting your tokens directly in the terminal, we'll use a `.env` file to manage them securely. Follow these steps:
|
||||
|
||||
1. Create a file named `.env` in the root directory of your project.
|
||||
2. Add your API keys and voice ID to the `.env` file in the following format:
|
||||
|
||||
```
|
||||
OPENAI_API_KEY=your_openai_api_key
|
||||
ELEVENLABS_API_KEY=your_elevenlabs_api_key
|
||||
ELEVENLABS_VOICE_ID=your_elevenlabs_voice_id
|
||||
```
|
||||
|
||||
Replace `your_openai_api_key`, `your_elevenlabs_api_key`, and `your_elevenlabs_voice_id` with your actual keys and ID.
|
||||
|
||||
3. The python-dotenv package (already included in `requirements.txt`) will load these variables automatically.
|
||||
|
||||
**Note:** Ensure that `.env` is listed in your `.gitignore` file to keep your API keys secure.
|
||||
Make a new voice in Eleven and get the voice id of that voice using their [get voices](https://elevenlabs.io/docs/api-reference/voices) API, or by clicking the flask icon next to the voice in the VoiceLab tab.
|
||||
|
||||
```
|
||||
|
|
24
capture.py
24
capture.py
|
@ -24,21 +24,21 @@ time.sleep(2)
|
|||
while True:
|
||||
ret, frame = cap.read()
|
||||
if ret:
|
||||
# Convert the frame to a PIL image
|
||||
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
||||
|
||||
# Resize the image
|
||||
max_size = 250
|
||||
ratio = max_size / max(pil_img.size)
|
||||
new_size = tuple([int(x*ratio) for x in pil_img.size])
|
||||
resized_img = pil_img.resize(new_size, Image.LANCZOS)
|
||||
|
||||
# Convert the PIL image back to an OpenCV image
|
||||
frame = cv2.cvtColor(np.array(resized_img), cv2.COLOR_RGB2BGR)
|
||||
# Resize the image before saving to improve performance
|
||||
max_size = 400
|
||||
height, width = frame.shape[:2]
|
||||
if height > width:
|
||||
new_height = max_size
|
||||
new_width = int((max_size / height) * width)
|
||||
else:
|
||||
new_width = max_size
|
||||
new_height = int((max_size / width) * height)
|
||||
|
||||
frame = cv2.resize(frame, (new_width, new_height))
|
||||
|
||||
# Save the frame as an image file
|
||||
print("📸 Say cheese! Saving frame.")
|
||||
path = f"{folder}/frame.jpg"
|
||||
path = os.path.join(frames_dir, "frame.jpg")
|
||||
cv2.imwrite(path, frame)
|
||||
else:
|
||||
print("Failed to capture image")
|
||||
|
|
101
narrator.py
101
narrator.py
|
@ -1,17 +1,33 @@
|
|||
import os
|
||||
from dotenv import load_dotenv
|
||||
from openai import OpenAI
|
||||
import base64
|
||||
import json
|
||||
# import json
|
||||
import time
|
||||
import simpleaudio as sa
|
||||
# import simpleaudio as sa
|
||||
import errno
|
||||
from elevenlabs import generate, play, set_api_key, voices
|
||||
from elevenlabs import play, Voice
|
||||
from elevenlabs.client import ElevenLabs
|
||||
|
||||
client = OpenAI()
|
||||
# Load environment variables from a .env file
|
||||
load_dotenv()
|
||||
|
||||
set_api_key(os.environ.get("ELEVENLABS_API_KEY"))
|
||||
# Initialize OpenAI and ElevenLabs clients
|
||||
clientOA = OpenAI()
|
||||
clientEL = ElevenLabs(
|
||||
api_key=os.environ.get("ELEVENLABS_API_KEY")
|
||||
)
|
||||
|
||||
def encode_image(image_path):
|
||||
"""
|
||||
Encodes an image to base64.
|
||||
|
||||
Args:
|
||||
image_path (str): The path to the image file.
|
||||
|
||||
Returns:
|
||||
str: Base64 encoded string of the image.
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
with open(image_path, "rb") as image_file:
|
||||
|
@ -23,80 +39,111 @@ def encode_image(image_path):
|
|||
# File is being written to, wait a bit and retry
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
def play_audio(text):
|
||||
audio = generate(text, voice=os.environ.get("ELEVENLABS_VOICE_ID"))
|
||||
"""
|
||||
Generates and plays audio from text using ElevenLabs.
|
||||
|
||||
Args:
|
||||
text (str): The text to be converted to speech.
|
||||
"""
|
||||
# Generate audio from text
|
||||
audio_generator = clientEL.generate(text=text, voice=Voice(voice_id=os.environ.get("ELEVENLABS_VOICE_ID")))
|
||||
|
||||
# Create a unique directory for storing the audio file
|
||||
unique_id = base64.urlsafe_b64encode(os.urandom(30)).decode("utf-8").rstrip("=")
|
||||
dir_path = os.path.join("narration", unique_id)
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
file_path = os.path.join(dir_path, "audio.wav")
|
||||
|
||||
# Gather audio data from generator
|
||||
audio_bytes = b''.join(audio_generator)
|
||||
|
||||
# Save audio to file
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(audio)
|
||||
|
||||
play(audio)
|
||||
f.write(audio_bytes)
|
||||
|
||||
# Play the generated audio
|
||||
play(audio_bytes)
|
||||
|
||||
def generate_new_line(base64_image):
|
||||
"""
|
||||
Generates a new line of messages for the OpenAI API call.
|
||||
|
||||
Args:
|
||||
base64_image (str): Base64 encoded string of the image.
|
||||
|
||||
Returns:
|
||||
list: A list of messages to be sent to the OpenAI API.
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Describe this image"},
|
||||
{"type": "text", "text": "Describe this image as if you are Sir David Attenborough narrating a nature documentary about homo sapiens."},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": f"data:image/jpeg;base64,{base64_image}",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{base64_image}",
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def analyze_image(base64_image, script):
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-4-vision-preview",
|
||||
"""
|
||||
Analyzes an image using OpenAI's language model.
|
||||
|
||||
Args:
|
||||
base64_image (str): Base64 encoded string of the image.
|
||||
script (list): List of previous messages to maintain context.
|
||||
|
||||
Returns:
|
||||
str: The response text from OpenAI.
|
||||
"""
|
||||
response = clientOA.chat.completions.create(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": """
|
||||
You are Sir David Attenborough. Narrate the picture of the human as if it is a nature documentary.
|
||||
Make it snarky and funny. Don't repeat yourself. Make it short. If I do anything remotely interesting, make a big deal about it!
|
||||
Be accurate, snarky, and funny. Describe what the human is actually doing. Make it short and concise, within 3 sentences. If the human is doing something remotely interesting, make a big deal about it!
|
||||
""",
|
||||
},
|
||||
]
|
||||
+ script
|
||||
+ generate_new_line(base64_image),
|
||||
max_tokens=500,
|
||||
max_tokens=150,
|
||||
temperature=0.7,
|
||||
)
|
||||
response_text = response.choices[0].message.content
|
||||
return response_text
|
||||
|
||||
|
||||
def main():
|
||||
script = []
|
||||
|
||||
while True:
|
||||
# path to your image
|
||||
# Path to your image
|
||||
image_path = os.path.join(os.getcwd(), "./frames/frame.jpg")
|
||||
|
||||
# getting the base64 encoding
|
||||
# Get the base64 encoding of the image
|
||||
base64_image = encode_image(image_path)
|
||||
|
||||
# analyze posture
|
||||
# Analyze the image and generate a narration
|
||||
print("👀 David is watching...")
|
||||
analysis = analyze_image(base64_image, script=script)
|
||||
|
||||
# Print and play the narration
|
||||
print("🎙️ David says:")
|
||||
print(analysis)
|
||||
|
||||
play_audio(analysis)
|
||||
|
||||
script = script + [{"role": "assistant", "content": analysis}]
|
||||
|
||||
# wait for 5 seconds
|
||||
time.sleep(5)
|
||||
# Append the analysis to the script for context in future requests
|
||||
script.append({"role": "assistant", "content": analysis})
|
||||
|
||||
# wait for 3 seconds
|
||||
time.sleep(3)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
|
@ -6,7 +6,7 @@ certifi==2023.7.22
|
|||
charset-normalizer==3.3.2
|
||||
decorator==5.1.1
|
||||
distro==1.8.0
|
||||
elevenlabs==0.2.26
|
||||
elevenlabs==1.5.0
|
||||
exceptiongroup==1.1.3
|
||||
executing==2.0.1
|
||||
h11==0.14.0
|
||||
|
@ -28,6 +28,7 @@ pure-eval==0.2.2
|
|||
pydantic==2.4.2
|
||||
pydantic_core==2.10.1
|
||||
Pygments==2.16.1
|
||||
python-dotenv==1.0.0
|
||||
requests==2.31.0
|
||||
simpleaudio==1.0.4
|
||||
six==1.16.0
|
||||
|
|
Loading…
Reference in New Issue